
 20

Funktionsfiler

En funktionsfil är en fil som beskriver en funktion som anropas från huvudprogrammet. Den sparas
separat.
En funktionsfil har det allmänna utseendet
Funktionsfiler används t.ex. vid beräkning av nollställen, lokala extrempunkter och integraler.

function y=filnamn(x1,x2,...,xn);

y=funktionsuttryck;

y kan även vara en vektor med flera komponenter.

Funktionsfilen har ett antal in-parametrar från huvudprogrammet och ett antal ut-parametrar som efter
anropet kan användas i huvudprogrammet.

Funktionsfilen skall sparas under det filnamn man angivit på första raden.

Nollställen

För att bestämma nollställena till en funktion ()xf beskrives denna först med en funktionsfil enligt

ovan.
Om vi betraktar en funktion av en variabel har denna fil utseendet

%nollställe a

function y=fun(x);

y=funktionsuttryck;

Här har vi kallat filen fun och under detta namn skall den alltså sparas.

För att bestämma önskat nollställe hos ()xf anropar vi funktionsfil med instruktionen

%nollställe b

fzero(’fun’, x0), där fun är vår funktionsfil som beskriver funktionen f .

x0 är det startvärde matlab använder för att hitta nollstället. Detta skall vara ett värde i närheten av det
förväntade nollstället och kan erhållas ur f :s graf.

Anropet kan göras från en m-fil eller från kommandofönstret.

Exempel

Bestäm det nollställe till () xxxf 2cos3 −= som ligger i intervallet ()1,0 .

Lösning

Rita först grafen för ()xf i det aktuella intervallet.

%p11

x=0:0.01:1

y=x.^3-cos(2*x)

plot(x,y);

grid on;

Detta ger grafen t.h.

Nollstället ligger som synes nära 6,0=x .

Skriv sedan en funktionsfil som beskriver ()xf .

%fun1

function y=fun(x);

y=x.^3-cos(2*x);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

Spara denna fil under namnet fun1.
Det kommando som beräknar nollstället anropar denna funktionsfil enligt följande (från
kommandofönstret)

>>n=fzero('fun1',0.6)

När programmet körts redovisas resultatet i kommando-fönstret

n =

 0.6478

>>

Nollstället är alltså 6478,0=x

Ett alternativ till att ge ett starvärde är att ge det intervall det förväntade nollstället ligger i. Detta
intervall måste anges så funktionsvärdet har olika tecken i intervallets ändpunkter.
Intervallet anges som en vektor enligt nedan där intervallet ()1,0 används.

n=fzero(’fun1’,[0 1])

Detta ger resultatet

n =

 0.6478

>>

Om vi förstorar grafen ser vi att nollstället är något mindre än
det angivna.
Genom att ge kommandot format long i kommando-
fönstret kan vi få nollstället med fler siffror

n =

 0.64776543345820

>>

0.6477 0.6477 0.6477 0.6478 0.6478 0.6478

-1

-0.5

0

0.5

1

1.5

x 10
-4

 22

Lokala min- och max-punkter

Matlab har ett kommando för att bestämma det x-värde för vilket funktionen ()xf har lokalt minimum i

ett angivet intervall ()2,1 xx samt motsvarande min-värde. Detta kommando kräver att funktionen

beskrivs med en funktionsfil.
Kommandot har följande utseende

[x,y]=fminbnd('fun1',x1,x2).

I vektorn [x,y] returneras x-värde och motsvarande min-värde y.
Om funktionen saknar lokalt minimum i intervallet returneras funktionens ändpunktsminimum.

För att hitta en maxpunkt söks minpunkten för ()xf− .

Exempel

Bestäm det x-värde för vilket () xexf x sin32 −⋅= − har en min-punkt i intervallet ()2,1 .

Lösning

Skriv först funktionsfilen som beskriver den funktion vars minvärde vi söker.

%fun2

function y=fun2(x);

y=2*exp(-x)-3*sin(x);

Programmet som ger svaret anropar funktionsfilen och ser ut enligt

[x,y]=fminbnd('fun2',1,2)

Körs detta program ges resultatet i kommandofönstret

x =

 1.6937

y =

 -2.6097

>>

Funktionen har alltså minvärdet -2,6097 för x-värdet 1,6937.

