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INTRODUKTION TILL MAXWELLS EKVATIONER 
 
Sammanfattning  
Sambanden mellan källor och fält i elektromagnetism kan beskrivas med ”Maxwells 
ekvationer”. Två av ekvationerna (Gauss lagar) beskriver fält som ”flödar” ut från (ut ur) en 

källa eller in i en sänka (=negativ källa) (laddningar är flödeskällor/sänkor för E-fält, 
magnetfält har ingen flödeskälla/sänka). Flödet passerar då en tänkt sluten yta som innesluter 
(omsluter) källan. De övriga två ekvationerna, Amperes lag och Faradays lag, beskriver fält 
som ”cirkulerar” (virvlar).  Cirkulationskällan för magnetfält är elektriska strömmar 
(laddning som transporteras). Fältcirkulation hör också samman med tidsvarierande elektriska 

och magnetiska flöden (genom öppen yta). Kopplingen mellan tidsvariation hos magnetfältet 
och cirkulation hos det elektriska fältet (och vice versa) är av avgörande betydelse för 
utbredning av elektromagnetisk strålning (vågor). Vågor utbreder sig t.ex. i vakuum där vi 
inte har några källor i form av laddningar eller strömmar. 
 Det är viktigt att notera att ovan nämnda ”tänkta” ytor och slingor inte behöver vara (men kan 
vara) något materiellt (ex.vis ledare). Oftast är de endast just en ”tänkt” form som underlättar 
tänkandet av hur fälten bildas och deras fördelning i rummet kring laddningar och strömmar.  
 
Maxwells ekvationer 

De grundläggande ekvationerna för elektromagnetism kallas Maxwells ekvationer och 
beskriver hur elektriska fältet och magnetfältet är kopplade till varandra och hur de beror av 
elektriska laddningar och strömmar. Ekvationerna innehåller tidsderivator och rumsderivator 
(i tre dimensioner) av fälten. Ekvationerna kan även formuleras med hjälp av integraler (man 
summerar elektromagnetiska storheter över ytor och ”slingor”). Båda arbetssätten kräver i 
allmänhet förtrogenhet med flervariabelanalys och vektoranalys. Integralformens idéer kan 
dock tillämpas utan att fördjupa sig i matematiken och man kan få viss insikt i principerna 
bakom elektromagnetismen! I speciafall där rumsfördelningen av laddningar eller strömmar 
har en enkel geometri räcker även envariabelanalys till för att få fram exakta resultat. I den 
här texten används integralformen. 
 
Gauss lagar 

Först en analogi med vattenflöde: Betrakta en liten källa som sprutar ut vatten i alla 
riktningar. För att bestämma källans styrka (=flödet=vattenmängden som källan avger, t.ex. 
mätt i liter per sekund) kan vi definiera en ”tänkt” sluten yta någonstans utanför källan. Ytan 
ska alltså innesluta(omsluta) hela källan. Genom att mäta vattenmängden som passerar ytan 
kan vi bestämma källans flöde, eftersom allt vatten som källan avger kommer att passera 
genom den slutna ytan. En annan storhet av intresse är flödet per kvadratmeter yta.  
På motsvarande sätt styrkan hos en ”sänka” (t.ex. ett avlopp där vatten rinner ner) bestämmas 
genom att mäta hur mycket vatten som flödar in genom en tänkt yta som innesluter sänkan. 
 
Elektriskt laddade kroppar ”sprutar” inte ut något materiellt, men vi kan ändå se laddningen 
som källa för E-fältet som vi representerar i form av riktade linjer som ”flödar” ut ur källan 
(Q >0) eller in i sänkan (=negativ källa, Q <0). Om vi omsluter källan med en tänkt yta, så 
måste alla linjer som startar (eller slutar) i källan passera genom ytan. Detta resonemang kan 
sammanfattas i den första av Maxwells ekvationer: Gauss lag för det elektriska fältet.  
Betrakta en samling laddade partiklar med totala laddningen Q. Tänk dig en yta (behöver ej 
vara en verklig fysikalisk yta, utan det räcker med ”tänkt” yta, s.k. ”Gaussyta”) som omsluter 
laddningen. Då har det sammanlagda elektriska flödet Φe [enhet coulomb] genom den tänkta 
ytan samma numeriska värde som totala laddningen innanför ytan, dvs  Φe =Q. 



