

Något om Matlab

Bill Karlström
September 2015

 1

 2

Innehåll

Inledning 4

Räknesätt och funktioner 5

Vektorer och matriser 6

Program, funktionsgrafer 10

Funktionsfiler 20

Nollställen 20

Lokala min- och maxpunkter 23

Derivata 24

Integraler 25

Lösning av ODE 27

Matlab Control Toolbox 33

 3

 4

Något om Matlab

Matlab är ett interaktivt programpaket för numerisk beräkning, simulering och presentation av data.
Matlab är en förkortning av MATrix LABoratory. Detta namn antyder att Matlab arbetar med matriser
och vektorer, vilket framgår senare.
När du öppnar Matlab ser du ett antal fönster på bildskärmen. Nedan visas de som vi kommer att
använda.
MATLAB-fönstret använder vi för att ställa in det bibliotek i vilket vi kommer att lägga våra program.
I Command window ger vi kommandon, t.ex. för att köra ett visst program. Här får vi också
felmeddelanden vid programkörning.

Här ändrar du

bibliotek

Här ändrar du

bibliotek

Editor

Här skriver du program,

dvs en sammanhängande följd

av kommandon

Editor

Här skriver du program,

dvs en sammanhängande följd

av kommandon

Command window

Här ger du enstaka kommandon

Command window

Här ger du enstaka kommandon

 5

Räknesätt och funktioner

I kommandofönstret kan du göra beräkningar med de fyra räknesätten och matematiska funktioner.

Kommandona ges genom att skriva dem vid promptern och därefter trycka på RETURN.

I Matlab används följande räkneoperationer

 + addition

 - subtraktion

 * multiplikation med konstant

 / division med konstant

 ^ upphöjt till

 .* elementvis multiplikation mellan vektorer

 ./ elementvis division mellan vektorer

 .^ elementvis ”upphöjt till” av vektor.

Elementvisa operationer som nämns ovan kommer vi till något senare.

 6

De matematiska funktionerna har följande utseende (ett litet urval av de vanligaste)

t sqrt(t) t abs(t) tsin sin(t)

ate exp(a*t) z abs(z) tcos cos(t)

tln log(t))arg(z angle(z) ttan tan(t)

tlog10 log10(t) zRe real(z)

tarctan atan(t) zIm imag(z)

tarcsin asin(t) z conj(z)

tarccos acos(t)

Vektorer och matriser

Exempel

Om vi vill bilda den komponentvisa produkten mellan vektorerna A=[2 3 4 5 6] och B=[1 2 3 4 5] ger vi
följande kommandon där semikolon betyder return och >> är promptern i kommandofönstret.
Här separeras vektorkomponenterna med mellanslag!!

>> A=[2 3 4 5 6];
>> B=[1 2 3 4 5];
>> C=A.*B;
>> C;

C =

 2 6 12 20 30

>>
Detta betyder att vektorn []30201262=C

C=A.*B betyder komponentvis multiplikation

Exempel

Antag att vi vill lösa ekvationssystemet








=−+

−=−−

=−+

137

248

6532

321

321

321

xxx

xxx

xxx

,

Då tänker vi oss detta på matrisform enligt
















−=

















⋅

















−

−−

−

1

2

6

3

2

1

371

418

532

x

x

x

 eller bxA =⋅

A, x och b är s.k. matriser. Dessa är talscheman för vilka räkneregler kan formuleras

Vi går inte in på dessa utan visar bara hur lösningen till ekvationssystemet kan formuleras, nämligen
som

bAx ⋅=
−1 ,

Där 1−A är den inversa matrisen till A.
I matlab löser vi ekvationssystemet i kommandofönstret enligt följande.

Först matar vi in matriserna enligt

>> A=[2 3 -5;8 -1 -4;1 7 -3]; %Mellanslag mellan elementen ger 3x3-matris!

b=[6;-2;1]; %Semikolon mellan elementen ger kolonnvektor, 1x3-

%matris!

 7

x=A\b; % Här beräknas lösningen

Därefter skriver vi x (som vi ju söker) och trycker vi på RETURN och får följande utskrift

>> x

x =

-1.3558

-0.5521

-2.0736

>>

Detta betyder
















−

−

−

=

















0736,2

5521,0

3558,1

3

2

1

x

x

x

 8

Exempel

Bestäm nodpotentialerna Av , Bv och Cv i nedanstående krets.

