Metoder att avgéra stabiliteten hos ‘

aterkoppla Nyquists forenklade stabilitetskriterium*
bplade system Ext dterkopplat lineiirt system 4r stabilt om amplitudférstirkningen

hos kretsoverforingen |G| 4r mindre 4n ett vid den frekvens dir
fasforskjutningen /Gy ir — 180 grader. I annat fall dr systemet
instabilt.

Y

f il Gr Ge =i
Tre metoder ingdr i kursen
Gg

1) Polbestamning
2) Rouths 'metod |
3) Nyquist-kriteriet 61 o

Kretséverfiringen Gy = Gy - G- Gg

OBS! Alla &r lika viktiga eftersom de har
olika fordelar och nackdelar.

Nyquistkriteriet finns i tva varianter, dels
det férenklade Nyquistkriteriet, dels det
fullstdndiga Nyquistkriteriet.

Statisk noggrannhet

Statisk noggrannhet

Reglersystemets egenskaper i statiskt tillstand, (kv arstaende fel e, €1, €)
) 1)

férmagan att folja borvardeéndringar och att klara

storningar. (kap 4)
Tre typer av kvarstidende fel Kan bestammas pé tva satt
& N i i '
r__bp—- : 1) Med hjélp av gransvérden (formler)
I "y ' i
€q = kvarstdend o
fetet vid stegindkingsr | . 2) Med hjalp av Bodediagram
i borvardet. Bra systom
& ¥ |- : - €
t L
T Y
Déligt system

{61 = motsvarande fel vid rampformade bérvérdeséndringar

e, = motsvarande fel vid stegstdrningar

Fraga: Hur berdknas e, e; ochey ?




Statisk noggrannhet — formler

[ :

Berdkning av kvarstiende fel
® Vid siegformade b:brvarde.mndrm"ar

=Ll
R IveG, GRG,,

dér a 4r stegets héjd.

® Vid rampformade bérvardesandringar:

ﬁjg ——hr._._
10 S(I + GgGyp)

dér k &r lutningen pd rampen.

® Vid giggfonmade processigrningar:
- Gpa

ey = lim ———="—-

bl 5 s

dér ¢ ir stegets hojd.

I formlerna har forutsatts att systemet ir stabilt och att det
beskrivs med nedanstdende blockschema, dvs vi frsummar giva-
rens dynamik (den férutsitts odndligt snabb).

Regulator Frocess

Bevis_(formel for eg)

PRSI Ga'-fé—-@—r-"

Birvirde -

- Vtsignal

+

Kvarctiende fel
Y = u!A;Iﬂ- v.'—‘ M -Y =
e":-ﬁ::o et §=0 & S=0 S(E )
Qe% ]
- do s(R-Reer) = o sR[1- G -
_{ _gf_ Lim s,z.[__f_],
SFIRTS | T sa0 S 1+6:6

_ dim a
-5'-)0 f*\"'@g‘p

-] For att eliminera kvarstiende fel efter stegformade borvirdes-

Allmanna slutsatser
(mycket viktiga slutsatser)

Andringar krdvs alt antingen regulatorn eller processen innehéller
integration (dvs att systemet &r av typ ett).

Gp

Regulcror Praocess

. Fér att eliminera kvarstiende fel efter stegformade processtdr-
ningar V krévs att regulatorn G innehéller integralverkan.

Regulator Process

Kvarstaende fel med Bodediagram

Galler endast felen vid bérvéardesandringar (e, och e,)

16l
LF asymptot
futning Aol

e
N

T LF-asymptot
tuening-20 dB /dekad

Typ Amplitud- Kvarstdende fel |
kurva € (steg) ¢, (ramp)

Icke-integrerande il g .
kretsgverforing K i iR
(system av typ Ell h |
Integrerande ,
kretsgverforing = 0 E
(system av typ 1) 1 J_
L=

Amplitudkurva fér
kretsdverforingen




Bestdmning av egenskaper med
Bodediagram

Sammanfattande figur for stabilitet,
snabbhet och kvarstadende fel

Kvarstdende fel Snabbheten

Kan bestimmas med hjilp Overkorsningsfrekvensen g,
av ligfrekvensasymptotens #r ett métt pd snabbheten.
liige och lutning.

lel el

16«

-180°

Stabiliteten
Fasmarginalen @, och amplitudmarginalen A, & métt pé stabiliteten.

OBS! Det dr kretsoéverforingen Gy som ska ritas om
egenskaperna ska bestdmmas enligt ovan.

Resumé — Vad har vi gjort?

Introduktion - Allmént

« Vad menas med reglerteknik?
Anvéndningsomréaden
Begrepp (aterkoppling, blockschema, bérvérde ....)
Processtyper
Egenskaper hos reglersystem
Klassiska reglerprinciper

Grundliggande matematik for dynamiska

system
« Laplacetransformen
« Overfdringsfunktioner
« Berikning av tidsforlopp
« Blockschematransformering
« Frekvensanalys (Bestdmning av A(w) och @(w))

Modellering (fysik mm)
« Teoretisk modellering (mekaniska & termiska system,
nivaprocesser och koncentrationsprocesser)
« Experimentell modellering (stegsvarsanalys)

Simulering av reglersystem
» Nagot om Matlab och Simulink)

Bestamning av egenskaper hos

reglersystem
« Stabilitet (tre metoder)
« Statisk noggrannhet

Vad aterstar av kursen?

Berédkning av egenskaper - forts.
+ Stérningsddmpning
¢ Snabbhet
mm

Dimensionering av PID-reglersystem
¢ Tumregelmetoder
¢ Dimensionering med bodediagram

Andra reglerprinciper
* Framkoppling
* Kaskadreglering
» Modellbaserad dimensionering

Digitala (datorbaserade) regulatorer
¢ Kort repetition av z-transformen
s Kort repetition av tidsdiskreta éverforingsfunktioner
och differensekvationer
+ Digital implementering av regulatorer
+ Mikrodatorbaserad reglering och inbyggda
reglersystem

Tillstdndsmodeller
s Ytterligare en modellityp fér simulering och analys av
"stora” dynamiska system




Stérningar — nagra exempel

En av reglersystemens viktigaste uppgifter &r att
diémpa inverkan av olika slags stdrningar.

Exempel

Storningar

e Farthéllare Fsr bilar

Y N

Varierande véglutning,
motuind, ojdmn
vig banha mm.

¢ Autopilot fsr flygplan

<z,
o

I/;ndbyar', t«tqg.mpqr‘.

turbulens mm.

® Temperaturreglering 7
hus

U{g#emperm‘aq vind,

J‘d’:‘"rz: [("""9,
elfsrbrukning mm,

Tva huvudtyper av stérningar

Processtoérningar
Paverkas sjélva processen. Paverkar utsignalen
med eller utan aterkoppling.

Matstorningar

P&verkar métningen av utsignalen; givaren.
Paverkar utsignalen endast om systemet &r
aterkopplat.

» Processtorningar &r ofta mer lagfrekventa &r
méatstérningar.

» Processtdrningar oftast viktigast att analysera.