 
Vad är då sambandet mellan elektriskt flöde och elektrisk fältstyrka? Vi inför först storheten 
elektrisk flödestäthet D=ε E [enhet coulomb per m2] där ε är permittiviteten (≈ 8,854 ∙ 10	
� 
farad/meter i vakuum). Det elektriska flödet  Φe [enhet coulomb] är flödestätheten D vid 
Gaussytan multiplicerad med arean (A) hos Gaussytan: Φe =D .A. Denna definition gäller om 
D är överallt vinkelrät mot ytan [val av geometri hos ytan spelar mycket stor roll för de efterföljande 
beräkningarnas komplexitet ... en enkel, symmetrisk, laddningsfördelning medger ofta ett naturligt val av yta: 
punkt- eller sfärisk laddn. bör omslutas med en sfär, linje- eller cylidrisk laddn. med en cylinder, plan laddn. med 

en ”låda”.  D blir då överallt vinkelrät mot ytan]. I andra fall måste man beräkna flödet genom en liten 
del av ytan genom att ta produkten mellan den komposant av D som är vinkelrät mot ytan och 
en liten area. Sedan summerar (integrerar) man alla små bidragen och erhåller det 
sammanlagda flödet. Flödet räknas positiv om det är riktad ut genom ytan och negativ om 
riktat in genom ytan.  
 
Exempel: En kropp har laddningsmängden 1 µC. Vi placerar en ”tänkt” kubisk låda med 
sidlängden 1 meter kring hela denna laddningsmängd.  
Hur stort elektriskt flöde passerar genom ”lådans sidor”? 
 
Gauss lag ger att  Φe=innesluten laddningsmängd=1 µC.  
 
Om den tänkta lådan istället har sidan 5 m, hur stort är flödet då?  
Lådan omsluter fortfarande samma laddningsmängd, så Φe=1 µC.  
 
Om lådan byts mot en sfär med med diametern 1 m, så blir fortfarande Φe=1 µC. 
 
Exempel: Bestäm elektriska fältstyrkan på avståndet 0,5 m från en liten kropp med 
laddningen 2,5 nC.  
 
Eftersom vi inte känner till geometrin hos kroppen så kan vi endast beräkna ett slags 
medelvärde av E. Vi tänker oss en ”Gaussyta” i form av en sfär med radien 0,5 m kring 
kroppen. Flödet genom sfärytan är  2,5 nC. D= Φe /A med A=4πr2 och E=D/ε0. Detta ger då 
att D=7,96 .10-10 C/m2 och E=90 V/m med riktning ut ur kroppen. Som sagt, eftersom 
kroppens geometri är okänd (endast att den är ”liten” till storlek), så är dessa värden endast 
uppskattningar (t.ex. kan ju fältet vara olika starkt i olika riktningar ...). En Gaussyta i form av 
en kub med sidan 0,5 m ger ”medelvärden” på  D=1,67 .10-9 C/m2 och E=188 V/m. I båda 
beräkningarna förutsatte vi att D är vinkelrät mot A, vilket inte behöver vara fallet. 
 
Uppgift 1: En liten sfärisk kropp (radie<<10 cm) har laddningen  50 nC. Bestäm elektriska 
flödet från kroppen och beräkna elektriska fältstyrkan på avståndet 10 cm från kroppens 
centrum. 
 
Uppgift 2: En kubisk låda genomkorsas av ett elektriskt fält. Sammanlagda flödet genom ytan 
är noll. Fältet är riktat så att den kommer in i lådan genom ”locket” och passerar ut genom 
”bottnen”.  Hur stor laddningsmängd innehåller lådan? Hur stor är fältstyrkan vid ”locket” om 
den har värdet 1000 V/m vid botten?  
 