0 0.5 1 1.5 2 2.5 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Derivata

Matlab kan approximativt ge derivatan av en funktion. Detta görs genom att man beräknar
differenskvoten i varje punkt. Om funktionen anges med värden i N punkter fås alltså derivatan som en
vektor med N-1 element.

Exempel

I diagrammet t.v. visas grafen för xxxy 105 3 +−= .

Nedan följer ett program som beräknar och visar grafen för derivatan y′ som visas i det högra

diagrammet.

%p12

x=-5:0.01:10

y=5*x-x.^3+10*x.^2

z=diff(y)./diff(x) %derivatan beräknas

t=-4.99:0.01:10 %vektor med en punkt mindre än hos vektorn x

plot(t,z)

grid on

Observera att derivatan för x = 0 inte kan beräknas! När vi ger plot-kommandot för z måste x-vektorn
göras kortare!
detta kan vi se om grafen förstoras, se fig.

-5 0 5 10
-50

0

50

100

150

200

250

300

350

-5 0 5 10
-200

-150

-100

-50

0

50

-5 -4.98 -4.96 -4.94 -4.92 -4.9

-170.4

-170.2

-170

-169.8

-169.6

-169.4

-169.2

-169

-168.8

 24

Integraler

Med kommandot quad(’fun’,a,b) kan integralen av en funktion given i en funktionsfil beräknas.

Exempel

Beräkna integralen dxx∫
4

1

.

Lösning

Först måste vi skriva en funktionsfil som beskriver integranden, i detta fall x .

%fun3

function y=fun3(x)

y=sqrt(x)

Härefter kan ge vi alla kommandon i kommandofönstret enligt

>> I=quad('fun3',1,4)

Detta ger utskriften

I =

 4.6667

>>

Alltså 6667,4

4

1

=∫ dxx

På motsvarande sätt kan dubbelintagraler över ett rektangulärt område beräknas med kommandot

dblquad(’fun’,a,b,c,d),

Där integralen beräknas över rektangeln () ()dcba ,, × .

Exempel

Beräkna integralen ()∫ ∫
−

⋅

1

0

3

1

2sin dxdyxyx .

Lösning

Funktionsfilen skrivs enligt

%fun4

function z=fun4(x,y)

z=x.*sin(x*y.^2)

Kommandot i kommandofönstret ges då som

>> I=dblquad('fun4',0,1,-1,3)

Detta ger utskriften

I =

 0.5158

>>

 26

Lösning av ordinära differentialekvationer, (ODE), med Matlab.

Vi börjar med att studera en ordinär differentialekvation av första ordningen

() () () () () aytgtytfty ==⋅+′ 0,

Detta kan skrivas () () ayytFy ==′ 0,, , där () () () ytftgytF ⋅−=,

Eulers stegmetod innebär att vi beräknar värdet hos y i diskreta punkter där y:s värde i en punkt bestäms
ur värdena på y och y′ i föregående punkt.

Om vi stegar fram med konstant steglängd = h gäller approximativt skrivas
() () () ()()tytftghytFhyhy ⋅−⋅=⋅=′⋅≈∆ , enligt ovan.

Detta ger att () () () () () () () () ()()tytftghtyytFhtytyhtyhty ⋅−⋅+=⋅+=′⋅+=+ ,

Om vi studerar lösningen vid distinkta tidpunkter () ,.......,1.....,,3,2,,0 hnhnhhht ⋅⋅−=

får vi

()() () () () ()()hnyhnfhnghhnyhny ⋅⋅⋅−⋅⋅+⋅≈⋅+ 1 ,

 vilket ger att vi kan beräkna ()ty stegvis ur de föregående

värdena

0=n () () () () ()()0000 yfghyhy ⋅−⋅+≈

1=n () () () () ()()hyhfhghhyhy ⋅−⋅+≈2

2=n () () () () ()()hyhfhghhyhy 22223 ⋅−⋅+≈

()ytFy ,=′ kan också åskådliggöras i ett

riktningsfält enligt fig t.h. Detta visar alla möjliga
förlopp som ()ty kan ha beroende på

begynnelsevillkoret.

Denna metod kallas Eulers stegmetod och ger en approximativ lösning till differentialekvationen. En
noggrannare metod tar hänsyn till funktionens variation i stegintervallen och väger samman dessa
värden, denna metod kallas Runge-Kuttas metod.
I Matlab finns flera algoritmer för lösning av ODE och vi skall utnyttja den som bygger på denna metod
nämligen ode45.