Ω100

Ω100

Ω100

Ω200 Ω200

V15

0mA20

1i

2i

3i

4i
5i 6i

Ω200

Lösning

KCL i noderna ger

A 0321 =++ iii

B ⇒=++− 0542 iii

C A2,0653 =+−− iii

Uttryckt i nodpotentialerna blir detta

0
100200100

V15
=

−
+

−
+

−

ΩΩΩ

CABAA vvvvv

0
100200200

=
−

++
−

−
ΩΩΩ

CBBBA vvvvv
 ⇒

A2,0
200100100

=+
−

−
−

−
ΩΩΩ

CCBCA vvvvv









=+−−

=−+−

=−−

V

V

40522

024

3025

CBA

CBA

CBA

vvv

vvv

vvv

 ⇒ EVA =⋅

















−−

−−

−−

=

522

241

215

A

















=

C

B

A

v

v

v

V

















=

40

0

30

E , så att

















=

















⋅

















−−

−−

−−

40

0

30

522

241

215

C

B

A

v

v

v

A, V och E är s.k. matriser. Dessa är talscheman för vilka räkneregler kan formuleras

 9

Vi går inte in på dessa utan visar bara hur lösningen till ekvationssystemet kan formuleras, nämligen
som

EAV ⋅=
−1 ,

Där 1−A är den inversa matrisen till A.
I matlab löser vi ekvationssystemet i kommandofönstret enligt följande.

Först matar vi in matriserna enligt

>> A=[5 -1 -2;

-1 4 -2;

-2 -2 5]

RETURN

A =

 5 -1 -2

 -1 4 -2

 -2 -2 5

>> E=[30;0;40]

RETURN

E =

 30

 0

 40

>> V=A\E

RETURN

V =

 17.2549

 14.7059

 20.7843

>>

Detta ger alltså att V,317=Av

 V,714=Bv

 V,820=Cv

 10

Program

Ofta vill man utföra ett antal kommandon flera gånger. Då skriver man detta som ett antal instruktioner
i ett program.
Ett datorprogram är en rad instruktioner som datorn skall utföra. De sparas i en fil som kan exekveras
genom att man ger datorn ett kommando.
Programmet skrivs i en editor.
I Matlab kallas programfilerna m-files.
Editorn öppnas genom att ge kommandot edit i kommandofönstret. Den kan även öppnas genom att
man trycker på den vita rutan högst upp till höger i kommandofönstret eller via
File> New> Blank M-File.
Tidigare sparade program öppnas med öppna-symbolen (gul) i editorns menyrad.

Exempel

Vi skall skriva ett program som ritar grafen för () ()ttx sin5 ⋅= i intervallet 52 ≤≤− t .

Detta program innehåller ett antal vanliga instruktioner.

%p1 plot_1a
t=-2:0.01:5;
x=5*sin(4*t);
plot(t,x,'k');

På rad 1 anges programmets namn plot1a. Denna instruktion skall inte utföras av datorn utan är en
kommentar för användaren. Sådana kommentarer föregås av ett procenttecken, %, och får grön text.

På rad 2 anges en vektor med den oberoende variabeln t. Här har vi valt att rita kurvan för värden med
intervallet 0,01 mellan -2 och 5.

Vektorn anges alltså på formen [Begynnelsevärde : Steg : Slutvärde].

På rad 3 skrivs den funktion in, vars graf vi vill rita. Vi kallar funktionen x.

På rad 4 ges den instruktion som innebär att datorn skall rita grafen. Plot-instruktionen har ett antal
argument. Det första är den vektor som anger den oberoende variabeln. Det andra är den vektor som
består av funktionsvärdet i de punkter vi valt på rad 1. Det tredje argumentet är ’k’, och anger att vi vill
rita kurvan svart. Om vi inte anger detta ritas kurvan blå.

Spara nu programmet i en katalog som vi anger enligt ovan (Current Folder).

Programmet kan nu köras genom att trycka på den gröna pilen i editorns menyrad.
Detta ger följande utskrift.