Pfoccs‘rtérning
L Requ- : Pr
oce.
- tator + .
+ 61 —
2 ivare
Ml'a"ésfsr”.l-ng

Storningar av olika karaktar

Lagfrekventa stérningar

PNV

800 1000

“o

Stérningar med nagon speciellt framtrédande frekvens

@MWWWMWWWWWH

Mkt hogfrekventa storningar

100

Stérningsddmpning — formler

Antag att vi har en process som pdverkas av
sinusformade stérningar v(t)=A sin

Vi ska analysera hur mycket stérningen paverkar
utsignalen i foljande tvd fall:

Process utan reglering:

Utsgnalens amplitud A, = A&l

Process med reglering:

= U‘{‘St’ghq'{ehs lqa";/q
amp {rtud




For att avgdra skillnaden bestdmmer vi kvoten mellan
A2 och Al

Kvoten S kallas far kénslighetsfunktionen och visar hur
bra stérningsddmpningen dr vid olika frekvenser.

jGpl
5. Ao 111GeGaGel 1
A [ep] [1+EeGrag |

Normalt utseende pd amplitudkurvan | S|

5

Typ ekt

/\ P utseende

o1t

Ju ldgre virde vi har pd |S|, desto bédttre!

Observera att det normalt finns ett omrdde ddr
resultatet blir simre med dn utan reglering.

Storningsdampning

e Férmagan hos ett reglersystem att ddmpa
inverkan av storningar (kallas ocksé for
stérningsundertryckning)

e Stérningsdampningen &r en funktion av
frekvensen w.

e Hur bra dadmpningen &r av process-
stérningar ges av den s k kénslighets-
funktionen S(jw).

1

s 1+G, -Gy G|

Stabilitet med Bodediagram

Rita kretséverféringen G i ett
bodediagram Ggx=Ggr Gp Gg

Avlads enligt nedan

Stabiliteten
Fasmarginalen &,, och amplitudmarginalen Ay, ir mitt pé stabiliteten.

Process




Dampning av lagfrekventa processtérningar
SHMI'h,ra'EMpm'hgen ges av
ka'h:!i,‘le*:f“uukﬁchens absolutbelopp

LT [, N
. “"‘ GrGpGg |

Vid ldga Frekvenser géller normalt
ott  |GeGpg] >00, dvs,

(]
Py

Den enda foktorn vi kan pdverka dr |Ge|

Slutsats
Démpning av (d9frekveuta starmingar &r

starkt knr,plnd Y] re,u!qfann.r ﬁ't-:ﬁ’r*»n,
|Gal vid [dga frekyenser.

Om ’GEI ar otor far 30d J*i’l'm‘h,l‘a’iﬂpm‘n"

(vikby slutsats vid dimensionering )

Forts

Ah*ﬂj ot vi har en requldfor med
ink.qrafvmh. I s& fall géller att

Jom G,J:}:-%i—

S-=0

b |Gl = o

aeh w-e

J'{‘G

Ju storre varde vi har pi K; de
ba’.‘-‘-rg J"‘g""f"‘?fdah'fht'hj ’

Ma'éf‘ Pu‘ 5+3l’m‘h3r¢lampm'hm

1 Ska vara sé
JV= ra Liten som majligt
7

(sid 137)
Styrsignalaktivitet
o Mitt pd hur shora shyroignaler et
reglersystem med em viss requlator
kriiver (vid stirmingar & birvérdes-
éndn'ngar)
° Sfym‘gnalak#vﬁ"ﬁhh bsr inte vare
far stor, J‘Peca'e"é inte vid biga
frekvenser.
Avalys BlockschematransFor-
U > mn‘u, ger:
U, _Ge
R {+6p6Ge
L, ~%
R R TN

Vid higa frekvenser (Wseo) galler |66l 0

Vi fér dérfsr:
Lo |25 ,: Sim | Gl

‘7“'_ waeo | 1+626.1 Wre

Slutsats
Far ot undwika fsr h3g S'h,r.ﬁ’hdewvﬂ'ﬂ"'
vid haga frekvenser bsr reguqu-orn.r HF-

farstarkning m |Gel begrénses.

(s1d 139)




Bestdmning av egenskaper hos
reglersystem - repetition

%
Ptbestim,  1#a0 Zf>

@ STABILITET
Rouths' metod D
s .
Nguistkrit. mm

N,

[
® STATISK ]ﬁk ® oy Grénsvirdes-
NOGGRANNHET g | farmier o
(buﬂma‘ng av = ”5*0 ff‘*"
e, € oche,} Med Bede-
dr'agrnm K '5':'
" (Al
E,’;"_—ko I :
® SNABBHET _ ¢ oy Direlet svier !!
T: A= bestamning
t

e

c

o STORNINGS- —> Berdkna kinslighets- "'_

Egenskaper hos reglersystem

° S-L-ama'ng.relémpmh,_

o Snabbhet

o Statisk noggmnnﬁeé*

® Sfﬂhﬂkt } BIViLLKeR
Styravmalabhivrtet

L]

* Ko man offa bortre fran dd man
her I-reg!cﬂ'hg.

Vanligen dhskas ot ﬂsruingntimgmhgeh
pch shablheten blr 54 bra gom
hiijb‘g’l.‘

UNDER BivILLKORET
att shabiliteten ar

stor.

41‘"1*56!6!:" och atl
inte blir for

Ea Tt
A-pprm‘mh‘r W gy
formel
4= 1L
o,

Ytterligare bivillker Sor kaw Hillkomma :

w
DAMPNING *g““*‘“",’" = Kostnader, Utngmme, Driftesakerhet,
2 14 GeleS, s Underhillsbehay, Robusthet.
Bakgrund
Det fullstdndiga Nyquist-kriteriet
5
Ahtaj a{ﬂ: G(_;): 25"’3
Den fdrsta generella stabilitetsmetoden som
fungerar for alla typer av lineéra system. g 5

Bygger pa "argumentvariationsprincipen” frdn den
komplexa matematiken.

Kriteriet bevisades forsta géngen av svensk-
amerikanen Harry Nyquist ar 1932.

Satkt S=3J = G(S)=W:W=

. 5(s-3)  _ 30j-15 25
(6j+3)(€5-3)  36j2-9 -3
' 45 1
) ='§-(7“2j}

&
Satt S=1+2j * G(s)= = -
2(1v27)+3 54

- OB | 25E s g
(5+4;) (5-45) 25 1652 14

Slutsats av delta Ihr&iHn:‘hj av et kemplext
tal (;:q+5j) 7 en EVerf‘sh'herunkh'm &(s)

ger et nytt kamP.'cxf tal fsr G(s)

Im J—— Im
x > o~ \\ \‘ ‘\\ .
i‘ Re %, ‘ \ Re

o
N




Argumentvariations-principen

Antalet varv (N) com 6(s) kurvan
omgluter oh‘go dr  lika med skillnaden
mellam ah‘i-qfd' nollstéllen (2Z) och antalet

poler (P) hog  G(s) inom den slutra

kownturen

Jaktebra !

e

Prinerpen kan anvdhdas Tsr att bestimma

awkalet  vollstallen hos  Gls) (eller 4+ G()

7 Ifldjm ha‘vplanef [D(V.f fyr abk bestamma
:hbfi-‘ichn] om den slutha kehturen

u-l-.,z;r-; av hela l:qa'jrn hn|v|ofahef

£ sychem r ju shbilt om alla nollstallen
Far A+ Guue  Laer 7 vinstra halvplanet
rers

N=z-P
eller Z=N+P
b
-- Z varv
=2 l’lvm.f‘
Re 0?}30
> ]
Z-pP=2

Fullstindiga Nyquistkriteriet — metod

1 Besham kretssverfimngen G, (s)

2, Rita hur G (s) varierer som Funlehion

av s dé s faljer “Nyaurshs” V49

Fyra delstrickor

* I T sl
‘I.V Re I o:‘ihu”..'7 halveirieel
=-TW
g m s=
7 Liten halveirkel

fir att kn'ngd
eventuella peler

7 erigo.