Lösning av ODE i Matlab tillgår så att man med instruktionen ode45 anropar en funktionsfil som
innehåller differentialekvationen.

y∆

h
t

()ty

a

0 h2 h3

ht =∆

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

()ty

Antag att vi vill lösa differentialekvationen () 10,
1

2sin
2

=
+

++−=′ y
t

t
tyy .

Vi skriver först den funktionsfil som beskriver diff-ekvationen. Den får då följande utseende.
De två parametrarna t och y är vår oberoende resp. beroende variabel i den lösning på ode:n vi vill ha.

Rad 2 beskriver diff-ekvationen. dy motsvarar alltså y′ .

%fun5

function dy=func1(t,y);

dy=-y+sin(2*t)+t./(t.^2+1);

En funktionsfil har det allmänna utseendet

function y=filnamn(x1,x2,...,xn);

y=funktionsuttryck;

y kan även vara en vektor med flera komponenter som vi ser nedan vid lösning av högre ordningens
differentialekvationer.
Funktionsfilen skall sparas under det filnamn man angivit på första raden.

För att få lösningen anropar vi funktionsfilen func1 med ett program som löser differentialekvationen

och anger i detta anrop det tidsintervall vi är intresserade av samt ekvationens begynnelsevillkor.
I detta program har vi även ett kommando som skriver ut lösningens graf.

%p13 diffekv1

[t y]=ode45('fun5',[0 30],1);

plot(t,y,'k');grid on

I instruktionen [t y]=ode45('fun5',[0 30],1); anges att tidsintervallet är
[0 30] samt begynnelsevillkoret () 10 =y . Observera hakparenteserna!

Formen är alltså

[t,y]=ode45('funktionsnamn',tidsintervall,begynnelsevillkor);

Om vi kör programmet diffekv1 erhålles lösningen som en graf.

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 28

ODE av ordning 2

Matlab kan endast hantera ode eller system av ode av ordning 1. Därför måste
differentialekvationer av andra ordningen eller högre skrivas om till ett system av ode av ordning 1.

Antag att vi vill lösa följande begynnelsevärdesproblem (van der Pols ekvation).

() ()() () ()
()
()









=′

=

=+′⋅−+′′

00

2500

01
2

x

x

txtxtxtx

.

Vi börjar med en omskrivning

() ()() () ()
()
()









=′

=

−′⋅−=′′

00

2500

1
2

x

x

txtxtxtx

.

Sätt sedan 12112 ,och xxxxxxxxx =′=′′′=′⇒=′=

Då får problemet följande utseende.

()

()
()












=

=

=′

−⋅−=′

25,00

00

1

2

1

12

21
2
21

x

x

xx

xxxx

Här har vi alltså ett system av differentialekvationer av ordning 1.

Detta beskrivs med följande funktionsfil. Observera att dx måste skrivas som en kolumnvektor, alltså på
två rader!

%fun6 vanderpol.m

function dx=fun6(t,x)

dx= [x(1).*(1-x(2).^2)-x(2);

 x(1);]

För att lösa ekvationen anropas den med följande
program

%p14 diffekv2_vanderpol_1

t0=0;

tslut=20;

x0=[0 0.25];

[t,x]=ode45('fun6',[t0 tslut],x0);

plot(t,x,’k’);grid on;

Körs programmet erhålles grafen t.h.

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

Om vi endast vill studera vår sökta funktion x=x2,

anger vi detta i plot-instruktionen.

%p15 diffekv2_vanderpol_2

t0=0;

tslut=20;

x0=[0 0.25];

[t,x]=ode45('vanderpol',[t0 tslut],x0);

plot(t,x(:,2),'k'); % endast x2 skrivs ut

grid on

Detta program ger alltså

I nästa exempel visas en instruktion, legend, som
namnger kurvorna i diagrammet.

Ytterligare ett exempel (system av två ODE)

Exempel

(Hämtat från Per Jönsson, Matlab, beräkningar inom
teknik och naturvetenskap)

Betrakta fjädersystemet i figuren t.h.
Vi skall bestämma vikternas lägen som funktion av tiden
för 0>t då

() () () () 00100000 2211 ==== yyyy && , dvs

() () () () 00100000 2211 ==== vyvy .

Detta innebär alltså att 2m höjs 1m varvid 1m hålls kvar i

viloläget, därefter släpps båda vikterna och får svänga fritt.

