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Något om Matlab 
 

Matlab är ett interaktivt programpaket för numerisk beräkning, simulering och presentation av data. 
Matlab är en förkortning av MATrix LABoratory. Detta namn antyder att Matlab arbetar med matriser 
och vektorer, vilket framgår senare. 
När du öppnar Matlab ser du ett antal fönster på bildskärmen. Nedan visas de som vi kommer att 
använda. 
MATLAB-fönstret använder vi för att ställa in det bibliotek i vilket vi kommer att lägga våra program. 
I Command window ger vi kommandon, t.ex. för att köra ett visst program. Här får vi också 
felmeddelanden vid programkörning. 

Här ändrar du

bibliotek

Här ändrar du

bibliotek

Editor

Här skriver du program,

dvs en sammanhängande följd

av kommandon

Editor

Här skriver du program,

dvs en sammanhängande följd

av kommandon

Command window

Här ger du enstaka kommandon

Command window

Här ger du enstaka kommandon
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Räknesätt och funktioner 

I kommandofönstret kan du göra beräkningar med de fyra räknesätten och matematiska funktioner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kommandona ges genom att skriva dem vid promptern och därefter trycka på RETURN. 
 
I Matlab används följande räkneoperationer 

 + addition 

 - subtraktion 

 * multiplikation med konstant 

 / division med konstant 

 ^ upphöjt till 

 .* elementvis multiplikation mellan vektorer 

 ./ elementvis division mellan vektorer 

 .^ elementvis ”upphöjt till” av vektor. 

 
Elementvisa operationer som nämns ovan kommer vi till något senare. 
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De matematiska funktionerna har följande utseende (ett litet urval av de vanligaste) 

t  sqrt(t) t    abs(t)  tsin  sin(t) 

ate  exp(a*t) z  abs(z) tcos  cos(t) 

tln  log(t) )arg(z  angle(z) ttan  tan(t) 

tlog10  log10(t) zRe  real(z)  

tarctan  atan(t) zIm  imag(z)  

tarcsin  asin(t) z  conj(z)  

tarccos  acos(t) 

 
Vektorer och matriser 
 
Exempel 

Om vi vill bilda den komponentvisa produkten mellan vektorerna A=[2 3 4 5 6] och  B=[1 2 3 4 5] ger vi 
följande kommandon där semikolon betyder return och >> är promptern i kommandofönstret. 
Här separeras vektorkomponenterna med mellanslag!! 
 
>> A=[2 3 4 5 6]; 
>> B=[1 2 3 4 5]; 
>> C=A.*B; 
>> C; 
 
C = 
 
     2     6    12    20    30 
 
>> 
Detta betyder att vektorn [ ]30201262=C  

 
C=A.*B betyder komponentvis multiplikation 
 
 
Exempel 

Antag att vi vill lösa ekvationssystemet  
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A, x och b är s.k. matriser. Dessa är talscheman för vilka räkneregler kan formuleras 
 
Vi går inte in på dessa utan visar bara hur lösningen till ekvationssystemet kan formuleras, nämligen 
som 

bAx ⋅=
−1 , 

Där 1−A  är den inversa matrisen till A. 
I matlab löser vi ekvationssystemet i kommandofönstret enligt följande. 
 
Först matar vi in matriserna enligt 
 

>> A=[2 3 -5;8 -1 -4;1 7 -3]; %Mellanslag mellan elementen ger 3x3-matris! 

b=[6;-2;1]; %Semikolon mellan elementen ger kolonnvektor, 1x3-

%matris! 
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x=A\b; % Här beräknas lösningen 

 
Därefter skriver vi x (som vi ju söker) och trycker vi på RETURN och får följande utskrift 
 
>> x 

 

x = 

 

-1.3558 

-0.5521 

-2.0736 

 

>> 

Detta betyder 
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Exempel 

Bestäm nodpotentialerna Av , Bv  och Cv  i nedanstående krets. 
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Lösning 

KCL i noderna ger 
 
A 0321 =++ iii  

B ⇒=++− 0542 iii  

C A2,0653 =+−− iii  

 
Uttryckt i nodpotentialerna blir detta 
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A, V och E är s.k. matriser. Dessa är talscheman för vilka räkneregler kan formuleras 
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Vi går inte in på dessa utan visar bara hur lösningen till ekvationssystemet kan formuleras, nämligen 
som 

EAV ⋅=
−1 , 

Där 1−A  är den inversa matrisen till A. 
I matlab löser vi ekvationssystemet i kommandofönstret enligt följande. 
 
