

Chapter 1: Continuous-Time Signals and Systems

1.1¹ The signals in Figure 1 are zero except as shown.

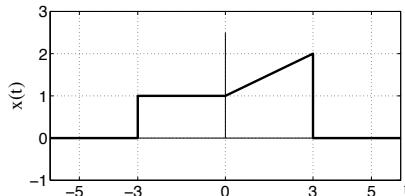
(a) For the signal $x(t)$ of Figure 1(a), plot

(i) $x(-t/3)$	(iii) $x(3+t)$
(ii) $x(-t)$	(iv) $x(2-t)$

Verify your result by checking at least two points.

(b) Repeat (a) for the signal $x(t)$ of Figure 1(b)

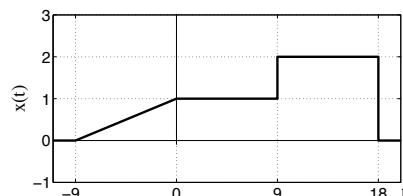
(c) Repeat (a) for the signal $x(t)$ of Figure 1(c)



(a)



(b)



(c)

Figure 1: Three signals

¹PPR 2.1 , Phillips, Parr & Riskin: Signals, Systems and Transforms, 4th ed.

1.2² The signals in Figure 1 are zero except as shown.

(a) For the signal $x(t)$ of Figure 1(a), plot

(i) $4x(t) - 2$	(iii) $2x(2t) + 2$
(ii) $2x(t) + 2$	(iv) $-4x(t) + 2$

Verify your result by checking at least two points.

(b) Repeat (a) for the signal $x(t)$ of Figure 1(b).

(c) Repeat (a) for the signal $x(t)$ of Figure 1(c).

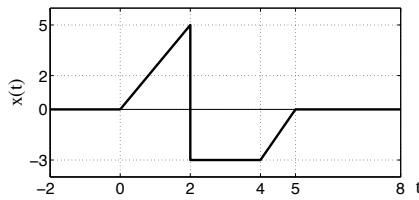
1.3³ You are given the signals $x(t)$ and $y(t)$ in Figure 2.

a) Express $y(t)$ as a function of $x(t)$.

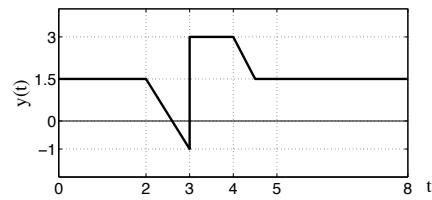
b) Verify your result by checking at least three points in time.

c) Express $x(t)$ as a function of $y(t)$.

d) Verify your result of part (c) by checking at least three points in time.



(a) Signal $x(t)$



(b) Signal $y(t)$

Figure 2: Two signals

1.4⁴ Given

$$x(t) = 4(t+2)u(t+2) - 4tu(t) - 4u(t-2) - 4(t-4)u(t-4) + 4(t-5)u(t-5)$$

, find and sketch $x(2t - 4)$.

²PPR 2.2

³PPR 2.4

⁴PPR 2.5

Chapter 2: Discrete-Time Signals and Systems

2.1¹⁶ Determine which of the following discrete-time functions is different:

- (a) $x_1[n] = u[n] + u[-1 - n]$
- (b) $x_2[n] = \sum_{k=-\infty}^{\infty} \delta[n - k]$
- (c) $x_3[n] = u[n] + u[-n]$
- (d) $x_4[n] = u[-n] + u[n - 1]$

2.2¹⁷ The signals in Figure 3 are zero except as shown.

- (a) For the signal $x_a[n]$ of Figure 3, plot the following

(i) $x_a[3n]$ (ii) $x_a[-n/3]$ (iii) $x_a[-n]$	(iv) $x_a[3 - n]$ (v) $x_a[n - 3]$ (vi) $x_a[-3 - n]$
--	---
- (b) Repeat (a) for the signal $x_b[n]$ of Figure 3.
- (c) Repeat (a) for the signal $x_c[n]$ of Figure 3.
- (d) Repeat (a) for the signal $x_d[n]$ of Figure 3.

2.3¹⁸ The signals in Figure 3 are zero except as shown.

