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Preface

This textbook originated in my lecture notes for the “Communication Electronics I” undergraduate
course that I have offered over the last six years to the students at The University of Western Ontario
in London Ontario, Canada. The book covers the transitional area between low frequency and high
frequency wireless circuits. Specifically, it introduces the fundamental physical principles related to
the operation of a typical wireless radio communication system.

By no means have I attempted to touch upon all the possible topics related to wireless transmission
systems. Most modern textbooks cover a large number of topics with relatively low level of details,
which are usually left as an “exercise to the reader”. In this textbook I have chosen to discuss the
subject in more depth, and thus provide detailed mathematical derivations, applied approximations,
and analogies. The chosen topics are, in my experience, suitable for a one semester, four hours
per week, senior undergraduate engineering course. My intent was to tell a logical story that flows
smoothly from one chapter to the next, hoping that the reader will find it easy to follow.

My main inspiration in writing this book came from my students, who at the beginning of the
semester would always ask: “What do I need to study for this course?”. Having a choice between
writing a textbook that covers many topics at a high level, or the one that covers fewer fundamental
principles but in more detail, I choose the latter. All of the material in this book is considered the basic
knowledge that is expected to have been acquired by aspiring engineers entering the field of wireless
communication electronics.

Therefore, the intended audience for this book are, primarily, senior undergraduate engineering
students preparing for their carriers in communication electronics. At the same time, my hope is that
graduate engineering students will find this book a useful reference for some of the topics that have
been only touched upon in the previous stages of their education, or are explained from a different
point of view. Finally, the practicing junior RF engineers may find this book a handy source for the
quick answers that are routinely omitted from most textbooks.

London ON, Canada Robert Sobot
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Chapter 1
Introduction

Abstract Wireless transmission of information over vast distances is one of the finest examples of
Clarke’s third law, which states that “any sufficiently advanced technology is indistinguishable from
magic”. Even though a radio represents one of the most ingenious achievements of humankind and is
now taken for granted; for the majority of the modern human population (including some of its highly
educated members), this phenomenon still appears to be magical. This chapter introduces fundamental
concepts in physics and engineering with the intention of preparing you for the material that follows;
in return, that material is expected to reduce, if not completely remove, the “magic” part of the subject.

1.1 Fundamental Concepts in Physics

Although the word energy, which derives from the Greek ενεργια (energia), was used by Aristotle
way back in the fourth century BC, it is still one of the most ambiguous concepts in science. The
limited ability of humans to understand our own reality puts this fundamental idea at the edge of our
complexity horizon.

Twenty-four centuries later, this topic was addressed by Feynman in his famous Lectures on
Physics, where he said:

There is a fact, or if you wish, a law, governing all natural phenomena that are known to date. There is no known
exception to this law – it is exact so far as we know. The law is called “conservation of energy”; it states that there
is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes.
That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity,
which does not change when something happens. It is not a description of a mechanism, or anything concrete;
it is just a strange fact that we can calculate some number, and when we finish watching nature go through her
tricks and calculate the number again, it is the same.

The concept of energy was famously united with the concept of matter by Einstein through his
E = mc2 equation. The arena needed to describe the interactions of energy and matter is then set by
introducing a medium called space. In order to keep these interactions “catalogued”, i.e., to be able
to tell them apart, the last fundamental concept, the concept of time, had to be introduced. With this
set of fundamental physical concepts, science is able to develop detailed models that can correctly
describe present state and predict the future behaviour of many of the phenomena in this world.

For the purpose of our discussion, we may accept a rather vague definition of energy as “the ability
to do work”, while the work itself is defined in terms of both time and space. Hence, the process
of transmitting (i.e., doing the work of carrying) a bit of information is equivalent to the process of
moving a packet of energy from point A to point B in space and time, which brings us back to the
main topic of this book. We refer to these streams of energy as “messages” or “signals”, originating at

R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits
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2 1 Introduction

the transmitting side and terminating at the receiving side, with variations that are observed in time.
Note that this broad definition does not favour any particular physical form of the signal; it does not
matter whether the signals take the form of smoke clouds rising in the sky, a message in a bottle,
sound caused by a distant thunderstorm, digital bits of data travelling from one computer to another
through the network, or the light arriving to Earth from a star faraway. As long as the message has any
meaning to the receiver, we say that signal transmission has taken place.

