

Matlab II

Acknowledgement: many slides in this lecture were
downloaded from various sources in the internet

Grunläggande Matlab operationer

>> % This is a comment, it starts with a “%”
>> y = 5*3 + 2^2; % simple arithmetic
>> x = [1 2 4 5 6]; % create the vector “x”
>> x1 = x.^2; % square each element in x
>> E = sum(abs(x).^2); % Calculate signal energy
>> P = E/length(x); % Calculate a signal power
>> x2 = x(1:3); % Select first 3 elements in x
>> z = 1+i; % Create a complex number
>> a = real(z); % Pick off real part
>> b = imag(z); % Pick off imaginary part
>> plot(x); % Plot the vector as a signal
>> t = 0:0.1:100; % Generate sampled time
>> x3=exp(-t).*cos(t); % Generate a discrete signal
>> plot(t, x3, ‘x’); % Plot points

Andra Matlab programmering strukturer
Loops

for i=1:100

 sum = sum+i;

end

Goes round the for loop 100 times,
starting at i=1 and finishing at
i=100

i=1;

while i<=100

 sum = sum+i;

 i = i+1;

end

Similar, but uses a while loop
instead of a for loop

Decisions

if i==5

 a = i*2;

else

 a = i*4;

end

Executes whichever branch is
appropriate depending on test

switch i

case 5

 a = i*2;

otherwise

 a = i*4;

end

Similar, but uses a switch

MATLAB can be used as a ‘clever’ calculator
This has very limited value in engineering

Real value of MATLAB is in programming
Want to store a set of instructions
Want to run these instructions sequentially
Want the ability to input data and output results
Want to be able to plot results
Want to be able to ‘make decisions’

Matlab as a calculator

Can do using MATLAB as a calculator

>> x = 1:10;
>> term = 1./sqrt(x);
>> y = sum(term);

Far easier to write as an M-file

∑
=

+++==
n

i i
y

1
...

3
1

2
1

1
11

Example revisited

File → New → m-file
Takes you into the file editor
Enter lines of code (nothing happens)
Save file (we will call ours L2Demo.m)
Exit file
Run file
Edit (ie modify) file if necessary

How to write an m-file

n = input(‘Enter the upper limit: ‘);
x = 1:n; % Matlab is case sensitive
term = sqrt(x);
y = sum(term)

What happens if n < 1 ?

L2Demo version 1

n = input(‘Enter the upper limit: ‘);
if n < 1

 disp (‘Your answer is meaningless!’)
end
x = 1:n;
term = sqrt(x);
y = sum(term)

Jump to here if TRUE

Jump to here if FALSE

L2Demo version 2

For ‘simple’ decisions?
IF … END (as in last example)
More complex decisions?
IF … ELSEIF … ELSE ... END

Example: Real roots of a quadratic equation

Decision making in Matlab

Roots set by discriminant
Δ < 0 (no real roots)
Δ = 0 (one real root)
Δ > 0 (two real roots)

MATLAB needs to make
decisions (based on Δ)

a
acbbx

2
42 −±−

=

Δ = b2 − 4ac

L3Demo: roots of ax2 + bx + c = 0

Read in values of a, b, c
Calculate Δ
IF Δ < 0
Print message ‘ No real roots’→ Go END
ELSEIF Δ = 0
Print message ‘One real root’→ Go END
ELSE
Print message ‘Two real roots’
END

L3Demo: roots of ax2 + bx + c = 0

One possible m-file

%==
% Demonstration of an m-file
% Calculate the real roots of a quadratic equation
%==
clear all; % clear all variables
clc; % clear screen

coeffts = input('Enter values for a,b,c (as a vector): '); % Read in equation coefficients
a = coeffts(1);
b = coeffts(2);
c = coeffts(3);

delta = b^2 - 4*a*c; % Calculate discriminant

% Calculate number (and value) of real roots

if delta < 0
 fprintf('\nEquation has no real roots:\n\n')
 disp(['discriminant = ', num2str(delta)])
elseif delta == 0
 fprintf('\nEquation has one real root:\n')
 xone = -b/(2*a)
else
 fprintf('\nEquation has two real roots:\n')
 x(1) = (-b + sqrt(delta))/(2*a);

 x(2) = (-b – sqrt(delta))/(2*a);
 fprintf('\n First root = %10.2e\n\t Second root = %10.2f', x(1),x(2))
end

Header

Initialisation

Calculate Δ

Make decisions
based on value of Δ

Flow Control

n  if
n  for
n  while
n  break
n  ….