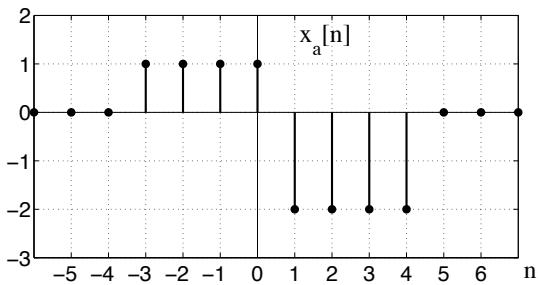
- (a) For the signal $x_a[n]$ of Figure 3(a), plot the following

(i) $2 - 3x_a[n]$ (ii) $2x_a[-n]$ (iii) $3x_a[n - 2]$	(iv) $3 - x_a[n]$ (v) $1 + 2x_a[-2 + n]$ (vi) $2x_a[-n] - 4$
---	--
- (b) Repeat (a) for the signal $x_b[n]$ of Figure 3(b).
- (c) Repeat (a) for the signal $x_c[n]$ of Figure 3(c).
- (d) Repeat (a) for the signal $x_d[n]$ of Figure 3(d).

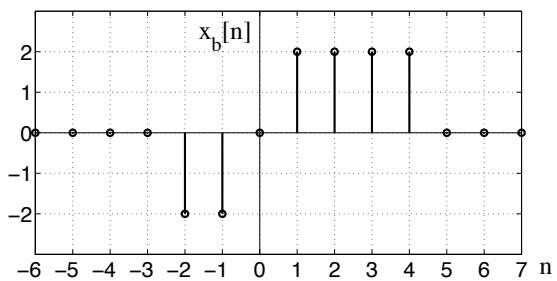
¹⁶PPR 9.1

¹⁷PPR 9.2

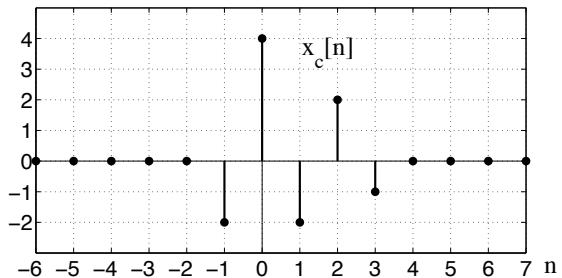
¹⁸PPR 9.3



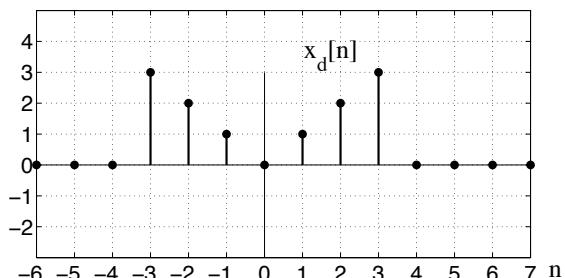
(a)



(b)



(c)



(d)

Figure 3: Discrete Signals

Chapter 3: Continuous-Time LTI Systems

3.1²⁸ Consider the integrator in Figure 6. This system is described in Example 3.1 (PPR) and has the impulse response $h(t) = u(t)$

(a) Using the convolution integral, find the system response when the input signal $x(t)$ is

(i) $u(t - 2)$	(iii) $u(t)$
(ii) $e^{5t}u(t)$	(iv) $(t + 1)u(t + 1)$

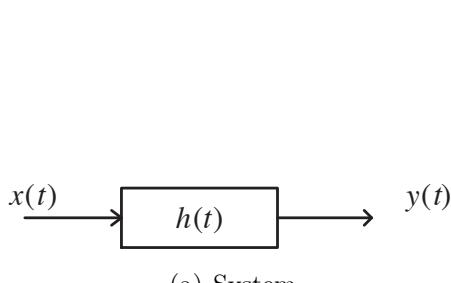
(b) Use the convolution integral to find the system's response when the input $x(t)$ is

(i) $-tu(t)$	(iii) $(t - 1)u(t - 1)$
(ii) $e^{-5t}u(t)$	(iv) $u(t) - u(t - 2)$

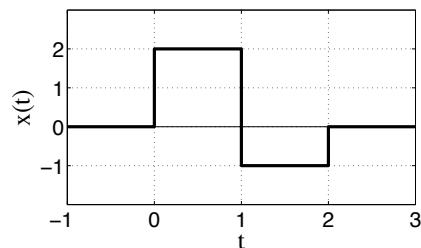
(c) Verify the results of part (a) and (b), using the system equation
 $y(t) = \int_{-\infty}^t x(\tau)d\tau$.