Uppgift 3: En kubisk låda med sidan 1 m genomkorsas av ett elektriskt fält. Fältet är riktat så 
att den kommer in i lådan genom ”locket” och passerar ut genom ”bottnen”.  Fältstyrkan vid 
”locket” är 3000 V/m och är riktat ut ur kuben och fältstyrkan vid bottnen är 200 V/m och 
riktat in i kuben. Inga fält passerar genom övriga ytor. Hur stor laddningsmängd finns 
innanför kuben?  
 



Uppgift 4: Härled en formel för elektriska fältstyrkan utanför en sfärisk laddning Q! Dvs. 
Coulombs lag... Antag att fältet är riktat radiellt ut från sfären. Fundera först vilken form 
Gaussytan ska ha! 
 
Uppgift 5: Härled en formel för elektriska fältstyrkan utanför en cylinder med laddning Q! 
Antag att cylindern har längden L och att fältet är riktat radiellt ut från cylindern. Du kan 
bortse från vad som händer nära  ändpunkterna. Fundera först vilken form Gaussytan ska ha! 
 
Uppgift 6: Härled en formel för elektriska fältstyrkan utanför en platta med laddning Q! 
Antag att plattan har arean A och att fältet är riktat vinkelrätt ut från plattan. Du kan bortse 
från vad som händer nära  kanterna. Fundera först vilken form Gaussytan ska ha! 
 
Uppgift 7: Använd resultatet från uppgift 6 till att bestämma en formel för E-fältet mellan två 
plattor. Platta 1 har laddningen +Q och platta 2 har laddningen –Q.  
 
Det finns även Gauss lag för magnetfält. Då gäller att det magnetiska flödet genom en 
sluten yta alltid är noll (det finns inga magnetiska monopoler, dvs magnetiska laddningar): 

Φm=B.A=noll. Notera att här avses flödet genom en sluten yta (och inte som i Faradays 
induktionslag där ytan är öppen). 
 
Uppgift 8: Argumentera, med hjälp av Gauss lag för magnetfält, för att magnetfält alltid bildar 
slutna slingor. 
 
Amperes lag och Faradays lag 

Gauss lagar beskriver fält kring källor som ger ett flöde ut ur eller in mot källan. Vi vet dock 
att t.ex. elektriska strömmar ger upphov till magnetfält som cirkulerar kring källan [jämför 
med vatten som fås att virvla med en propeller som drivs via en axel, eller alternativt att man 
använder en propeller som mätsond: om den roterar så har vätskan cirkulation]. Så gäller även 
t.ex. vid induktion där ett tidsvarierande magnetiskt flöde hör ihop med ett cirkulerande E-fält 
som kan driva en induktionsström. Cirkulation av fälten beskrivs av Amperes lag och 
Faradays lag.  
 
Amperes lag 

Cirkulation kan beskrivas matematiskt genom att studera hur kraftigt en ”pil” (vektor) 
tenderar att vrida sig vid en liten förflyttning i rummet. Exempelvis så följer B-fältet kring en 
rak ström en cirkel. Cirkulationen (Γm) av magnetfältet definieras som Γm= H.L där H=B/µ är 
den magnetiska fältstyrkan (enhet ampere/meter), µ är permeabiliteten (4π.10-7 henry/meter i 
vakuum) och L är omkretsen hos en ”tänkt” slinga (behöver inte vara materiell) som omsluter 
(omringar) cirkulationskällan (strömmen) eller ett tidsvarierande elektriskt flöde. Här antog vi 
att magnetfältet exakt följer den tänkta slingan (”Ampereslinga”), d.v.s. att magnetfältpilen 
alltid är samriktad med tangenten till slingan. Om så inte är fallet så får man addera 
(integrera) många små bidrag till cirkulationen, i form av produkten mellan längden av en kort 
del av slingan och tangentiella komposanten av magnetfältet vid den positionen. På samma 
sätt som i Gauss lag, så leder en symmetrisk källgeometri (strömfördelning) till val av slinga 
som ger enkla beräkningar. Cirkulationsriktningen ges av ”högerhandsregeln”: tummen sätts 
i strömriktningen (alternativt i riktning för E-fältsändringen dE/dt) och fingrarna ger 
riktningen för magnetfältets cirkulation. 
 