 11

Som synes den sinuskurva vi önskade. Utskriften kan förbättras genom att lägga in ett koordinatsystem
och låta den vertikala axeln löpa mellan -6 och 6.

Programmet kompletteras enligt följande

%p2 plot_1b
t=-2:0.01:5;
x=5*sin(4*t);
plot(t,x,'k');
ylim([-6 6]);
grid on;

Rad 5 anger att vi vill att den vertikala axeln skall
löpa mellan -6 och 6
Rad 6 anger att vi vill ha ett rutmönster som bildar
ett koordinatsystem.
Detta program ger följande utskrift

 12

Exempel

Om vi vill rita grafen för () ()o305sin4 +⋅= ttx måste vi tänka på att matlab vill ha vinklar angivna i

radianer.

%p3 plot_1c
t=-2:0.01:5;
A=5;
omega=4;
v=pi/180*30;
x=A*sin(omega*t+v);
plot(t,x,'k');
ylim([-6 6]);
xlim([-1 2]);
grid on;

Här har vi angivit amplitud, vinkelfrekvens och fasvinkel separat. Dessutom vill vi studera kurvan i ett
mindre tidsintervall vilket anges med instruktionen xlim.

Utskriften blir enligt följande

 13

Om vi nu vill ha den oberoende variabeln i grader måste vi göra följande ändring

%p4 plot_1d
t=-2:0.01:5;
A=5;
omega=4;
v=pi/180*30;
x=A*sin(omega*t+v);
vinkel=180/pi*omega*t;
plot(vinkel,x,'k');
ylim([-6 6]);
xlim([-180 360]);
grid on;

På rad 7 gör vi en ny oberoende variabel genom att räkna om tiden till grader med hjälp av

vinkelfrekvensen och omvandla med faktorn
π

o180
.

Vi har också ändrat begränsningen av den nya oberoende variabeln på rad 10.
Detta ger

 14

Om vi förstorar med symbolen i menyraden får vi

Vi ser att kurvan är förskjuten o30 åt vänster.

 15

Exempel

Rita grafen för () tettx t
10

2 sin−
=

Vi gör det med följande program

%p5 plot_2a

t=0:0.01:20;

x=t.^2.*exp(-t).*sin(10*t);

plot(t,x,'k');

grid on;

På rad 2 ges den oberoende variabeln i form av vektorn
[0 0.01 0.02 ……20].
Antalet element i denna vektor är alltså 2001.
På rad 3 beräknas funktionen (vektorn) ()tx i de 2001

punkter som anges i vektorn t ,där några skrivsätt kräver sin
förklaring.

Beteckningen .* betyder alltså att vektorerna t.^2, exp(-t),
och sin(10t) multipliceras elementvis vilket kräver att de har
lika många element!

Observera då att t.^2 betyder att datorn beräknar 2t för varje

element i tidsvektorn.

På rad 4 ges ett skrivkommando plot(t,x,’k’).

Detta är alltså ett kommando att rita en kurva med punkterna i vektorn t på den horisontella axeln och

punkterna i vektorn ()tx på den vertikala axeln.

Sist i parentesen står en instruktion att rita kurvan i svart färg. Här kan man även ge andra instruktioner
om hur kurva skall ritas.
På femte raden ges instruktionen grid on vilket betyder att vi vill ha stödlinjer i diagrammet.

 16

Programmet sparas och körs genom att under menyn Debug ge kommandot Run
Om programmet körs direkt efter det att det skrivits heter kommandot Save and run!
Det kan också köras från kommandofönstret. Detta görs genom att anropa programmet med dess namn
och sedan trycka på RETURN.
Utskriften visas t.h. nedan.

Som synes utspelar sig det intressantaste i intervallet [0,10]. Vi kan, som ovan, i plot-kommandot
begränsa utskriften till detta intervall.

%p6 plot_2b

t=0:0.01:20;

x=t.^2.*exp(-t).*sin(10*t);

plot(t,x,'k');xlim([0 10]);ylim([-0.6

0.6]);

grid on;

title('Dämpad svängning');

xlabel('x-axel');

ylabel('y-axel');

I detta program finns även tre rader som anger
kurvans namn samt beteckningen på axlarna.
I bilderna på utskrifterna ovan har hela
bildskärmsutsendet tagits med. I fortsättningen
visas endast själva kurvan!