Figure 6: Ideal integrator: $y(t) = \int_{-\infty}^t x(\tau)d\tau$

3.2²⁹ Suppose that the system of Figure 7(a) has the input $x(t)$ given in Figure 7(b). The impulse response is the unit step function $h(t) = u(t)$. Find and sketch the system output $y(t)$.



(a) System



(b) Input signal $x(t)$

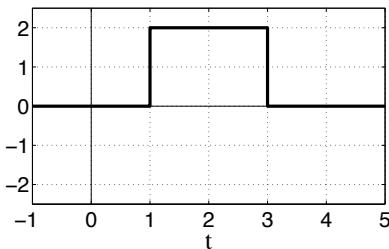
Figure 7:

²⁸PPR 3.1

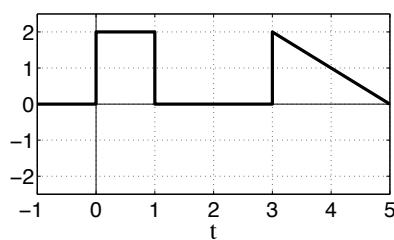
²⁹PPR 3.2

3.3³⁰ For the system of figure 7(a), the input signal is $x(t)$, the output signal is $y(t)$, and the impulse response is $h(t)$. For each of the cases that follow, find and plot the output $y(t)$. The referenced signals are given in Figure 8.

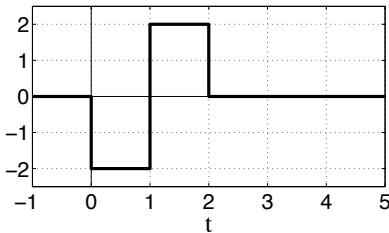
(a) $x(t)$ in Fig (a), $h(t)$ in Fig (b)	(c) $x(t)$ in Fig (a), $h(t)$ in Fig (d)
(b) $x(t)$ in Fig (a), $h(t)$ in Fig (c)	(d) $x(t)$ in Fig (a), $h(t)$ in Fig (a)



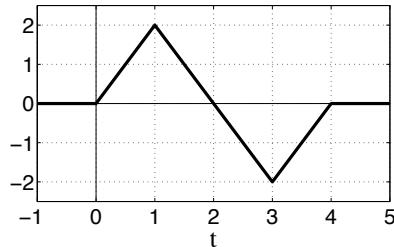
(a)



(b)



(c)



(d)

Figure 8: Signals

3.4³¹ For the system of figure 7(a), suppose that $x(t)$ and $h(t)$ are identical and are as shown in Figure 8(c).

(a) Find the output $y(t)$ only at the times $t = 0, 1, 2$, and 2.667 s. Solve this problem by inspection.

(b) To verify the result in part (a), solve for and sketch $y(t)$ for all times.

3.5³² For the system of figure 7(a), the input signal is $x(t)$, the output signal is $y(t)$, and the impulse response is $h(t)$. For each of the following cases, find the output $y(t)$.

³⁰PPR 3.4

³¹PPR 3.5

³²PPR 3.7

Chapter 4: Discrete-Time LTI Systems

4.1⁴¹ Consider the convolution sum

$$y[n] = x[n] \star h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

Show that this sum also can be expressed as

$$y[n] = h[n] \star x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k].$$

(Hint: Use a change of variables.)

4.2⁴² Show that, for any function $g[n]$,

$$g[n] \star \delta[n] = g[n].$$

4.3⁴³ Given the LTI system of Figure 10, with the input $x[n]$ and the impulse response $h[n]$, where

$$x[n] = \begin{cases} 1, & 1 \leq n \leq 6 \\ 0, & \text{otherwise} \end{cases} \quad h[n] = \begin{cases} 2, & -2 \leq n \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

Parts (a), (b) and (c) are to be solved without finding $y[n]$ for all n .