Amperes lag säger att cirkulationen av magnetfältet är lika med strömmen som omsluts av 
slingan + tidsderivatan av elektriska flödet som omsluts av slingan (man kan också säga att 
strömmen+tidsvarierande fältet passerar genom en öppen yta vars rand är lika med den tänkta 
slingan):  



Γm=I + dΦe /dt.  Den sista termen (tidsvarierande elektriska flödet)  utgör den s.k. 
”förskjutningströmmen”, och är viktig t.ex. för att förstå hur energi transporteras in i eller ut 
ur kondesatorer samt för mekanismen för utbredning av elektromagnetiska vågor. 
 
Exempel: Strömmen 1 mA flyter i en ledare. Bestäm magnetiska cirkulationen kring ledaren 
och magnetiska flödestätheten på avståndet 1 cm från ledaren. Det finns inget tidsvarierande 
E-fält i området. 
 
Γm=I + dΦe /dt men dΦe /dt=0 enligt uppgift. Alltså blir cirkulationen Γm=I=1 mA. 

Eftersom vi inte vet geometrin hos ledaren så kan vi bara göra en uppskattning av B-fältet 
(vi får ett slags medelvärde). Vi lägger en cirkulär ”Ampereslinga” (d.v.s. en tänkt slinga 
kring strömmen) med radien 1 cm kring strömmen. Omkretsen är L=2π.r=0,02π meter vilket 
ger H=0,0159 ampere/meter och B=2.10-8 tesla. Om strömmen är rak så är dessa värden 
exakta (då har strömmen cylindergeometri och en sådan omsluts på ett naturligt sätt av en 
cirkel ...) 
 
Exempel: En ”Ampereslinga” genomkorsas av två strömmar. Slingan är i papprets plan och 
strömmen I1=2 A är riktad in i pappret. Den resulterande cirkulationen av magnetfältet är 
noll. Hur stor och vilken riktning har den andra strömmen I2? 
 
Cirkulationen är Γm= I1+ I2=0 ger att I2= –2 A, minustecknet visar att I2 är motriktad I1 och 
kommer upp ur pappret. 
 
Uppgift 9: Bestäm cirkulationen kring en rak ström med styrkan 5 ampere. Beräkna 
magnetiska fältstyrkan och magnetiska flödestätheten på avståndet 20 cm från ledaren.  
Vad är lämlig form för ”Ampereslingan”? 
 
Uppgift 10: Tre långa och raka ledare med strömmarna I1=  –3 A, att I2= +2 A och  
I3=  –1 A  ligger placerade mycket nära varandra.  
Positiv ström är riktad in i pappret.Ungefär hur stort är och vilken riktning har B-fältet på 
avståndet 2 meter från ledarna. Hur stor är cirkulationen? 
 
Uppgift 11: Härled en formel för B-fältet på avståndet r från en rak ström.  
 
Uppgift 12: En ström flyter i en ledare i form av en tunn men lång platta. Plattan har bredden 
b och längden L och är mycket tunn (tjocklek ungefär noll). Plattan är orienterad så att dess 
tvärsnitt är i papprets plan och strömmen går längs ledaren in i papprets plan.   
Lägg en Ampereslinga i form av en rektangel och härled en formel för cirkulationen och B-
fältet kring ledaren! 
 
Uppgift 13: Argumentera att Hopkinsons lag följer ur Amperes lag (med dΦe /dt  lika med 
noll). Demonstrera detta i en enkel magnetisk krets med en källa och en reluktans.  
 