De differentialekvationer som beskriver rörelsen bildar då
ett ekvationssystem enligt

()
()




−−=

−+−=

12222

1221111

yykym

yykykym

&&

&&

För att kunna lösa detta andra ordningens system med Matlab måste vi, enligt tidigare, skriva om det till
ett system av första ordningens ekvationer. Detta görs enligt följande variabelbyte















→

→

→

→

→

→

⇒













=

=

=

=

42

42

32

21

21

11

24

23

12

11

zy

zy

zy
zy

zy

zy

yz

yz

yz

yz

&&&

&

&&&

&

&

&

Observera speciellt hur andraderivatorna blivit förstaderivator i de nya variablerna. Detta på bekostnad
av fyra ekvationer i stället för två.





=

=

24

12

yz

yz

&&&

&&&

m1

m2

k1

k2

jämviktsläge 1

jämviktsläge 2

y1

y2

v1

v2

y1= 0

y2= 0

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

 30

()

()















−−=

=

−+−=

=

13

2

2
4

43

13

1

2
1

1

1
2

21

zz
m

k
z

zz

zz
m

k
z

m

k
z

zz

&

&

&

&

Som visats tidigare gör vi först en funktionsfil som beskriver ekvationssystemet, denna fil kallas dubbel
och sparas även under detta namn, därefter skriver vi ett program som anropar funktionsfilen och löser
ekvationssystemet. Detta program kallar vi ode_dubbel.
Här har vi även deklarerat parametervariablerna som globala så att de bär med sig sina värden.

%fun7

function dz=fun7(t,z)
global m1 m2 k1 k2 % globala variabler
dz=[z(2)
-k1/m1*z(1)+k2/m1*(z(3)-z(1))
z(4)
-k2/m2*(z(3)-z(1))];

% p16

global m1 m2 k1 k2 % globala variabler
m1=3;m2=1;k1=2;k2=1;
[t,z]=ode45('fun7',[0 50],[0 0 1 0]);
plot(t,z(:,1))
hold on
plot(t,z(:,3),'--')
legend('y_1','y_2') %Kurvornas namn anges i diagrammet

Observera hur begynnelsevärdena anges

[t,z]=ode45('dubbel',[0 50],[0 0 1 0]);

[0 0 1 0]) betyder () () () () 00100000 4321 ==== zzzz , dvs

() () () () 00100000 2211 ==== yyyy && .

När detta program körs
erhålles följande utskrift

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

y
1

y
2

Övning

Ändra programmet så att massornas hastigheter skrivs ut. Det skall ge följande diagram.

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

v
1

v
2

 32

Något om Matlab Control Toolbox

Till Matlab finns tillägg för olika tillämpningar, tex Signal processing toolbox för signalbehandling och
Control System Toolbox för reglertekniska beräkningar.
Vi skall här stifta en ganska ytlig bekantskap med den senare.
Matlab Control System Toolbox kan hantera kontinuerliga och diskreta signaler och system.

Inmatning

Vi börjar med inmatning av system i Command Window och utgår från överföringsfunktionen

()
423

2
1

2 ++

+
=

ss

s
sG

För att mata in denna ger vi kommandot

» G1=tf([1 2],[3 2 4])

följt av RETURN (alla kommandon skall åtföljas av RETURN)

Då svarar programmet i Command Window med

Transfer function:

 s + 2

3 s^2 + 2 s + 4

»

Överföringsfunktionen anges alltså med två vektorer, den första med täljarpolynomets koefficienter och
den andra med nämnarpolynomets koefficienter med högst gradtal först.
Det finns också kommandon för att bilda summan och produkten mellan överföringsfunktioner

» H=G1+G2

» H=G1*G2

Impuls- och stegsvar

Kommandot impulse(G1,20) bildar G1:s impulssvar och ritar det i grafikfönstret för 200 ≤≤ t .

På motsvarande sätt ritas stegsvaret för G1 ut med kommandot

step(G1,20)

Dessa kommandon ger följande grafer i grafikfönstret

Som synes erhålles ett svängande impuls- och stegsvar, vilket som bekant beror på att
överföringsfunktionen har komplexkonjugerade poler (kontrollera detta).

Övning1

Rita steg- och impulssvar för ett system med reella poler och konstatera att dessa inte är svängande.

Amplitud och fasfunktion (Bodediagram)

Med kommandot bode(H)

erhåller du ett diagram som visar amplitud och fasdiagram för H, dvs ()ωH och Harg .