 17

I nästa exempel visas utskriftskommandon för det fall där flera kurvor skall skrivas ut i olika diagram
samtidigt.
Den centrala instruktionen här är subplot(m,n,p) som delar upp grafikfömstret i nm × delar och

skriver ut i den del som anges av p.

%p7 plot3
t=0:0.01:20;
x=t.^2.*exp(-t).*sin(10*t);
subplot(2,2,1)
plot(t,x,'k');xlim([0 10]);ylim([-0.6 0.6]);
grid on;
x=t.^4.*exp(-2*t).*sin(5*t);
subplot(2,2,2)
plot(t,x,'k');xlim([0 6]);ylim([-0.6 0.6]);
grid on;
x=t.*exp(-t).*sin(4*t);
subplot(2,2,3)
plot(t,x,'k');xlim([0 6]);ylim([-0.6 0.6]);
grid on
grid on;x=exp(-t).*sin(10*t);

subplot(2,2,4)

plot(t,x,'k');xlim([0 6]);ylim([-1 1]);

grid on;

Se figur nedan.

0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6
-1

-0.5

0

0.5

1

 18

Ibland vill man ha olika kurvor utritade i samma diagram. Nedanstående program visar ett sådant fall.

%p8 plot_4
t=0:0.01:5;hold off
x1=t.*exp(-t);
plot(t,x1,'k');
hold on
x2=t.*exp(-t.^2);
plot(t,x2,'k');
grid on;

Här ritas först kurvan tetx −
⋅=1 . Därefter ges

instruktionen hold on som betyder att
grafikfönstret skall hållas öppet så att även

kurvan
2

2
tetx −

⋅= kan ritas i diagrammet.

På första raden måste instruktionen hold off

ges så att grafikfönstret inte är öppet när
programmet körs ytterligare en gång.
Detta ger diagrammet t.h.

Om man vill rita många kurvor kan man lägga in
ritinstruktionen i en for-loop som styrs av t.ex.
en parameter i funktionsuttrycket.

%p9 plot5

t=0:0.01:5;hold off

for k=1:0.5:4

 x=t.*exp(-k*t);

 plot(t,x,'k');

 hold on

 grid on;

end

De instruktioner som står mellan for och end

utförs för
k = 1 1,5 2 2,5 3 3,5 4.

Instruktionen hold on gör att programmet ritar en kurva för varje k-värde i samma diagram.
Detta ger diagrammet t.h.
Instruktionen hold off gör att grafikfönstret stängs så att tidigare figurer inte kommer med.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 19

Funktionsytor

Här presenteras kommandon med vilka vi kan rita funktionsytor ()yxfz ,=

Exempel

Rita ytan ()22

25054 22 yxeyxz +−
++= för 5555 ≤≤−≤≤− yx

I programmet genereras först en matris som innehåller de x- och y-värden för vilka funktionsvärdena
skall beräknas.
Detta sker med kommandot [X,Y]=meshgrid(x,y)
Sedan beräknas funktionsvärdena i dessa punkter med kommandot
Z=4*X.^2+5*Y.^2+250*X.*exp(-0.35*(X.^2+Y.^2))
Därefter ritas ytan med mesh(X,Y,Z).

%p10 plot6 Program som ritar funktionsyta

x=-5:0.1:5 %Anger x-värden

y=-5:0.1:5 %Anger y-värden

[X,Y]=meshgrid(x,y) %Genererar gridmatris

Z=4*X.^2+5*Y.^2+250*X.*exp(-0.35*(X.^2+Y.^2)) %Beräknar funktionsvärden

mesh(X,Y,Z) %Ritar ytan

xlabel('x'), ylabel('y'), zlabel('z')

Detta ger följande utskrift.

En variant på mesh(X,Y,Z) är contour(X,Y,Z,N) som ger N
nivåkurvor i xy-planet.
T.h. visar en utskrift med 10 nivåkurvor.

-5

0

5

-5

0

5
-200

-100

0

100

200

300

xy

z

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