Först matar vi in matriserna enligt 
 
>> A=[5 -1 -2; 

-1 4 -2; 

-2 -2 5] 

 

RETURN 

 

A = 

 

     5    -1    -2 

    -1     4    -2 

    -2    -2     5 

 

>> E=[30;0;40] 

 

RETURN 

 

E = 

 

    30 

     0 

    40 

 

>> V=A\E 

 

RETURN 

 

V = 

 

   17.2549 

   14.7059 

   20.7843 

 

>> 

 

 
Detta ger alltså att  V,317=Av  

  V,714=Bv  

  V,820=Cv  
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Program 

Ofta vill man utföra ett antal kommandon flera gånger. Då skriver man detta som ett antal instruktioner 
i ett program. 
Ett datorprogram är en rad instruktioner som datorn skall utföra. De sparas i en fil som kan exekveras 
genom att man ger datorn ett kommando. 
Programmet skrivs i en editor. 
I Matlab kallas programfilerna m-files. 
Editorn öppnas genom att ge kommandot edit i kommandofönstret. Den kan även öppnas genom att 
man trycker på den vita rutan högst upp till höger i kommandofönstret eller via  
File> New> Blank M-File. 
Tidigare sparade program öppnas med öppna-symbolen (gul) i editorns menyrad. 
 
Exempel 

Vi skall skriva ett program som ritar grafen för ( ) ( )ttx sin5 ⋅=  i intervallet 52 ≤≤− t . 

Detta program innehåller ett antal vanliga instruktioner. 
 

 
 
 
 

%p1 plot_1a 
t=-2:0.01:5; 
x=5*sin(4*t); 
plot(t,x,'k'); 
 
 
 
 
 
 
 
 
 
 
 
 
På rad 1 anges programmets namn plot1a. Denna instruktion skall inte utföras av datorn utan är en 
kommentar för användaren. Sådana kommentarer föregås av ett procenttecken, %, och får grön text. 

På rad 2 anges en vektor med den oberoende variabeln t. Här har vi valt att rita kurvan för värden med 
intervallet 0,01 mellan -2 och 5. 

Vektorn anges alltså på formen [Begynnelsevärde : Steg : Slutvärde]. 
 

På rad 3 skrivs den funktion in, vars graf vi vill rita. Vi kallar funktionen x. 

På rad 4 ges den instruktion som innebär att datorn skall rita grafen. Plot-instruktionen har ett antal 
argument. Det första är den vektor som anger den oberoende variabeln. Det andra är den vektor som 
består av funktionsvärdet i de punkter vi valt på rad 1. Det tredje argumentet är ’k’, och anger att vi vill 
rita kurvan svart. Om vi inte anger detta ritas kurvan blå. 
 
Spara nu programmet i en katalog som vi anger enligt ovan (Current Folder). 
 
Programmet kan nu köras genom att trycka på den gröna pilen i editorns menyrad. 
Detta ger följande utskrift. 
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Som synes den sinuskurva vi önskade. Utskriften kan förbättras genom att lägga in ett koordinatsystem 
och låta den vertikala axeln löpa mellan -6 och 6. 
 
Programmet kompletteras enligt följande 
 
%p2 plot_1b 
t=-2:0.01:5; 
x=5*sin(4*t); 
plot(t,x,'k'); 
ylim([-6 6]); 
grid on; 
 

 
 
Rad 5 anger att vi vill att den vertikala axeln skall 
löpa mellan -6 och 6 
Rad 6 anger att vi vill ha ett rutmönster som bildar 
ett koordinatsystem. 
Detta program ger följande utskrift 
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Exempel 

 

Om vi vill rita grafen för ( ) ( )o305sin4 +⋅= ttx  måste vi tänka på att matlab vill ha vinklar angivna i 

radianer. 
 