Uppgift 14: I alla uppgifter så här långt har vi inte behövt ta hänsyn till termen dΦe /dt  i 
Amperes lag Γm=I + dΦe /dt. Vi avslutar med att ta en titt på den! Betrakta nu en komponent 
där vi har ett tidsvarierande E-fält, nämligen plattkondensatorn. Under upp- och urladdning av 
kondensatorn varierar E-fältet och därmed det elektriska flödet Φe =D.A  mellan plattorna i 
tid. Amperes lag visar att det finns ett cirkulerande magnetfält kring detta tidsvarierande 
elektriska flöde! Ett tidsvarierande elektriskt fält och ett cirkulerande magnetfält hör ihop! 
Antag nu att vi har en plattkondensator med cirkulära plattor (radie 1,3 cm, plattavstånd 2 
mm) och E-fältet ökar linjärt från 0 V/m till 10 000 V/m under tidsintervallet 10 ms. Hur stor 



är cirkulation av magnetfältet och hur stor är magnetiska flödestätheten nära utkanten av 
området mellan plattorna? Sätt ε =ε0. 
 
Faradays lag 

Vi har nu hunnit fram till den fjärde och sista av Maxwells ekvationer, Faradays lag som 
beskriver induktion, d.v.s. hur ett elektriskt fält är sammankopplat med ett tidsvarierande 
magnetflöde. Detta kan beskrivas genom att införa cirkulationen av E-fältet (Γe). Om vi 
återigen antar, att fältet följer den valda slingan (E tangentiell med slingan) som blir Γe= E.L, 
där L är omkretsen hos en ”tänkt” slinga som omsluter ett tidsvarierande magnetflöde. 
Faradays lag lyder Γe= – dΦm /dt. Eftersom E.L är produkten mellan E-fält och sträcka så är 
den en spänning. Man säger att det tidsvarierande magnetflödet inducerar ett cirkulerande 
elektriskt fält som leder till en spänning och kan driva en induktionsström. [Ännu korrektare 
är att säga att ett cirkulerande E -fält hör ihop med ett tidsvarierande magnetflöde.] 
Högerhandsregeln ger cirkulationsriktningen för E-fältet: Tummen motsatt (p.g.a. 
minustecknet!) dΦm /dt, krökta fingrar ger E:s och därmed induktionsströmmens (om sluten 
ledande slinga) riktning. [Alternativt kan man införa en vänsterhandsregel, med tummen i samma 
riktning som förändringen dΦm /dt, fingrarna ger E-fältets cirkulationsriktning.] 
 
Uppgift 15: En slinga med arean 1 m2 genomkorsas av ett magnetfält med tidsberoendet 
�
�� = 10 ∙ 
� − 2�� tesla i intervallet mellan t=0 och t=2 sekunder, för övrigt är B=0.  
Bestäm den inducerade spänningen som funktion av tiden. 
 
Uppgift 16: Betrakta en slinga som består av två seriekopplade resistorer och ett batteri. Antag 
att inget tidsvarierande magnetfält genomkorsar slingan och argumentera för att Faradays lag 
då är identisk med Kirchhoffs spänningslag! 
 

Uppgift 17: Tillämpa Faradays lag (med magnetfälttermen lika med noll) till att argumentera 
att det måste finnas E-fält även utanför kanten av en plattkondensator! [Ofta bortser man från detta 
”kantfält” och antar att det  är noll.] 

 
Poyntingvektorn och energitransport 

Som avslutning kan vi ta en titt på hur man kan beskriva överföring (transport) av 
elektromagnetisk energi. Energin kan anses vara lokaliserad i fälten. En uppladdad 
kondensator eller en magnetiserad induktor har lagrat energi i E- respektive B-fältet.  
 

Uppgift 18: Gör en dimensionsanalys av uttrycken � ∙ �,	� ∙ �, � ×�, 
|�|
|�| samt � ∙ � (där � =

� ∙ � är strömtätheten genom ett tvärsnitt mätt i ampere/kvadratmeter, � är materialets 
konduktivitet d.v.s. 1/resistivitet)!  Vilken enhet har dessa storheter? Vilken typ av storhet kan 
de tänkas representera? 
 