3. Tolka det erhdllna d-'qgramvne(:

Bectam antalet pollstillen hos Tt Gu

T HHP  genom ald ralkna hur Mmdhga varv

(N) Nygurstkarvan Guls) gar kring

PuhH—en -1 fach med kuhskap om

antalet poler hos G ThoW omrdolet ]

Om Z=N+P=0 fas ctabilitet 4 J




Dimensionering

e Tumregelmetoder fér PID

« Dimensionering med bode-
diagram

» Modellbaserad dimensionering

o Framkoppling & kaskad-

reglering

PID-requlatorn

- Den vanligaste regulatortypen i industrin
(70%)

. Anvinds speciellt fér "medelsvéra”
reglerproblem i processindustrin (temp,
tryck, fléde, niva, konc)

- Finns i manga varianter

. Algoritmen kan dven diskretiseras och
anvindas vid tidsdiskret reglering

Innehaéller tre parallellkopplade delar
- Proportionell del (P)

- Integrerande del (1)
- Deriverande del (D) .

1" de(t)
u(t) = I{e(l) T T Uje(x)dr T, — }

K = forstdrkningen
T, = integrationstiden
Tp = deriveringstiden

PROBLEM: Hur ska parametrarna véljas?

Dimensionering av PID-requlatorer —

metoder

@ Tumregelmetoder
- kréver iwte éverfériugsfunktionen
fsr den- process som ska regleras
= leder &l "qmw'hs‘fﬁ”""‘@' av eh
hequla'ﬁor.

@Dimensfahermg wmed Bodediagram

“hir kan man styra vitka egenshkaper
mak 8nskar hos det fardiga
systemet,

- Kriver dverfsringsfunkbionen G(s).

@ Motematiska optimeringsmetoder
- den mest "vetenskapliga” metoden.

Ziegler-Nichols schema

K T T
P lOsk| - -

PL |ousk, [gss.T, | -

PID |06k, | 05T, |0125°T,

[+ ]

dér K, = maximala fsrs'l-&‘rkmh,cn vid
P—heglen‘n’ thnan  fustabilitet
sf&!v.wé‘n gnihgens periedivd.

o
I

Ko och T kon beshinmas apermentelld
eller  beréknas _feoretiskt,




| Dimensionering med Bodediagram

Typisk problemstélining

1) Vi har ett givet system:

R —0— () Gps) Y
Regulator Fracess

2) Kravspecifikation
- Stabilitet @&, >50°
- Snabbhet t,z22s
- Kvarstdende fel  e,20,05

Uppgift:
Bestdm en regulator som uppfyller kraven

Lésning - i grova drag

1) Bérja med att rita Bodediagrammet for

2)

3)

4)

processen:
161 .
10 6,
i o*
2.1 -50*
-180*

Oversatt kraven till sadant som kan
avlasas i ett Bodediagram

Avgor vilken regulatortyp som erfordras
(P, PI, PD, PID, Lead/Lag)

Bestdm parametrarna sa att kraven
uppfylls

Grafisk addition av Bode-
diagrammets amplitudkurvor

oo} {2}

Processens
amplitudkurva

[Gpl

e
N

Regufaforns

T
|
|
|
|
F——— : amplifudkurve
i ] P )]
|
|
|
I
I

Sammanlagd

amplitudkurva

j__L\ |GrGpl

\ w

Dimensionering av Pl-requlatorer

16l

-20 dE'/dekad

Amplitudkurva

Faskurva

Pl-regulatorns Bodediagram

Arbetsmetodik - dimensionering av Pl-regulatorer

1) Rita forst Bodediagram for den process Gp(s} som ska regle-
ras.

2) Bestam sedan det K-virde som vid ren P-reglering hade givit
fasmarginalen @, = @,,, + 11 grader.,

Orsaken till de extra 11 graderna pd fasmarginalen &r an den
integrerande delen sedan kommer ant forsémra fasmarginalen i
motsvarande utstrickning, se punkt 3.

3) Bestam vilken &verkorsningsfrekvens w, som erhdlls med
ovanstiende K-virde. Bestdm dérefter 7)sd att brytfrekvensen
wy, fér Pl-regulatorn hamnar p limpligt avstdnd frin w,. (Ej for

| hégt eftersom detta forstdr stabiliteten.)
= Ett lampligt lage f6r brytfrekvensen 4r w, =0,2 w,. Detta ger:

1
0, 2w,

w,:%:ﬂ,Zw‘=T,=

Detta val av T,gér att fasmarginalen forsamras med ca 11 grader
(se Bodediagrammet ovan).

0°

rs0°




En iterativ metod
(for optimal stérningsdampning)

En iterativ metod

Ovanstdende metod har som friimsta férdel att den 4r enkel och att den

garanterar en viss fasmarginal, Den ger dock inte alltid den optimala

déimpningen av stérmingar. Foljande iterativa metod kan rekommenderas
for reglersystem diir kravet pd stérningsd@mpning ir hogre:

+ Prova med olika'virden pd integrationstiden 7,. Borja med ett relativt
stort viirde (motsvarande liten integralverkan) och minska sedan suc-
cessivt. For varje viirde p& 7) bestdmmer du vilken forstirkning X som
behiivs for att fi Gnskade stabilitetsmarginaler. (Detta kan snabbt go-
ras med Matlab).

= Ur tabellen pd samhdrande K- och 7)-viirden viljer du slutligen de
som har hijgst viirde pé kvoten K/7). (Dessa viirden ger hdigsta mojliga
ligfrekvensasymptot for regulatorn och déirmed bést stomingsddmpning

enligt avsnitt 10.4).

@ Prova olika véirden Pa' 7_.[ .

'L_'o'l" ‘/mrj'e v&rJe beﬁl“a}nmer a’u

vilkenm forstirkning K som krévs

Fir ot £2 &hekad stabilifet
(+ i B.=45°)

.

@ Vo'u'.[J-' cedan den  kombinabon .
K-T; som gér hc‘:’g.ﬂl vé’rd'e,i/ : 1

kvoten K/?_'r .