 
 
 
%p3 plot_1c 
t=-2:0.01:5; 
A=5; 
omega=4; 
v=pi/180*30; 
x=A*sin(omega*t+v); 
plot(t,x,'k'); 
ylim([-6 6]); 
xlim([-1 2]); 
grid on; 
 
 
 
 
 
 
 
 
 
 
 
Här har vi angivit amplitud, vinkelfrekvens och fasvinkel separat. Dessutom vill vi studera kurvan i ett 
mindre tidsintervall vilket anges med instruktionen xlim. 
 
Utskriften blir enligt följande 
 
 



 13

 

 
 
Om vi nu vill ha den oberoende variabeln i grader måste vi göra följande ändring 
 
 
 
%p4 plot_1d 
t=-2:0.01:5; 
A=5; 
omega=4; 
v=pi/180*30; 
x=A*sin(omega*t+v); 
vinkel=180/pi*omega*t; 
plot(vinkel,x,'k'); 
ylim([-6 6]); 
xlim([-180 360]); 
grid on; 
 
 
 
 
 
 
 
 
 
På rad 7 gör vi en ny oberoende variabel genom att räkna om tiden till grader med hjälp av 

vinkelfrekvensen och omvandla med faktorn 
π

o180
. 

Vi har också ändrat begränsningen av den nya oberoende variabeln på rad 10. 
Detta ger 
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Om vi förstorar med symbolen i menyraden får vi 
 
 

 
 

Vi ser att kurvan är förskjuten o30  åt vänster. 
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Exempel 

Rita grafen för ( ) tettx t
10

2 sin−
=  

Vi gör det med följande program 
 

%p5 plot_2a 

t=0:0.01:20; 

x=t.^2.*exp(-t).*sin(10*t); 

plot(t,x,'k'); 

grid on; 

 
På rad 2 ges den oberoende variabeln i form av vektorn  
[0 0.01 0.02 ……20]. 
Antalet element i denna vektor är alltså 2001. 
På rad 3 beräknas funktionen (vektorn) ( )tx  i de 2001 

punkter som anges i vektorn t ,där några skrivsätt kräver sin 
förklaring. 
 
Beteckningen  .*  betyder alltså att vektorerna t.^2,  exp(-t), 
och sin(10t) multipliceras elementvis vilket kräver att de har 
lika många element! 

Observera då att t.^2 betyder att datorn beräknar 2t  för varje 

element i tidsvektorn. 
 
På rad 4 ges ett skrivkommando plot(t,x,’k’). 

Detta är alltså ett kommando att rita en kurva med punkterna i vektorn t på den horisontella axeln och 

punkterna i vektorn ( )tx  på den vertikala axeln. 

Sist i parentesen står en instruktion att rita kurvan i svart färg. Här kan man även ge andra instruktioner 
om hur kurva skall ritas. 
På femte raden ges instruktionen  grid on  vilket betyder att vi vill ha stödlinjer i diagrammet. 

 



 16

Programmet sparas och körs genom att under menyn Debug ge kommandot Run 
Om programmet körs direkt efter det att det skrivits heter kommandot Save and run! 
Det kan också köras från kommandofönstret. Detta görs genom att anropa programmet med dess namn 
och sedan trycka på RETURN. 
Utskriften visas t.h. nedan. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Som synes utspelar sig det intressantaste i intervallet [0,10]. Vi kan, som ovan, i plot-kommandot 
begränsa utskriften till detta intervall. 

 
%p6 plot_2b 

t=0:0.01:20; 

x=t.^2.*exp(-t).*sin(10*t); 

plot(t,x,'k');xlim([0 10]);ylim([-0.6 

0.6]); 

grid on; 

title('Dämpad svängning'); 

xlabel('x-axel'); 

ylabel('y-axel'); 

 

I detta program finns även tre rader som anger 
kurvans namn samt beteckningen på axlarna. 
I bilderna på utskrifterna ovan har hela 
bildskärmsutsendet tagits med. I fortsättningen 
visas endast själva kurvan! 
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I nästa exempel visas utskriftskommandon för det fall där flera kurvor skall skrivas ut i olika diagram 
samtidigt. 
Den centrala instruktionen här är subplot(m,n,p) som delar upp grafikfömstret i nm ×  delar och 

skriver ut i den del som anges av p. 
 