- (a) Solve the system output at $n = 5$, that is find $y[5]$.
- (b) Find the maximum value for the output $y[n]$.
- (c) Find the value of n for which the output is maximum.
- (d) Verify the results by solving for $y[n]$ for all n .
- (e) Verify the results of this problem by using Matlab.

⁴¹PPR 10.1

⁴²PPR 10.2

⁴³PPR 10.3

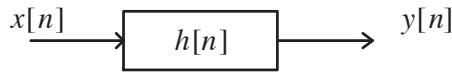


Figure 10: Discrete system.

~~4.4⁴⁴ Given the LTI system of Figure 10, with the impulse response $h[n] = \alpha^n u[n]$, where α is a constant. This system is excited with the input, $x[n] = \beta^n u[n]$, with $\beta \neq \alpha$ and β constant.~~

- ~~(a) Find the system response $y[n]$. Express $y[n]$ in closed form, using the formulas for geometric series (Appendix C in PPR).~~
- ~~(b) Evaluate $y[4]$ using the result of part (a).~~
- ~~(c) Verify the result of part (b) by expanding the convolution sum for $y[4]$.~~

~~4.5⁴⁵ Consider the discrete time LTI system of Figure 10. This system has the impulse response $h[n] = u[n+2] - u[n-2]$ and the input signal $x[n] = (0.7)^n u[n]$.~~

- ~~(a) Sketch $h[n]$.~~
- ~~(b) Find the system output $y[n]$.~~

~~4.6⁴⁶ For the LTI system of Figure 10, the input signal is $x[n]$, the output signal is $y[n]$, and the impulse response is $[h[n]]$. For each of the cases that follow, find the output signal $y[n]$. The referenced signals are given in Figure 11. (The signals are zero except as shown.)~~

(a) $x[n]$ in (a), $h[n]$ in (b)	(d) $x[n]$ in (b), $h[n]$ in (c)
(b) $x[n]$ in (a), $h[n]$ in (c)	(e) $x[n]$ in (b), $h[n]$ in (f)
(c) $x[n]$ in (a), $h[n]$ in (d)	(f) Verify your results Matlab

⁴⁴PPR 10.4

⁴⁵PPR 10.6

⁴⁶PPR 10.8

4.10⁵⁰ Consider an LTI system with the input and output related by

$$y[n] = 0.5x[n-1] + 0.7x[n].$$

- (a) Find the system impulse response $h[n]$.
- (b) Is the system causal? Why?
- (c) Determine the system response $y[n]$ for the input shown in Figure 13(a)
($x[n] = 1, n > 5, x[n] = 0, n < -4$).
- (d) Consider the interconnections of the LTI systems given in Figure 13(b), where $h[n]$ is the function found in part (a) and $h_1[n] = \delta[n-1]$. Find the impulse response of the total system.
- (e) Solve for the response of the system of part (d) for the input of part (c).

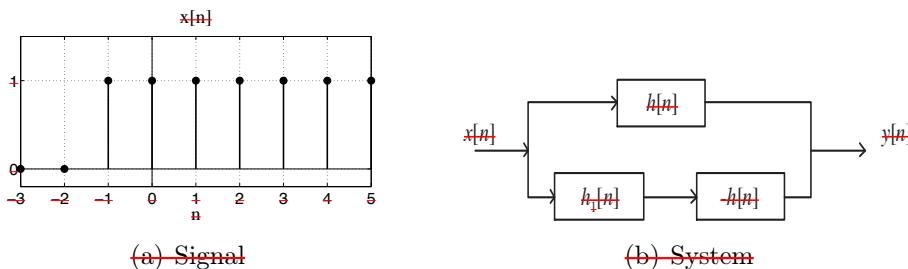


Figure 13:

4.11⁵¹ Consider a system described by the equation

$$y[n] = c^n x[n]$$

- (a) Is this system linear?
- (b) Is this system time invariant?
- (c) Determine the impulse response $h[n]$.
- (d) Determine the response to the input $x[n] = \delta[n-1]$.
- (e) Can a linear time varying system be described by its impulse response? Why?

⁵⁰PPR 10.14

⁵¹PPR 10.15