Energitätheten (joule/m3) i en rumsposition (punkt) ges för det elektriska fältet av  


� �|�|� 

och för magnetfältet av 


� �|�|� (= 



�� |�|� ). Energimängden som transporteras per 

tidsintervall genom en tvärsnittsarea (joule per sekund och kvadratmeter) beskrivs av den så 
kallade Poyntingvektorn  = � × � som har storleken |E||H| om E och H är vinkelräta mot 
varandra. Riktning för transporten är vinkelrät mot både E och H (ges av högerhandsregeln 
för vektorprodukt). S har enheten watt/m2 och är en effekttäthet (eller intensitet). 



Uppgift 19: Gör en dimensionsanalys av uttrycken 



√"∙� respektive #�
" och beräkna sedan 

uttryckens värde i vakuum. Det senare är den så kallade ”vågimpedansen” och beskriver 
kvoten mellan E och H hos en våg. Vad beskriver den första storheten? 

 

Uppgift 20: Tänk dig ett område där magnetfältet är riktat in i papprets plan och ökar i styrka. 
Det tidsvarierande magnetfältet är associerat med ett E-fält. Skissera E -fältets riktning och 
bestäm sedan riktningen för Poyntingvektorn. Är den elektromagnetiska energin i området 
konstant, ökande eller minskande med avseende på tiden?  
 
Uppgift 21: Tänk dig ett område där elektriska fältet är riktat upp ur papprets plan och avtar i 
styrka. Det tidsvarierande E-fältet är associerat med ett magnetfält. Skissera magnetfältets 
riktning och bestäm sedan riktningen för Poyntingvektorn. Är den elektromagnetiska energin i 
området konstant, ökande eller minskande med avseende på tiden?  
 

Uppgift 22: Använd resultaten från uppg. 12 och kunskaper om E-fältet i en plattkondensator 
till att beräkna effekten som transporteras i en plattledning (=”lång plattkondensator). Beräkna 
Poyntingvektorn i området mellan plattorna och multiplicera med områdets tvärsnittarea) och 
jämför med Joules lag från kretsteori, P=UI.   
 
Uppgift 23: Betrakta en cylinderformad resistor med resistansen R, längden L och radien r. 
Resistorn ansluts till en spänningskälla med spänningen U. Bestäm Poyntingvektorn S vid 
resistorns yta och bestäm sedan formel för effektutvecklingen. Jämför med Joules lag!  
Studera också hur Poyntingvektorn är riktad (bestäm först riktning för E- och B-fältet och 
använd högerhandsregel: tummen längs E, pekfingret längs B, handflatan ger riktning för S) 
och notera varifrån effekten kommer till resistorn! 
 
Uppgift 24: Betrakta en plattkondensator med cirkulära plattor. Bestäm riktningen för 
Poyntingvektorn när kondensatorn laddas upp [magnetfältet har diskuterats i uppgift 14.]   
Hur kommer energin till området mellan plattorna? 
 
Uppgift 25: a) Förklara (utan detaljerade beräkningar) hur en elektriskt laddad partikel, som 
accelereras alstrar elektromagnetisk strålning. Gör detta genom att först rita en skiss av E -
fältet kring en punktformad laddning. Tänk dig sedan att partikeln accelereras genom att den 
plötsligt ”rycks” iväg från sin start position. Skissera E -fältet kring partikeln i dess nya 
position. Eftersom det tar viss tid för informationen om fältförändringen att utbreda sig, så 
kommer en observatör på ett tillräckligt långt avstånd att fortfarande se det ”gamla” fältet, 
även efter det att partikeln accelererats. När informationen når fram till observatören så 
övergår fältlinjerna från ”gamla” till det ”nya” fältet. Rita in detta i din bild genom att på ett 
visst avstånd från startpunkten förbinda det ”gamla” och det ”nya” fältet. Du ser då att det blir 
en ”knyck” i fältlinjen. ”Knycken” är den del av E -fältet som utgör den utbredande vågen 
(strålningen) [vi har här endast ritat ut E -fältet, det finns givetvis även ett tillhörande B-fält.] 
 
b) Använd din bild och ange i vilka riktningar (relativt riktningen för partikelns acceleration) 
som den del av totala E -fältet som utgör strålningen är starkast respektive svagast.  
 
c) Låt den laddade partikeln utföra en i tid sinusformad rörelse (oscillation) och skissa E -
fältet hos den resulterande strålningen. Jämför partikelns acceleration och det resulterande E -

fältets storlek och riktning direkt efter att det har genererats. När fås maximal styrka hos 
fältet? När är fältstyrkan noll? 
  