(V'er,f- qer bésta ﬁsreﬂf'ﬂ7&d&'hpn!hj
enligt avenitt 10.4)

Den ”ideala” PID-regulatorn

L ap lace-transfo H*-er!'gg gar’

U-= K(E+ _GES +T;.E..5')

f
-_— i
$GF|D= K[{]-FT*‘S-*DSJ

K= forchirkuingen
T, = inlegrationstiden
T; = Jem’val‘m’vbfﬁh

Dimensionering _ay_PID-requlatorer

Kombination av metodiken Far

P! och metediken £3r PD-re,qu'orer.

(D Bestim K ock T, ewligt

metodiken Fir PD-regulatorer

men tag Il 11°extra pa
fasmarginalen nér du qér detta y

@) Fortsitt med metodiken {3
P|- requlatorer (sista 4’"'!99*)

for att bestimma bryﬁauukm
1
T > Ger T,

OBS Ingen tentafriga pa denng

"kombinerade” metod, wutan

bora Pl-metoden eller
PD-meteden,

Industriella PID-requlatorer

¢ |deal PID-regulator

1 1+ Ts+ T, - Tys
G(S)=K(1+E+TD.S)——K[ T:.S

I

¢ PID-regulator med lagpassfilter

iy K (1+T,s+T, 'TDSJ

(1+Tes) T;s

(Ger bittre filtrering av hogfrekventa métstérningar)

¢ PID-regulator pa "serieform”

KQ+T,5)(1+T,s)
(+T.s):T;s

Ny variant som bérjat forekomma pa industriella regulatorer.

Bygger pé foljande approximation:

G(s) =

(A+T,5)1+Tps) =14 (T, +T,)s+T, - Tps* =
1+T,s+T, -Tps®




Lead- och lagfilter
il Lag-fitter
~flter
Hsg Farstarkning
: & vid [.'96\‘591:"9!2’3
7 —~ - =
S Sama ferdelar
Som en PI- |
rtguh‘é‘dr‘. \\
(prmeir)
4 laf \\
[ Lead-Filler 1\
Hig Forxt. vid ;
S ol
Sawmma fsrdelar
. fom en PR~
/ re,u{af'a"! //
y /
'] 4
 abTs Bl
Gtead 4+Ts Gfﬂ,- o 4+ aTs
il dir a>l




Kapitel 12
Mer om dimensionering av analoga
regulatorer - dversikt

Olika varianter av PID-regulatorer,
olika PID-strukturer. Férdelar/Nackdelar mm
[kap 12.1-12.2]

Processer dér PID-reglering inte

fungerar sé bra [kap 12.3]
Processer med lang dodtid

- Processer med komplicerad dynamik
Processer med variabel 6-funktion
Olinedra processer

Modellbaserad dimensionering -en alternativ
dimensioneringsmetod [kap 12.4]

Reglerprinciper med fler &n en givare [kap 12.5]

Modellbaserad dimensionering

b Dim. mebod dér mon falor om hur man vill
oH den Snskade totala Bverfiringsfunktionon
Gre fir eH system ska se ut,

o Och d&r man . sedan “bakvigen” réknar . ut

hur regulatorn ska se ut {3 okt dstadicomma
den dnskade 6-funktionen.

o Metoden kraver ot procesvens S-Funkibion Gp

&r hogarawt bestémd,

Ex

*o-[aeHar >
shskad
E-Funktionr

[ ] GP och G‘ ar anJa

averfah'n,ﬁuhh*f""‘ r

o Gp ska berdknas, sa

ald den totala é-Ffunkfoner
blir den shskade.

Modellbaserad dimensionering

FORDELAR :
* Mycket enkel metod
(enkla rékningar)

o Bra fsr system med sma eller
Obe:Fu'hHu’?a S‘*sl"m'h?ar ( tex servo-
system  dhriktning av robotarmar wm)

NACKDELAR :

o Leder ofta &l re?ufa#arer som &
kan realiceras wmed Vanfr'ga “standavd
komponenter® (PID, Llead- Lag mm)

o Kon leda Il en regulator som ef

4r 8 bra pa alt eliminera stsrningar.

o Metoden fungerer dute fiv alla

v
s EI‘) 1‘hrf-nl:r‘fa procesrer
= E“} icke -m-'hf’dr-p"oce.r.rer

Processer dir modellbaserad
dimensionering ej fungerar

@ Jcke-minfas-processer

(processer medl “omvént® .n‘eymr
e 1-2¢
Jv:’ tex' Gz se)

GTO T

¥ N G' 5 ———
Enligt Formeln  Gg G (1-Gror)

hamwar nellctillet + HHP rom eh
in ol pol 1 reguhn‘orn.

7 | bverfsnng sfunk #onen fran R &N U
blor darfsr instabil 7

Regulatorn fungerar inte




¢ [hnstabila processer
(procesrer med poler  HHP)

1+2s
l / b Gt
Gror

Q"_ 4 (""‘l‘ar)

hamnar den instabila polen son et
nolistille ¢ requlatorn,

Ehla'.’t formeln

Pd camma saH gom f3r icke-
min fag-processer kan man vira
alt detdn leder I en forctabl |

MF&'H‘lysﬁlukh'ou f-én skmihg
Vv ki ui':'l'?hal Y.

Vidare géller

e For procescer ﬁcJ dédhe] kan
man aldrig “trolla bort” dsdbden
i den totalg 3v=r4‘sr:‘;,,.;-ﬁ; niktonen

< — Lc
1+55

2
Procesr med didéd.

R_+ .
: Y oo s GG
- = 1-GeG,
=  Didbden mérte Bunar med
Jeh shrkade 60{1(« a’uer-l':n'n,;.
funk Honews,

Gror.

VVad habder gunars ¢

Anhars kommer den resulferande reqqquan.
att tuehalla ebt block & o

kan JEe w1 ﬁ"h’!‘dﬂh (uﬁn‘gﬁqfeu ‘coh,n,ep
fire dho'gnalen), Sidana blck &~

yvarr  Ghhu om'«‘J‘/@u att realiseral

t

Dimensionering - repetition

& egler-Nichols
@ TuMREGELMEToDER S ™

Lambda metoden

@ PIMENSIONERING MED

BODEDIAGRAM ~p For ot £
8hskade

egeh:lf-apar
Ay @m “
€ €

(® MopeLLEASERAD

"y, ]
DIMENS]oNERING > For ot fa

Shskad +otal
sverférings-
funlehon.

OBS Vid all dimensionening dr det
vikhat att ocksh simulern bur
syctemet uppfer sy vid

stegstsrnimear & barviirdesindningar mm,

Framkoppling

Specialmetod for eliminering av
stoérningarnas inverkan pa en process.

Idé Mat den eller de stérningar som
paverkar en process och utnyttja denna
information for att férbattra regleringen




Regulatorstruktur vid framkoppling

Svérigheter med framkoppling

o Storningarna &r ofta svara att méta (t
ex vid kursvinkelreglering,
varvtalsreglering mm)

+ Ofta forekommer flera typer av
storningar

¢ Det dr ibland svart att tillverka en
regulator med dnskad
overféringsfunktion.
Specialtillverkning kan behdvas.