1.2 Wireless Transmission of Signals

Strictly speaking, wireless transmission of signals, i.e., transmission of signals between two points in
space without any visible physical connection between them, has been available to us since the dawn
of humanity. Most of us communicate with other people using our voice without additional special
equipment. Our vocal cords and hearing system create a wonderful magical communication system;
engineering efforts merely represent attempts to increase its range.

In the most general sense, a transmission (communication) system consists of: (a) a transmitter;
(b) a transmitting medium; and (c) a receiver (see Fig. 1.1), existing for the sole purpose of moving
a message between the transmitter and the receiver. In technical jargon, the vocal cord–ear system is
called a “transceiver” because it is capable of both receiving and transmitting a signal, in this case
encoded in the form of sound, while the air between the transmitter and the receiver serves as the
transmitting medium.

Our bodies are also capable of receiving signals encoded in the form of light, by means of our
visual cortex. In this case, only the receiving channel is available to us; for a message encoded
in light, the human body is only a receiver—it cannot produce “light rays”. The infrared radiation
(IR) generated by the body is not really an encoded message—it merely reveals the existence of the
source.

Humans have always needed to extend the distance over which messages can travel, which has
resulted in the development of various communication systems. For example, carrier pigeons, writing
systems, telegraph, radio, television, satellite systems, and cellphones all serve the same purpose of
extending the distance that a message created by a person can travel in time and space. The message
contained in this book will be received by readers who are widely spread in both time and space.

1.2.1 A Short History of Wireless Technology

In modern terminology, it is assumed that the term “wireless communication” refers to an electronic
system for transmitting messages that consists of an electronic transmitter, an electronic receiver, and

Fig. 1.1 A wireless
system consisting of a
transmitter (vocal cords),
transmitting media (air, in
this case), and the receiver
(hearing system)
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radio waves. While most of us have a vague idea what a radio wave is, it is not that simple to describe
in plain words. We leave more detailed description of the waves for the following sections; for the
time being, we accept that the term “wave” symbolizes the flow of energy.

In the nineteenth century, interest in the phenomenon of electricity, magnetism and light was at its
height. A number of scientists worked on related problems and a long series of studies culminated
in Maxwell’s equations (Appendix B) of the electromagnetic (EM) field, first published in 1865,
which describe electricity, magnetism and light in one uniform system. Consequently, all major laws
in electrical engineering can be derived from his equations. In the May 24, 1940 issue of Science,
Einstein said:

The precise formulation of the time–space laws was the work of Maxwell. Imagine his feelings when the
differential equations he had formulated proved to him that EM fields spread in the form of polarized waves
and at the speed of light! To few men in the world has such an experience been vouchsafed. . . . it took physicists
some decades to grasp the full significance of Maxwell’s discovery, so bold was the leap that his genius forced
upon the conceptions of his fellow-workers.

It goes without saying that studying Maxwell’s equations and their derivatives is of the highest
importance for electrical engineers.

In 1887, Hertz ventured to prove the theory of electromagnetism experimentally, eventually
performing his famous “spark experiment” that proved the existence of radio waves, as predicted
by Maxwell. His simple experimental setup consisted of a coil and two copper plates with spherical
probes connected to a battery. Each time it was turned on and off, this structure would create a spark
jumping across the small gap between the spherical probes. A short distance away, there was another
copper ring with a short gap between two small spherical terminals. Each time the spark was created
in the main apparatus, Hertz noticed a spark in the other copper ring. Wireless transmission was born.
As often happens, Hertz did not realize the full practical implications of his discovery; he stated1:

It’s of no use whatsoever . . . this is just an experiment that proves Maestro Maxwell was right—we just have
these mysterious EM waves that we cannot see with the naked eye. But they are there.