Litteraturtips:  

Texter som kräver kunskaper i hantering av vektorer, och i viss utsträckning 
flervariabelanalys. Delar kan dock läsas och förstås redan på tekniskt basår och 
högskoleingenjörsutbildningar: 
Ruth W. Chabay & Bruce A. Sherwood Matter & Interactions (3:e utgåvan, Wiley) 
Lars Alfred Engström Elektromagnetism: Från bärnsten till fältteori (Studentlitteratur) 
Daniel Fleisch A Student’s Guide to Maxwell´s Equations (Cambridge University Press) 
Klas Hultqvist   Elektricitet och magnetism från början (Studentlitteratur) 
Kjell Prytz Elektrodynamik i nytt ljus (Studentlitteratur) 
  
En bok (där matematiken håller sig till algebra) om relativitetsteori. Kapitel 7 och 8 
handlar om elektromagnetism: 
Sören Holst   Rumtid – en introduktion till Einsteins relativitetsteori (Studentlitteratur)  
 
Populärvetenskapliga texter som beskriver personer bakom viktiga upptäckter inom 
elektromagnetism:  
David Bodanis    Elektricitet: Historien om universums mäktigaste kraft (Norstedts förlag) 
David Bodanis    E=mc2: Historien om världens mest kända ekvation (Norstedts förlag) 
Nancy Forbes & Basil Mahon Faraday, Maxwell, and the Electromagnetic Field (Prometheus 
Books) 
W. Bernard Carlson   Tesla – Inventor of the Electrical Age (Princeton University Press) 
Alan Hirshfeld    The Electric Life of Michael Faraday (Walker & Company) 
Lucy Jago   Norrskenet: Berättelsen om Kristian Birkeland – ett bortglömt geni (Månpocket) 
Basil Mahon   The Man Who Changed Everything – The Life of James Clerk Maxwell (Wiley) 
Basil Mahon  Oliver Heaviside: Maverick mastermind of electricity  (The Institution of 
Engineering and Technology) 
Nikola Tesla   Mina uppfinningar   (Atlantis) 
Nikola Tesla The Essential Tesla (Wilder Publications) 
 
En populärvetenskaplig bok om fysik (inklusive en del beräkningar) där fysiken alltid vävs 
in i en intressant historia: 
Hans-Uno Bengtsson Nalle Puh och atomens existens (Prisma) 
 
Vill pröva på att läsa ”mästaren själv”, så rekommenderas följande enklare framställning 
av grunder i elektricitetslära [texten behandlar inte den fullständiga fältteorin] : 
James Clerk Maxwell An Elementary Treatise on Electricity (2:a utg., Dover Publications).  
 
Andra läsvärda verk som inte specialiserar sig på elektromagnetism: 
Walter Lewin (with Warren Goldstein) For the Love of Physics  (Free Press) 
Richard P. Feynman QED The Strange Story of Light and Matter  (Penguin Books) 
Heinz R. Pagels  The Cosmic Code   (Penguin Books) Finns även översatt till svenska språket. 
Ian Stewart    Does God Play Dice? The New Mathematics of Chaos (Penguin Books) 
 
En riktig klassiker om allehanda fysik:  
Feynman, Leighton, Sands   The Feynman lectures on physics  
De tre volymerna finns numera även online http://www.feynmanlectures.caltech.edu/ 
 
Slutligen, om man vill fundera & reflektera kring kunskap och vetenskap på ett mer 
generellt plan, så finns intressant läsning i exempelvis: 
Sve-Eric Liedman   Ett oändligt äventyr (Albert Bonnier förlag) 
Peter Sylwan   Att upptäcka det oväntade  (Fri Tanke förlag) 
 



Svar till de flesta uppgifterna 
 
1) Φe =50 nC och E= 4,5.104 V/m 
2) Q=0 och E= 103 V/m 
3) Q=ε0A(Ebotten-Elock)= -2,5.10−8 C 

4) Val av sfär med radien r som Gaussyta (A=4π r2) leder med Q=ε0AE till � = $
%&"'()  där 



%&"' ≈ 8,99 ∙ 10+ Nm2/C2. 