Exempel

Time (sec.)

A
m

p
lit

u
d
e

Impulse Response

0 2 4 6 8 10 12 14 16 18 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec.)

A
m

p
lit

u
d
e

Step Response

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rita amplitud och fasfunktion för ()
258

52

2 ++

+
=

ss

s
sH

Lösning

Bilda först ()sH enligt

» H=tf([2 5],[1 8 25])

Transfer function:

 2 s + 5

s^2 + 8 s + 25

Rita sedan bodediagrammet med

» bode(H)

»

Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
);

M
a
g
n
it
u
d
e
 (

d
B

)

Bode Diagrams

-35

-30

-25

-20

-15

-10

10-1 100 101 102
-100

-50

0

50

Vi kan påverka diagrammets utseende genom att ange att vi vill ha rutnät i diagrammet och dessutom
välja en annan skala. Eftersom det är flera kommandon samlar vi dessa i ett program som vi skriver i
editorn, då kan vi ju köra om programmet och slipper skriva in allt varje gång!

%p17 bode1

w=logspace(-2,2)

H=tf([2 5],[1 8 25])

bode(H,w)

grid on

Första raden anger programnamnet. % anger att det är en kommentar och inget kommando.

Raden w=logspace(-2,2) anger att jag vill ha frekvensskalan ()22
1010 ,− rad/s.

Raden grid on anger att jag vill ha rutnät enligt skalan.

 34

Programmet kan köras från kommandofönstret (Command Window) med följande kommando

» bode1

Det kan även köras från editorn, under Debug finns alternativet Run om du redan sparat programmet
eller Save and run om det inte är sparat, se figur ovan.

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

45

P
h

a
s

e
 (

d
e

g
)

-35

-30

-25

-20

-15

-10

M
a
g

n
itu

d
e

 (
d
B

)

Ofta studerar man system där utsignalen återkopplas till utgången (feedback), se figur nedan.
Du kan läsa om blockscheman för system på s. 115-116 i läroboken.

Överföringsfunktionen för detta system erhålles med kommandot

Feedback(G1,G2)

Låt G1 vara enligt ovan, alltså ()
423

2
1

2 ++

+
=

ss

s
sG och låt G2 vara

2

1
2

+
=

s
G .

För att få överföringsfunktionen ()
()
()sX

sY
sH = för detta återkopplade system ger vi alltså följande

kommandon i Command Window

» G1=tf([1 2],[3 2 4]) %din inmatning

Transfer function: %programmets svar

 s + 2

3 s^2 + 2 s + 4

»

» G2=tf([1],[1 2]) %din inmatning

Transfer function: %programmets svar

 1

s + 2

» H=feedback(G1,G2) %din inmatning

Transfer function: %programmets svar
 s^2 + 4 s + 4

3 s^3 + 8 s^2 + 9 s + 10

»

Vi bestämmer stegsvaret för detta system med följande kommando, fortfarande i kommandofönstret

» step(H,20)

»

G1

G2

()sX ()sY

 36

På nytt ett svängande stegsvar alltså!

Vi kan naturligtvis som i förra exemplet samla våra kommandon i ett program som vi skriver i editorn.

Exempel

Rita stegsvaret för ()
4

2

+⋅
=

sa
sG för a = 2, 6, 10, 14

Lösning

Stegsvaret beräknas av följande program där vi gör en loop vars loop-variabeln a får genomlöpa de
önskade värdena. I varje varv bildas överföringsfunktionen för det aktuella a-värdet varefter dess stegsvar
beräknas och ritas i grafikfönstret.
Programmet börjar med att stänga grafikfönstret för tidigare utskrifter. Varje loop-varv innehåller
kommandot hold on som håller grafikfönstret öppet för följande a-värde.

%p18

hold off %stänger grafikfönstret

for a=2:4:14 % a antar värdena 2,6,10,14.

G=tf([2],[a 4]) %bildar överföringsfunktionen för aktuellt a-värde

step(G,10) %beräknar stegsvaret för denna överföringsfunktion

hold on %håller grafikfönstret öppet för nästa a-värde

end

Följande utskrift erhålles (fundera över vilka värden på a som ger de olika kurvorna!)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Step Response

Time (sec)

A
m

p
lit

u
d
e

 38

Referenser

Eva Pärt-Enander Matlab6

Per Jönsson MATLAB

beräkningar inom teknik och naturvetenskap