%p7 plot3 
t=0:0.01:20; 
x=t.^2.*exp(-t).*sin(10*t); 
subplot(2,2,1) 
plot(t,x,'k');xlim([0 10]);ylim([-0.6 0.6]); 
grid on; 
x=t.^4.*exp(-2*t).*sin(5*t); 
subplot(2,2,2) 
plot(t,x,'k');xlim([0 6]);ylim([-0.6 0.6]); 
grid on; 
x=t.*exp(-t).*sin(4*t); 
subplot(2,2,3) 
plot(t,x,'k');xlim([0 6]);ylim([-0.6 0.6]); 
grid on 
grid on;x=exp(-t).*sin(10*t); 

subplot(2,2,4) 

plot(t,x,'k');xlim([0 6]);ylim([-1 1]); 

grid on; 

 

Se figur nedan. 
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Ibland vill man ha olika kurvor utritade i samma diagram. Nedanstående program visar ett sådant fall. 

 

%p8 plot_4 
t=0:0.01:5;hold off 
x1=t.*exp(-t); 
plot(t,x1,'k'); 
hold on 
x2=t.*exp(-t.^2); 
plot(t,x2,'k'); 
grid on; 
 

Här ritas först kurvan tetx −
⋅=1 . Därefter ges 

instruktionen hold on som betyder att 
grafikfönstret skall hållas öppet så att även 

kurvan 
2

2
tetx −

⋅=  kan ritas i diagrammet. 

På första raden måste instruktionen hold off 

ges så att grafikfönstret inte är öppet när 
programmet körs ytterligare en gång. 
Detta ger diagrammet t.h. 
 
 
 

Om man vill rita många kurvor kan man lägga in 
ritinstruktionen i en for-loop som styrs av t.ex. 
en parameter i funktionsuttrycket. 
 

%p9 plot5 

t=0:0.01:5;hold off 

for k=1:0.5:4 

    x=t.*exp(-k*t); 

    plot(t,x,'k'); 

    hold on 

    grid on; 

end 

 

De instruktioner som står mellan for och end 

utförs för  
k = 1  1,5  2  2,5  3  3,5  4. 
 
Instruktionen hold on gör att programmet ritar en kurva för varje k-värde i samma diagram. 
Detta ger diagrammet t.h. 
Instruktionen hold off gör att grafikfönstret stängs så att tidigare figurer inte kommer med. 
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Funktionsytor 

Här presenteras kommandon med vilka vi kan rita funktionsytor ( )yxfz ,=  

Exempel 

Rita ytan ( )22

25054 22 yxeyxz +−
++=  för 5555 ≤≤−≤≤− yx  

I programmet genereras först en matris som innehåller de x- och y-värden för vilka funktionsvärdena 
skall beräknas. 
Detta sker med kommandot [X,Y]=meshgrid(x,y) 
Sedan beräknas funktionsvärdena i dessa punkter med kommandot  
Z=4*X.^2+5*Y.^2+250*X.*exp(-0.35*(X.^2+Y.^2))   
Därefter ritas ytan med mesh(X,Y,Z). 
 
%p10 plot6 Program som ritar funktionsyta 

x=-5:0.1:5  %Anger x-värden 

y=-5:0.1:5  %Anger y-värden 

[X,Y]=meshgrid(x,y) %Genererar gridmatris 

Z=4*X.^2+5*Y.^2+250*X.*exp(-0.35*(X.^2+Y.^2))  %Beräknar funktionsvärden 

mesh(X,Y,Z) %Ritar ytan 

xlabel('x'), ylabel('y'), zlabel('z') 

 
Detta ger följande utskrift. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
En variant på mesh(X,Y,Z) är contour(X,Y,Z,N) som ger N 
nivåkurvor i xy-planet. 
T.h. visar en utskrift med 10 nivåkurvor. 
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