5) Val av cylinder med höjden L och radien r som Gaussyta ger � = $
,	�&	"'	( . 

6) Val av låda med lock- och bottenarea vardera lika med A som Gaussyta ger � = $
�	-. 

7) Mellan plattorna är fälten från de två plattorna lika stora stora och samriktade och utanför 

lika stora men motriktade. Detta ger med hjälp av formeln från uppgift 6 att � = $
- i området 

mellan plattorna och E=0 utanför. 
8) – 
9) � ≈ 4 ampere/meter och � ≈ 5 ∙ 10	. tesla. 
10)  /01023 = −2 ampere (minustecken visar att riktning upp ur pappret) innebär en moturs 
circulationen med styrkan 2 ampere och � = 2 ∙ 10	4 tesla. 

11) Val av en cirkel med radien r som Ampereslinga ger � ∙ 256 = 7 och � = �∙8
�&( . 

12) Val av en rektangel med långa sidorna =b och korta sidorna ≈ 0 som Ampereslinga ger 

� ∙ 29 = 7 och � = �∙8
�∙: . 

13) – 

14) Γm= dΦe /dt=	; ∙ < ∙ =>=? ≈ 4 ∙ 10	+ ampere och Γm =	�∙@A∙B�  ger � ≈ 7,2 ∙ 10	
% tesla. 

15) Inducerade spännigen är −40 volt vid tiden noll och växer linjört till 0 volt vid tiden 2 
sekunder. Innan tiden noll och efter tiden 2 sekunder är spänningen noll. 
16)  – 
17)  – 
18)  [ED]= J/m3, [BH]= J/m3, [EH]= W/m2 , [E/H]= Ω, dvs energitätheter, effektflöde 
respektive impedans. [JE]= W/m3effekttäthet för omvandling av elektrisk energi till termisk 
energi). 

19) [



√"∙�]  = m/s , [#�
"] = Ω.  I vakuum är 



√"∙� ≈ 3,0 ∙ 10E m/s  (ljusets fart) och #�

" ≈ 377 Ω.   

20) Moturs cirkulerande E-fält, S radiellt in mot området, energin ökar. 
21) Medurs cirkulerande H-fält, S radiellt ut från området, energin minskar. 
22) |E|=U/d och |H|=I/b där d är avståndet mellan plattorna och b är plattornas bredd. E är 

vinkelrät mot B. Detta leder till | | = |�| ∙ |�| = F∙8
:∙= och G =  ∙ H = F∙8

:∙= 	 ∙ 9 ∙ I = J ∙ 7. 
Effekten flödar med hjälp av fälten i området mellan plattorna. 

23) Cylindergeometri! |E|=U/d och ||�| = �∙8
�&( där d är avståndet mellan plattorna och r är 

plattornas radie. E är vinkelrät mot B. Detta leder till | | = |�| ∙ |�| = |�|∙|�|
� = F∙8

@AB∙= och G =
 ∙ H = F∙8

@AB∙= 	 ∙ 256 ∙ I = J ∙ 7. S är riktad in resistorns mantelyta dvs vinkelrätt in i resistorn. 

Effekten kommer alltså in i resistorn utifrån med hjälp av fälten. 
24) Samma geometri (cylinder ...) som i uppgift 20. S är riktad in kondensatorns mantelyta 
dvs effekten flödar via fälten  in vinkelrätt in i området mellan plattorna. När kondensatorn är 
fullt uppladdad så upphör effektflödet ty magnetfältet och därmed även Poyntingvektorn blir 
noll. Energin är nu upplagrat i det elektriska fältet mellan plattorna. 
25) Starkast strålning (=största ”knycken”) i riktning vinkelrätt mot accelerationen, ingen 
”knyck” (=ingen strålning) i riktning parallellt med accelerationen. 