Operators (relational, logical)

n  == Equal to
n  ~= Not equal to
n  < Strictly smaller
n  > Strictly greater
n  <= Smaller than or equal to
n  >= Greater than equal to
n  & And operator
n  | Or operator

Control Structures

n  If Statement Syntax

if (Condition_1)

 Matlab Commands
elseif (Condition_2)

 Matlab Commands
elseif (Condition_3)

 Matlab Commands
else

 Matlab Commands
end

Some Dummy Examples

if ((a>3) & (b==5))
 Some Matlab Commands;
end

if (a<3)
 Some Matlab Commands;
elseif (b~=5)
 Some Matlab Commands;
end

if (a<3)
 Some Matlab Commands;
else
 Some Matlab Commands;
end

Control Structures

n  For loop syntax

for i=Index_Array

 Matlab Commands
end

Some Dummy Examples

for i=1:100
 Some Matlab Commands;
end

for j=1:3:200
 Some Matlab Commands;
end

for m=13:-0.2:-21
 Some Matlab Commands;
end

for k=[0.1 0.3 -13 12 7 -9.3]
 Some Matlab Commands;
end

Control Structures

n  While Loop Syntax

while (condition)

 Matlab Commands
end

Dummy Example

while ((a>3) & (b==5))
 Some Matlab Commands;
end

Use of M-File

Click to create
a new M-File

•  Extension “.m”
•  A text file containing script or function or program to run

Use of M-File

If you include “;” at the
end of each statement,
result will not be shown
immediately

Save file as Denem430.m

Writing User Defined Functions

n  Functions are m-files which can be executed by
specifying some inputs and supply some desired outputs.

n  The code telling the Matlab that an m-file is actually a
function is

n  You should write this command at the beginning of the m-
file and you should save the m-file with a file name same
as the function name

function out1=functionname(in1)
function out1=functionname(in1,in2,in3)
function [out1,out2]=functionname(in1,in2)

Writing User Defined Functions

n  Examples
q  Write a function : out=squarer (A, ind)

n  Which takes the square of the input matrix if the input
indicator is equal to 1

n  And takes the element by element square of the input
matrix if the input indicator is equal to 2

Same Name

Writing User Defined Functions
n  Another function which takes an input array and returns the sum and product

of its elements as outputs

n  The function sumprod(.) can be called from command window or an m-file as

Notes:
n  “%” is the neglect sign for Matlab (equaivalent of
“//” in C). Anything after it on the same line is
neglected by Matlab compiler.

n  Sometimes slowing down the execution is done
deliberately for observation purposes. You can
use the command “pause” for this purpose

pause %wait until any key
pause(3) %wait 3 seconds

Useful Commands

n  The two commands used most by Matlab
 users are

>>help functionname

>>lookfor keyword

Matlab Debugger
Because Matlab is an interpreted language, there is no compile type syntax

checking and the likelihood of a run-time error is higher
Run-time debugging can help
Use the debug and breakpoints pull-down menus to determine where to stop

program and inspect variables
Step over lines/step into functions to evaluate what happens

Simulink

Simulink is a graphical, “drag and drop” environment for
building simple and complex signal and system dynamic
simulations.

It allows users to concentrate on the structure of the problem,
rather than having to worry (too much) about a
programming language.

The parameters of each signal and system block is configured
by the user (right click on block)

Signals and systems are simulated over a particular time.

Simulink

Two main libraries for manipulating signals in
Simulink:

•  Sources: generate a signal
•  Sink: display, read or store a signal

Simulink

Copy “sine wave” source and
“scope” sink onto a new Simulink
work space and connect.

Set sine wave parameters modify to 2

rad/sec

Run the simulation:

 Simulation - Start

Open the scope and leave open while

you change parameters (sin or
simulation parameters) and re-run

Bra referens…

http://web.cecs.pdx.edu/%7Emperkows/CLASS_479/MATLAB/
matlab4.pdf

http://web.cecs.pdx.edu/~mperkows/CLASS_479/MATLAB/
matlab3.pdf

http://web.cecs.pdx.edu/~mperkows/CLASS_479/MATLAB/
matlab2.pdf

http://web.cecs.pdx.edu/~mperkows/CLASS_479/MATLAB/
matlab1.pdf