Kaskad-reglering

Typsiuation f5r
kaskadreglering :

’ % 7
G, = "Snabb" Sverfiringsfunktion, tex Fr==
elos
T+20s

G, "l.a"lnqmm “awe -, tex

?Hre loop

Kaskad-reglering

Exempel:
Kaskadreglering av en vdrmevéxiare

‘ Kﬂ!u: T;

b
Het :rg Vln 1 . .
Tnfck
P
Vérme
vaxlare
-~ T2 S ResLerad
. STORHET
"\‘ +Varmt
Bar
virde +
P Temp T,
i_, Reg ler L, Védrme
ve?-ﬁ'.’ _alvaxlare —T;
Ventil Flsde

n’57¢ ¢




Tillstandsmodeller

Tillstandsmodeller

Tillstindsmodeller #r ett tredje sitt att matematiskt beskriva
sambandet mellan in- och utsignaler hos dynamiska system.

Tidigare har vi studerat differentialekvationer och
overforingsfunktioner.

Tillstindsmodeller anvinds framst vid modellering och simulering av
storre system samt vid l6sning av mer avancerade reglerproblem, t ex
multivariabel reglering (di det kan vara otympligt att arbeta med
overforingsfunktioner).

Exempel
Overforingsfunktionen

Gl e St
U s +55+4

motsvaras av tillstindsmodellen

diir x; och x; ir systemets tillstindsvariabler.

Utgangspunkt

Ett systems tillstand x(t)

Den information som behtvs om ett system (vid
tidpunkten noll) for att tillsammans med senare
insignaler berikna framtida utsignalviirden (d v s hur
|_sy§temct uppfor sig i framtiden).

Exempel
Bil pé en platt véig med en motor som ger kraften F.

)
} X

TillstAndsvariabler
e Ligetx
o Hastigheten x”

Exempel Yy
Elektriskt system

Tillstindsvariabler
¢ Strommen /
e Spinningen U

Tillstandsmodeller

En fullstéindig tillstindsmodell bestar alltid av
tva delar

o Ett antal 1:a ordningens diff-ekvationer, som talar
om hur tillstindsvariablerna paverkas av andra
tillstandsvariabler och av insignalerna, (Skrivs
normalt pA matrisform)

e En ekvation som beskriver sambandet mellan
tillstindsvariabler och utsignaler.

Vanligen giller att en §verforingsfunktion av andra
ordningen kan dversittas till en tillstindsmodell med tvd

tillstindsvariabler etc.
Y Ss+4
Gis) = — = ————
=y~ Frs2+a
— i3
il ehands
Tiils
yarid ier

B e
e

X ekvation




Tillstandsmodeller

Férdelar med tillstandsmodeller i stéllet for
overforingsfunktioner

¢ Tillstindsmodellen ir den naturliga
modellformen for minga system, speciellt om
delarna i systemet beskrivs med 1:a ordningens 6-
funktioner.

e Tillstindsmodeller & mkt lampliga vid
simulering (transientberdkning mm) av komplexa
system, (bade linedra och olineira system).

o Tillstandsmodeller &r limpliga for att 10sa mer
avancerade reglerproblem, t ex multivariabla
reglerproblem och olinedra reglerproblem.

Exempel

Antag vi har en process med tre insignaler och tre utsignaler

b, Y,
Uz Procesy —= 92
ua 93

Med en Sverforingsfunktion frin varje insignal till varje
utsignal blir det nio (3*3) dverforingsfunktioner

Om man diiremot beskriver systemet med tillstindsmodeller
riicker det med en enda tillstindsmodell

540 I IR I = I P 8 B i
X |= ..-,\:2+...-u2
x5 sl Lo s

N won el 1
b %l EEREE o
» o v o by

Utdqual
ekvatan

Repetition

Tillstindsmodelley = E tredje citt ot
beskriva mbandet mellan - och utsignaler

hos dynamiska system .

Tillskindet = Dew informakion som behgvs
om el system (wd bdpuniden nall) fir aH
fillcommane med senare insghaler kuvna

farutsioa alla Fawtida u-f-sfgnal.virdeu.

',.-ayf
W _—
— ’.‘jz
Uy
X o .
‘E’, X4 @, Ay 4 Gy || % b, b,
( i
L [ % | | Qe G2 s Gy [|Xe | | by b

-

22 |,| %

Mooelt: | | Qs 972 % Ol [Xs by bse [uz]
).C;, ay Ay Q; Uy Ky by, byz

X,

M_[c.. € o Cu} 4

Yzl [ Cor Ca Cz3 Coq || X3

X




P4 matrisform fds
g = Ax + B'u
y=C-x

ddvr

As ﬂf%mma\{‘rf.\"c"
B-= {hnqhalhc'fh'.r

C= utdg "dhﬁf"ﬁfl

OUNEAR X, = 0 x %3 4)
Tiwsthwes %, = §z(x, X, Xy 4

MoOELL i
XJ‘ {’(& kg Ky )

Y= 9(% %3

Datorsimulering av tidsférlopp med

tillstdndsmodeller

{X.BA-X'FBu,
g:c.x

13

at —

x(t+at) = x(t) + x(¥)-At
X{t+208)% x(+at) + X(teat) At
X(6+300% x(4+288) + %(£+29)-At

DeHa fungerar dven & olinedra
tilstandsmodeller ¥

Att ga fran dverforingsfunktion till
tillstandsmodell — allmédnna metoder

D1AGONAL FORMEN U_,@_, Y
ety

2
Ahfaj G= 1{‘ 4466-*’9
" 83+ 65t Is+6

Parkalbrs ks 1 2 1
Uppdelning ger 27 5+1 #* 5+2 543

Parbalbriks-
uppdelityon
motevarar vid-
Staende block-
Schema.

X9_ 1. o Xfse=U S X=X+
L x (=Y

Koo A o xy(s+3)=V
V)

Tillghandsformew  blir :

)Z', -1 0 o] [* 1 x
}zzo-zo.xz-piu y:[‘th]h

*3 o 0 -3 xj t

Diagonalformen

Firdelar :  Vismm typer av bevikningar
blir enkla nar systemet &-
beskwet pa  diagonalform.

' (mulbpldatten o watniser,
nverkvits av matrirer mm)

Nackdelar : Det krsivr en hel del rikunisgar
fior atH 94 frdn en d-fulhion
Hill d:'ﬂ,-l-afpom ( par-halbriks-
uppdelwing mm,)

Tva andra standardformer
® ‘S\'f‘grbar kavionisk form

® Observerbar kanonisk form

Firdelar: Med desra former &r det
aHare aH- 94 frin em
G-Funktion Hll em Fillckinds-
'rorm.

Nackdelar : Va'.-rm typer av l'ocl'-'t'km‘h,n;- bliw
ftha;,,(,f?qn medl yotemed besknivet
pé Kllstind s form av denna typ.




Formler - styrbar och observerbar
kanonisk form

Resultat 8.1, Styrbar kanonisk form

Systemer med Gverforingsfunkrionen

bys"l4 . Hbuasstba
G(:’i:s‘%a,s""i- R T
kan beskrivas pé dllsedndsform som
—ay —ay Cie T@ne| =Gy 1
10 i ol 0 9
x= 0 1 s 0 fx+f 0 Ju
o 0 wb ol 0 0
y=(by bz... ba)x.

