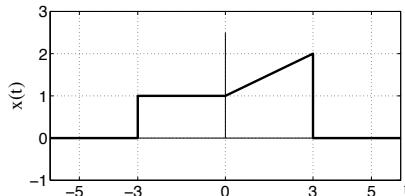


Chapter 1: Continuous-Time Signals and Systems

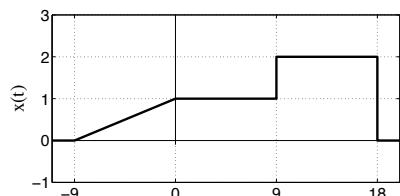
1.1¹ The signals in Figure 1 are zero except as shown.


(a) For the signal $x(t)$ of Figure 1(a), plot

(i) $x(-t/3)$	(iii) $x(3+t)$
(ii) $x(-t)$	(iv) $x(2-t)$


Verify your result by checking at least two points.

(b) Repeat (a) for the signal $x(t)$ of Figure 1(b)


(c) Repeat (a) for the signal $x(t)$ of Figure 1(c)

(a)

(b)

(c)

Figure 1: Three signals

¹PPR 2.1 , Phillips, Parr & Riskin: Signals, Systems and Transforms, 4th ed.

1.2² The signals in Figure 1 are zero except as shown.

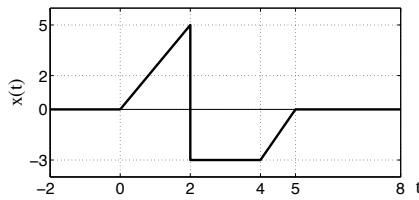
(a) For the signal $x(t)$ of Figure 1(a), plot

(i) $4x(t) - 2$	(iii) $2x(2t) + 2$
(ii) $2x(t) + 2$	(iv) $-4x(t) + 2$

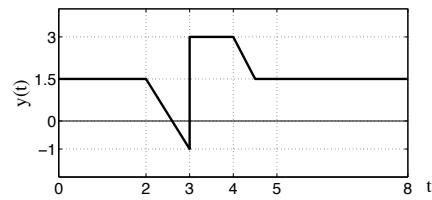
Verify your result by checking at least two points.

(b) Repeat (a) for the signal $x(t)$ of Figure 1(b).

(c) Repeat (a) for the signal $x(t)$ of Figure 1(c).


1.3³ You are given the signals $x(t)$ and $y(t)$ in Figure 2.

a) Express $y(t)$ as a function of $x(t)$.


b) Verify your result by checking at least three points in time.

c) Express $x(t)$ as a function of $y(t)$.

d) Verify your result of part (c) by checking at least three points in time.

(a) Signal $x(t)$

(b) Signal $y(t)$

Figure 2: Two signals

1.4⁴ Given

$$x(t) = 4(t+2)u(t+2) - 4tu(t) - 4u(t-2) - 4(t-4)u(t-4) + 4(t-5)u(t-5)$$

, find and sketch $x(2t - 4)$.

²PPR 2.2

³PPR 2.4

⁴PPR 2.5

Chapter 2: Discrete-Time Signals and Systems

2.1¹⁶ Determine which of the following discrete-time functions is different:

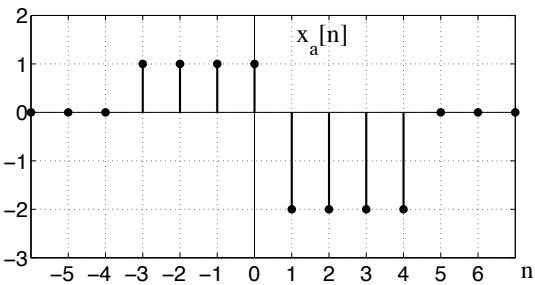
- (a) $x_1[n] = u[n] + u[-1 - n]$
- (b) $x_2[n] = \sum_{k=-\infty}^{\infty} \delta[n - k]$
- (c) $x_3[n] = u[n] + u[-n]$
- (d) $x_4[n] = u[-n] + u[n - 1]$

2.2¹⁷ The signals in Figure 3 are zero except as shown.

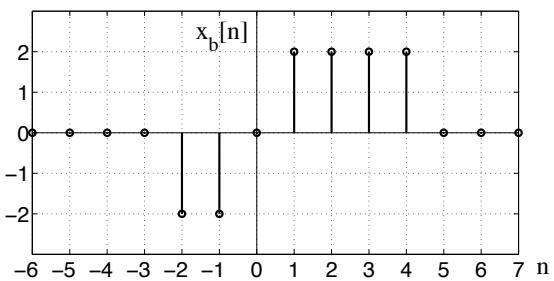
- (a) For the signal $x_a[n]$ of Figure 3, plot the following

(i) $x_a[3n]$ (ii) $x_a[-n/3]$ (iii) $x_a[-n]$	(iv) $x_a[3 - n]$ (v) $x_a[n - 3]$ (vi) $x_a[-3 - n]$
--	---
- (b) Repeat (a) for the signal $x_b[n]$ of Figure 3.
- (c) Repeat (a) for the signal $x_c[n]$ of Figure 3.
- (d) Repeat (a) for the signal $x_d[n]$ of Figure 3.

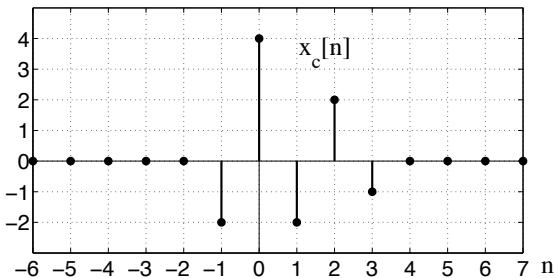
2.3¹⁸ The signals in Figure 3 are zero except as shown.

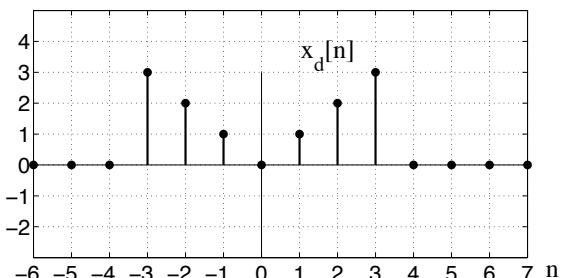

- (a) For the signal $x_a[n]$ of Figure 3(a), plot the following

(i) $2 - 3x_a[n]$ (ii) $2x_a[-n]$ (iii) $3x_a[n - 2]$	(iv) $3 - x_a[n]$ (v) $1 + 2x_a[-2 + n]$ (vi) $2x_a[-n] - 4$
---	--
- (b) Repeat (a) for the signal $x_b[n]$ of Figure 3(b).
- (c) Repeat (a) for the signal $x_c[n]$ of Figure 3(c).
- (d) Repeat (a) for the signal $x_d[n]$ of Figure 3(d).


¹⁶PPR 9.1

¹⁷PPR 9.2


¹⁸PPR 9.3


(a)

(b)

(c)

(d)

Figure 3: Discrete Signals