
Komplexa tal 2015 

Komplexa tal är en konstruktion av två reella tal och en symbol j av typen z = a + jb, som lyder de vanliga 
räknelagarna, tex den distributiva lagen, den associativa lagen osv. med det viktiga tillägget att 
 
För övrigt kan jb uppfattas som "j gånger b". 

Exempel 

Bestäm  21zz   om 521 jz +=  och 642 jz −= . 

Lösning 
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I uttrycket jbaz +=  kallas a det komplexa talets realdel och b det komplexa talets talets imaginärdel 

Detta skrives  Rez = a resp.  Imz = b. 
 
Observera att realdelen och imaginärdelen är rella tal! 
 

Om z = a + jb  kallas talet z = a - jb komplexkonjugatet till z och betecknas z . 
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Här såg vi i nämnaren exempel på att zz ⋅  är ett reellt tal. Detta gäller allmänt ty 
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Eulers formel 
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Men här kan vi identifiera realdelen som Taylorutvecklingen för cosx och imaginärdelen som 
Taylorutvecklingen för sinx. 
Därför är det rimligt att göra följande definition: 
 

 
 Detta samband kallas Eulers formel. 
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Exempel 

Uttryck funktionerna sinx och cosx med hjälp av exponentialfunktioner. 

Lösning 
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      Viktiga samband!! 

 
 
Om vi utvidgar lagarna för exponentialfunktioner till att gälla även för komplexa variabler får vi 
 

( )njnx xjxenxjnx sincossincos +==+ , dvs 

 

 
 
Detta samband kallas de Moivres formel. 
 

Det komplexa talplanet 

Eftersom komplexa tal har två "komponenter" kan varje punkt 
i det reella  talplanet identifieras med ett komplext tal, varvid 
vi får det komplexa talplanet. 
x- och y-axlarna övergår då till att vara realaxel resp. 
imaginäraxel, se fig. 
 
Punkten (x,y) i planet identifieras alltså med det komplexa 
talet  z = x + jy  i talplanet. 
Detta sätt att ange det komplexa talet kallas rektangulär form. 
 
Denna geometriska tolkning ger dessutom ett nytt sätt att 
representera komplexa tal, nämligen polär form. 
 
Eftersom ϕcosrx =  och ϕsinry =  kan det komplexa talet z 

skrivas som  ( )ϕϕϕϕ sincossincos jrjrrz +=+= , vilket med 

Eulers formel blir 
 
 
 
 
 

Här är 22 yxzr +==  det komplexa talets absolutbelopp 

och ϕ  dess argument för vilket gäller 
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Detta gör att följande gäller för argumentet ϕ  
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Exempel 

Skriv 
o
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6

jez ⋅=  på rektangulär form. 

Lösning 

Eulers formel ger 86360414061406 ,,sincos jjz +−=⋅+⋅=
oo  

Exempel 

Skriv z = -3+ j4 på polär form. 

Lösning 
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Exempel 

Skriv z = -12- j5 på polär form. 

Lösning 
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Komplexa tal multipliceras eller divideras lättast om de är skrivna på polär form. 

Exempel 

Låt 431 jz +=  och 222 jz −= . Bestäm 
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Lösning 

Skriv om på polär form. 
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Omskrivningar med Eulers formel 

Ibland kan det vara lämpligt att skriva om uttryck med Eulers formel. 
 
Exempel 

Skriv ( ) tttx 242 cossin +=  som en summa av exponentialfunktioner. 

Lösning 

Enlig Eulers formel kan vi skriva 
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Exempel 

Skriv 1+
πjke  som en produkt. 

Lösning 
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Exempel 

Skriv ππ 4080 ,, jkjk ee +
−  som en produkt. 

Lösning 
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Här kan vi dock skriva j på polär form, så att 
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Exempel 

Skriv ππ 2180 ,, jkjk ee −
+  som en produkt. 

Lösning 
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Något om komplexvärda funktioner 

Vi kommer i fortsättningen att stöta på komplexvärda funktioner av typen ( ) tjkAetx ω
= , där A, k och ω  är 

konstanter. Vid derivering och integrering av dessa med avseende på tidvariabeln t kan vi betrakta även den 
imaginära enheten j som en konstant. 
Alltså 
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Exempel 

Bestäm tjkejkA
dt

dx ωω ⋅⋅=  då ( ) tjetx 20025 ⋅=  
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Exempel 

Bestäm ( )∫
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Lösning 

( ) [ ] ( ) =−⋅=⋅⋅=







⋅⋅== ∫∫ πππππ

πππ

jjtjtjtj ee
j

e
j

e
j

dtedttx 5,2025,0

01,0
100

025,0

01,0

100

025,0

01,0

100

025,0

01,0
10

1

100

1
10

100

1
1010  

( ) ( )
π

π
ππππ

π

π

π
π

ππ

π
π

10

2

10

2

10

1
11

10

1
1

10

1

10

1 4

2

4
222

2
j

j

j
j

jj
j e

e

e

j

j
j

j
ee

j
ee

j

−








+ ⋅

=

⋅

⋅
=

+
=+⋅⋅=














−−⋅⋅=

















−⋅=  

Exempel 

Bestäm ( )∫ ⋅
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Lösning 
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Övningar 

I uppgifterna nedan är vinkelenheten radianer om inget annat anges. 
k är en heltalsvariabel. 
 

Låt 43och32 21 jzjz +−=+=  i uppgifterna 1 – 3. 

 

1. Bestäm 1z  och 2z . 

2. Bestäm 1z  och 2z  polär form. 

3. Bestäm   a. 21 zz +  b. 21 zz −  c. 21 zz +  d. 21 zz ⋅  (polär form)   

 e. 
2

1

z

z
 (rektangulär form). 

4. Bestäm k så att 
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z

+−

+
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 Låt 
oo 45

2
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1 6och4 jj ezez −==  i uppgifterna 5 – 7. 

 

5. Bestäm 1z  och 2z . 

6. Bestäm 1z  och 2z  rektangulär form. 

7. Bestäm 21 zz ⋅  och 21 zz + . 

8. Skriv, med hjälp av Eulers formel, ( ) tttx 305102 cossin +=  som en summa av exponentialfunktioner. 

9. Skriv, med hjälp av Eulers formel, ( ) ttttx ωωω 44253 sincossin +−=  som en summa av 

exponentialfunktioner. 
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Svar 
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