Resultat 8.2, Observerbar kanonisk form
Systemer med Gverféringsfunktionen '

“l L by gst
G(S;=_£_:;:“ o rhyagstby
srapstl+ L e stan

kan baskrivas pd tillsiéndsform som

COVE by
s 01 .0 b
x={- Ko £+ u
—a,-y 00 ...} Basi
" an 00 ...0 b

y=(100...0)x

Linearisering av system pa tillstandsform

UTGANGSPUNKT ;

¢ = 0. Al
%128 0y %5 4] o
v EKVAT |OME
Xz= ﬂ(xa X 4) it

Al»nLq? vi Wil livearisera vid ew arbetspunkt med
eH vot varde pa  dhognalen U= U,.

@ Beckim arbetpunkten ( dus vilkek virde X, ooh Xy
far vid jamvild om w=4,). .

Ckvaboner far &T(x1 Xy o) =0
bestamning av =0
Xyp OCh Xgy & (x4 Xe %)

@ Gor en tay lorutveddig av or och & Fknig

arbetspunkien, chs.
f ,
§ e d (e % %) + ;f—’-* “Ax, +-g— Axg +ote Au

f;"gﬁ("lu)‘za%)'f%.ﬂxf G“‘z. sz+dﬁ s
\ s

Har gaﬂer ot devivatoma gia berilnas 1 den berifknade

arbehspurkten,
Vidare 3qff=r ot d‘(x,,, Xzp ‘5) (’Qo X20 W)=0

eFiersom [X,, Xzo U] &F em J«:mekt':spuhkb

@) Still up systewet p& matrisform.
Anviahd  avvkelserna (AXJ = X=X, resp-

AX, = X,=%y,) som Hillstind :

[ * A“

of, df,
[A)EqJ: g;f E _[Ax(}_’_
dx  dxe

HE B

@ Sj&ikaqﬂ“ galler
att  Ax, =X, ochatt
Afy=, eHerrom X,
ach Xy, ar konstanter

085! Allwinna uttryck fsr linean'sering av
higre Of‘ﬂlhl'hyeh.r syrtem Finns 1 kas.,fcual;cf.
Metudiken 4k dock idewtisk,




Tidsdiskret reglering

Analog reglering

« Analog reglering ar den traditionella formen av reglering.

« Regulatorn &r en elektronisk krets byggd med OP-
forstarkare, motstand, spolar, kondensatorer mm.

« Redan pa 1950-talet kunde man bygga elektroniska
kretsar som fungerar som PiD-regulatorer. .

+ Utsignalen &r en kontinuerligt varierande signal.

~—5H e

t

Tidsdiskret réglering

+ Tidsdiskret reglering &r den moderna formen av reglering

o Huvudkomponenten i regulatorn &r en mikrodator med
tillhérande program.

+ Styrsignalen &ndras inte kontinuerligt, utan bara en gang
per samplingsintervall.

v
1| Mikro | pA-
t _"o:-?l dator -lg”i_‘.
¢

Tidsdiskret reglering

Reglering dér styrsignalen endast &ndras vid diskreta
tidpunkter (datorreglering, digital reglering).

S CT R E R o

+ € [A0-1] pator oa- | [ | 4| Fysikalisk v

om omv | | krefs Process

‘Rﬂus'am -DIGITALT FILTER

Givare

Fragor:

e Hur ska algoritmerna se ut d& man implementerar
analoga regulatorer (t ex PID) med en dator?

« Finns det speciella regleralgoritmer speciellt avsedda
for tidsdiskret reglering?

» Hur beriiknas egenskaper hos tidsdiskreta system?

Flodesschema for ett reglerprogram i en
dator

Lés in aktuellt virde
pd felet elt).

Tagra det infasta
virdet { datoms

o minne, .

Iﬂ,ﬁa Berakwa Lamplgt
shyreigralvirde meol
hdgon ld‘mpf"g
algoritm

’1_:;3.3, ut dew hya
styrsigralvirdet
il bfa-omvandlaren

w(t) = fle(t), e(t-T), e(t-2T) ... w(t-T), u(t-2T) ...]

Ovrigt som datorn gor:
Signalbehandling, skalning, presentation av métvérden,
larmhantering mm.




Fordelar med datorreglering

1.Kan ofta ge béttre reglering for
komplicerade processer (olineéra,
multivariabla mm)

2.Regleralgoritmerna kan latt andras

3.Ger mojlighet till battre presentation
(minnen, bildskdrmar mm)

4.Ger mbjligheter till mer avancerad
signalbehandling

5.En dator kan reglera flera processer
samtidigt

Typiska samplingstider

. Temperufurrugfen)? i bom'nyshu:
0 Kurswhkeﬁ'e?!en'n’ pé Jartyy
 Varvtalsreglering, smd metorer

« Autopilater fsr J'QHF’”PIQR

+ Positionsreglering av kranar

* Nivéreglering i stora behdllare

1-Z min,

1-5 sek.
~ 05 sek.
~ 0,02 sek.
~ 0,2 ek
~ 10 sek

« Fsr lang samplingsthd  kan.

4l imgtabilitet och delig
{ re,len'ny.

leda

o Fsr kort samplingstid kan medfsra
onsdigt slitage pd styrdon.

sampif'hgsﬁ'ﬂf]

. S‘amphn?sﬁ'dw bsr V&'l"ja: !
farhillande #ill  processens stigtid ¢
‘[Of—"h viljes ca 0% av t, som

Hur ska algoritmen se ut i en
tidsdiskret requlator?

Pie
e' el. el----. —ﬂ RECULATOR u" Hz u’ woax

Svar: | prakliken anvéneds nastan
uleslutande sk lnedra differens.
ekyationer

ulk)= a, ulk) +ay.ufk-2)+.,. .+ b efk) +

b,-elk-1) + by-e(k-2)+...,

Varfsr det 2

. Berikm‘ngama blir sguuerk’u enkle
om lwedra differensekvatigner

anvénds. (Z-transformen kan amvindas)

* Digitala Flter med Linedra
differensekvationer har en kel del
intressanta egenskaper ( bla.

Frekvensegenskaper)

«Det kan vicas at bikHre reglering e

kaw fis wmed andra reglerprineiper v

reglering av [livedra processer.

Digitala filter - allmént

“ht. e ¥ %

y’ veu

y(kl= 05 (k) + 81 9(k-2) +2 ulk-i)+ ufk-2)

Lineér differensekvation

Y Ug...

Anvﬁna’m‘ggmr&fden

*  Brusfltrenhg av ,.,a-ﬁ-.'gmhr
o Bandpasshitrering vid felefoni
o Trendanalys

* Talanalys /Talsyntes

° Sf9nafbehahd[|'h9

* Digitala tegulatorer




Berakning av tidsférlopp i samplade
system (tidsdiskret standardproblem)

u [Digitalt Y g5 B
ATy filter 411 L
) k .

Bestim utsignalen y

Lésningsmetod

1. Bestam insignalens z-transform U(z)

2. Bestam filtrets digitala 6veﬁ6riﬁgsfunktion H(z)

3. Bestam utsignalens z-transform Y(z) enligt regeln
Y(z)=U(z) H(z)

4. Inverstransformera for att fa motsvarande

tidsfunktion y(k) [med tabell och ev
partialbraksuppdelning]

= y(k)

Alternativ losningsmetod

Anvand differensekvationen och 18s problemet

"for hand” med iterativa berdkningar.

Diskretisering

Problem vid berdkningar pa tidsdiskreta
reglersystem:

e b, P

tq-nhhr
Pator Rrecesr
) He) —|6H j—)

Datorn
Beskrivs matematiskt med differens-ekvationer
(z-transformer, tidsdiskreta &-funktioner)

Processen
Beskrivs med differentialekvationer
(Laplace-transformer, analoga é-funktioner)

Lésning:
Vid berékningar pa tidsdiskreta reglersystem
maste man forst diskretisera processen.

Diskretisering - allmént

Omskrivning av en kontinuerlig éverforings-
funktion till en tidsdiskret motsvarighet

Gls) p» P HG)

Man férsoker hitta en tidsdiskret o-funktion som har

ungefar samma egenskaper som den analoga o-
funktionen (samma insignal ska allts& ge ungefar
samma utsignal).

Varfér "ungefar” samma dynamik??

o Ett tidsdiskret filter reagerar inte pa det som
hander mellan samplingségonblicken.

« Man kan darfér inte hitta ett tidsdiskret filter med
exakt samma frekvensegenskaper som ett
analogt filter.

o Man kan darfér inte heller bygga ett tidsdiskret
filter som har exakt samma egenskaper i dvrigt
som ett analogt filter (stegsvar, impulssvar mm).

Slutsats: Alla metoder for diskretisering &r
approximativa.

| reglertekniken anviinds foljande tva

diskretiseringsmetoder:

1. Steginvariant transform
Anvénds fér diskretisering av processer.
(Detta gérs for att kunna géra berakningar pa
egenskaper hos tidsdiskreta reglersystem)

analogt siegsvar

tidediskret stegever

2. Bilinedr transform
Bredbandig transformmetod som anvénds for
diskretisering av regulatorer.
(Detta gors for att dimensionera tidsdiskreta
regulatorer utgaende fran analoga regulatorer)

Andra metoder:
o Impulsinvariant transform
« Rampinvariant transform mm




Steginvariant transform

Man bestammer den dverféringsfunktion H(z) som
har samma stegsvar som den analoga
overfdringsfunktionen G(s) (i samplingsdgonblicken)
Detta kan goras pa flera satt:

1. Med en generell formel

H(z)= (1-2") Z[ﬁq ( %CQ)];-TM

2. Med tabellen i liroboken (sid 516)

3. Med Matlab

113456 @ TTziuse

N

1234567

12345

08BS! Utseena;é--;é H{z) beror pd
langden av samplmgsintervallet.

Diskretiseringsformeln - Bevis

stker en fdaliskref sver-

PROGLEM Vi
 Psringsfunkhon H(3) som vid Sampligs

" gonblicken har sawma stegsvar-
gom den aovaloga &-Funkhionen

.@é‘l . Analaga felict

Steagvarels transfpem:

TEC;%T Digiala fallet |
i Sawmpligs ‘:L i £- [%“SJ‘L'M Avalega falled
olled
D e
Likhet qer .
Z-'{ fgﬂ £ ‘C-’[ -‘%‘%{{:kh

Z-transhywerivg, av_bida fod ger:

- a-ar2[& %) ]

Amplitude

Diskretisering med Matlab

» G=t£([1],(1 0.5 1])

Transfer function:
b

U inmatning, kewhrnuerlry
s°2 + 0.5 s + 1 5 funktion

» step(G) ‘f—--————-—.ﬂ*ejrvqr#f:

» H=c2d(G,0.5) e Jiskrehisering med h=05

Transfer function:
0.1129 ¢z + 0.1038

z~2 - 1.562 z + 0.7788

5

Sampling time: 0.5
» |
stegsvar For Hdsdiskret

» hold
Current plot held ‘_/'—'
e modell

» step(H)

From; U{1)

o vt

i i L L L
L 5 10 15 20 25

Time (sec.)

Tidsdiskreta Bodediagram

Anvinds mkt séllan, pa grund av féljande
anledningar:

@ Egenskaperna kan bestdmmas
pa awnat sité

@ Det &r svamre ol rita Bode-
d»‘q?ram i det digl'{-a'a fallet
@ De vanl-‘gq:'le dimensionerings-

metederna kraver ej Bode&-‘ajram




Lagfrekvensférstérkning K-

= famma Som stahsk fairstdrkning
Ky = o | H(eI™)] = | H ()] = HO)

dvs. den statisla fsrrf«'a’rknr'hjen far
eH digitalt system fis genom att byta
ut alla 2z met 1 1 Bverforingsfunkhonen,

G G
1+ cf' CP' ac

et <

Fir ett slutet reglersystem H,, shrkar
b allhd skt Kg=T.

Metoder for stabilitetsbestdmning i det
tidsdiskreta fallet

1. Polbestdamning
2. Det férenklade Nyquist-kriteriet

3. Schur-Coons stabilitetskriterium

oBSs!

;Ulﬁtod 2 fungerar pa samma séatt som i analoga
allet.

:Vletod 3 motsvarar Rouths” metod i det analoga
allet

Dynamik och snabbhet

o En dverfiringsfunktion H(Z) kan alltid
P.yﬁ‘afbrikmlo’del“ i eh Summa av
termer av firsta och andra ordningeh:

H(z)= H,(2) + H, (3] + Hy(3)+..
* Partalbréksuppdelmnger  motsvarar afltid

ett  blockschema med parallellicopplade
delar ‘

Ske-sats
Overfaring sFunkhonen H:s stegsvar kan

allkd skrivas som enh summa av
stegsvar Rr block av forsta och andre

ordningen.

ytt= h (8 +h, (&) thy(8)+....

Dimensionering av tidsdiskreta
requlatorer — tva huvudmetoder

1. Transformering av analoga dverforings-
funktioner

¢ Dimensionera férst en analog regulator

o Transformera sedan dverféringsfunktionen for
denna regulator till en tidsdiskret motsvarighet

[col>7~ —lH@—

2. Direkt dimensionering av digitala regulatorer

e Vi anvander speciella "digitala” metoder och tar
inte "omvagen” dver en analog regulator.

« Exempel: Polplaceringsmetoden (vanlig digital
metod)

Im

Re




Transformering av analoga
overforings-funktioner

Analog regulator

* fa
V)

(dimensionerad
med analog metod)

e u
Tidsdiskret
overforings-
funktion ‘v

(k) = a ulk-t)+ agalk2)t
Differens-
b, elk-)*....

ekvation otbe(kl+b e

(att programmera
in i en tidsdiskret &
regulator)

DIG!ITAL REGULATOR

u

Viktigt
Vid diskretisering av regulatorer ska man

inte anvdnda samma diskretiseringsmetod
som for processer. )

cw 1. b,

Process

= Steginvariant transform

G(s) > | =,
Regulator

=> Bilinedr transform

Varfor? .
Vi behéver en metod som ér bra pa
insignaler av alla frekvenser.

Bilineér transform

Metod som ger en bra dverensstimmelse
inte bara for stegformade insignaler utan
dven for insignaler som varierar mellan
samplingsintervallen.

[ Frekvenskurvorna fér G(s) och H(z)
stdmmer béttre 6verens ]

Metod:

Byt alla s i 6verféringsfunktionen mot

2 (2-1)

T

h= fampiingrlh tervallet

Bevis — Bilineér transform

! Lat v vara derivatan av
funkbionen Y dvs

Ay y=y’ @ V=sY

BT

Devivatan mellan kel och k dr

'd’” ﬁ(k);y(k"u
Denha derivata Koh ser gom mcddvarde-i
av derivatorna vid f!afpunki'eh k och k-1

vik)+vle-)  ylK1=g (k1)
dvs ) = h

Z—f:?-auffqmerrnj av debha yttryck ger nu

=1
V- (1+2") ,.v.__(j_;f—-)Y

&
Vilket ger

-2 Jéwfereise av desra
Ve 2Dy ol Lida samband ger

vz ;
2(1-2

Mew vi har redan e -—--(1—-_'—
h (1+Z")

v=sY




Transformering av analoga éverforings-

funktioner

Fraga

Ar det mojligt for ett diskret filter att ge exakt
samma utsignal som ett analogt filter fér samma
insignal?

Svar
For vissa insignaler (t ex stgegfunktioner) sa ar

det mdjligt
T @ L

Men om man har en komplex insignal sa &r det

inte mojligt

r R

Slutsats

Man kan aldrig konstruera en digital regulator
(eller ett digitalt filter) som har exakt samma
egenskaper som en analog regulator

Alla diskretiseringsmetoder &r approximationer

Nagra olika diskretiseringsmetoder

Steginvariant transform

He) = -2 2 [ &' (E4) ]

Impulsinvariant transform

HE =7 [£(6),., |

Euler-transformen

Z-1
Byt alta s mot §=—p—

Bilinedr transform

2 (z-1)
Byt alla s mot S=_h_(2—*’—)

Polplaceringsmetoden

Ett satt alt dimensvonera em mguiﬁf-a?
sé alt syslemet fir snskade poler,
(Polerna &r avgérande fsr systemets
egenskaper)

Po'lp!acen‘u,:ekw/-.‘ohom :
CA+ BD=P (polynomekv.)
P(12
Ie.& 220 tur ew kvabton
il R A




Polplacering . med integralverkan Polplaceringsmetoden

CH sat aH
dimensioneva en regujater
& systemet f—‘ar
snskade pole.r‘ J
('Pnleru ar auaamr\de_ ‘Fal'
systemets eqenskaper)

Fsr ott eliminera kvarsf'&eha_’e fof
vid S*‘eg;%arm'w?ar ska rejul’a#am

innehdlla en. _intes P'erqade faktor C

Var_ckall Palerha hﬂf.'a—?

[ y

?*t.z‘zo‘ ) f

+ snabbast mijiaa
i Tnsvang wing.
~ - stera ;fyrm'ghd!e"-

Vid rikningarng “litsac man’ att
[ -faktorn  Hllhar processen, ove

A= A). (1-27)

. vy e . 22z Ok
Puderna pasevas )|

vitket ger grad fa(sreg['erha £ peraelt, ],.ar 5y
MF = I/JA +Ng ;
Vo= He=1 g = # | B 1%:% :
hy= n, :Se vd-re : 209 + cwabl MSvinguing

‘ech s 302 lml:en' & .ver:vah,
iHuga rfyr:nsmulea

STEGSVAR VID BERY, AMDRWG
(2.a ordwhgens systewm) -

1 Aterkopplingsprincipen

e Hur den fungerar

Jamférelse mellan PID-requiatorer och
polplaceringsrequlatorer

PID-requlatorn
. Mt’ckc«" vau[;'y i fradibionell prace.rn‘nlu:-l-n;
( raffinaderier, pappersmasse industry, kevaftvert,

o Hur viktig den &r fér alla maéjliga typer av
avancerade tekniska system.

Pd«rnkehu', Livsmedel, stafverk mn) Exempel:
* Kommersiells PID-regulatorer #illgiingliga ¢ ) Bilar Fabriker
s il (i, kbl asshomer 1 Temorr
Mirga nya PID-ropuletores ir mer avaicersde . Esaeireyaem [ Koncentration
o Motorreglersystem * Varvtal

dn hdgare ( inveballer olika extra
Buwesser For ot Forbattrs reg’en‘a,eo.)

?nl—ﬁufahrh
¢ Mest vaulig for reglersystem tnbyggda ¢

Fartyg/Flygplan Tillverkande industri
« Autopiloter « Positionsreglering
« Hojdreglering e Varvtalsreglering
« Klimatreglering

produldber (inbyggda datorsystem), {.ex Produkter
rz,fer.ryr{-a., i elwoboren Ifndustnirobotan Robotar o CD-spelare

¢ |ndustrirobotar + Telefoner
krarar, rada-antenner; flygplan (autopieter) + Humanoider » Segways mm mm
bilmotorer, tatfmackiner, ATS-bromsar, B
ellm fhoystem sm. Ovrigt Militdra system

« Ménlandare / Raketer / o Jaktflygplan

Satelliter « Malsékande robotar

* Digital reglermefod. Limply ot kowbiners
med minsta- kvadpat-identifiering .

. Kommerﬂc”ﬂ P)’ankkr _QJ_ h”gnh,lr,q I
stor mangd.

« Fastighetsautomation
o Klimatreglering mm

¢ Styrning av kanoner




2 Reglerprinciper och hur dom
fungerar

PID-regulatorer

* P-verkan
¢ |-verkan
e D-verkan
» Fordelar och nackdelar med PID

Tidsdiskreta regulatorer

e Differensekvationer
¢ Bilinear transform
Ovrigt

o Framkoppling
» Kaskadreglering
o Tvéldgesreglering

3 Dimensioneringsmetoder for
regulatorer

¢ Tumregelmetoder

- Ziegler-Nichols metod
- Lambda-metoden

e Modellbaserad dimensionering

» Dimensionering med Bodediagram

4 Kénsla for dynamik hos
aterkopplade system

» Forstaelse att aterkopplade system

kan bli instabila

« Att det ofta & motséttningar mellan

snabbhet och stabilitet

¢ Nagot om stérningsddmpning

5 Kénsla fér processer

. Samband mellan stegsvar och
dverféringsfunktion for enkla
processer

- Begrepp: tidskonstant, éversvang,
dédtid, processer med integration,
instabila processer mm

6 _Ovriga viktiga nya saker

» Blockschema-transformering

¢ Simulink och Matlab Control Toolbox

e Kunskap om givare, praktiska
regulatorer mm

e Hur man stiller upp matematiska
modeller for olika processer
(tillstdndsmodeller mm)