The same year, Tesla, who for most of his life was obsessed with the wireless transfer of energy,
was granted a patent on a rotating magnetic field, originally conceived in 1882. By 1891, Tesla had
invented the “Tesla Coil”, a type of resonant circuit that can produce high-voltage, high-frequency
alternating currents (AC), which he proposed could be used for “telecommunication of information”.2

In 1897, Tesla demonstrated the first radio communication system, which he used to control a model
boat with his wireless transmitter and receiver (an inductively coupled system),3 which started the era
of practical wireless communications (see Fig. 1.2). On March 20, 1900 Tesla was issued a patent on
the radio transmission of electrical energy.4

If Tesla is considered the father of practical wireless communications, Marconi should be
considered the father of commercial radio communications. In 1901, he demonstrated the first
wireless communication system for transmitting Morse-coded messages across the Atlantic. His
demonstrations set in motion the wide use of radio for wireless communications, especially with
ships (the Titanic disaster also helped the cause). He established the first transatlantic radio service and
built the first commercial stations for the British short wave service. It is also recorded in history that
Tesla was not pleased with the attention Marconi was getting while using Tesla’s patented technology.

1Hertz, H. (1888) Annalen der Physik 270(7):551–569.
2Indeed, as late as the 1920s, Tesla coils were used in commercial radio transmitters.
3US Patent 613809, November 8, 1898.
4US Patent 645576, applied for on September 3, 1897.
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Fig. 1.2 Nikola Tesla’s remotely controlled boat using radio waves, first demonstrated in 1897 in the Hudson river,
New York

Nevertheless, it took until 1943 for the US Supreme Court to invalidate Marconi’s patents in favour
of Tesla, stating5:

The Tesla patent No. 645,576, applied for 2 September 1897 and allowed 20 March 1900, disclosed a four–
circuit system, having two circuits each at transmitter and receiver, and recommended that all four circuits be
tuned to the same frequency. . . . [He] recognized that his apparatus could, without change, be used for wireless
communication, which is dependent upon the transmission of electrical energy. [. . . ]

Marconi’s reputation as the man who first achieved successful radio transmission rests on his original patent,
which became reissue No. 11,913, and which is not here in question. That reputation, however well-deserved,
does not entitle him to a patent for every later improvement which he claims in the radio field. Patent cases, like
others, must be decided not by weighing the reputations of the litigants, but by careful study of the merits of their
respective contentions and proofs.

Feud stories like this one repeatedly happen throughout history; bitter rivalry and disputes over
important inventions are not exceptions, rather they are the rule. In another example, even though Bell
was the first to receive a patent for the invention of the telephone in 1876, several other scientists
demonstrated working prototypes as early as 1857 when Meucci developed a voice communication
apparatus but, apparently, did not have enough money for the full patent fee. He was granted a caveat
(i.e., a provisional patent) in 1871, which expired in 1874, leaving an opening for Bell’s patent.

The most basic wireless data transmission is possible simply by repeating Hertz’s experiment
many times, i.e., switching on and off the transmitting coil. Morse was the first to formalize a “time
sharing” scheme for encoding a message, famously known as “Morse code”. Transmitting Morse
code wirelessly requires only a simple tuned circuit being constantly turned on and off. It was not
possible to transmit voice messages until 1904 when Fleming invented the thermionic valve (i.e.,
vacuum tube). This thermal device (which functions as a diode) was the key element needed for radio
communication systems. Two years later, the addition of a third terminal was a natural development
leading to the invention of a triode (a vacuum tube that functions as an amplifying element) (see
Fig. 1.3). Again, Fleming argued bitterly with De Forest about ownership of these ideas. At the same

5US Supreme Court (1943) “Marconi Wireless Telegraph Co. of America v. United States”. 320 US 1. Nos. 369, 373,
April 9–12.
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Fig. 1.3 The first
electronic valve (left),
designed by Fleming in
1904, and a modern
alphanumeric valve used in
electronic equipment to
display numbers and letters
(right)

time, Armstrong (still an undergraduate student) used the triode to create a “regenerative circuit”
topology and patented it in 1914.6 It should be remembered that virtually all modern radio equipment,
including the radio receiver topology studied in this book traces its history back to this “heterodyne”
topology (later expanded into “superheterodyne”).

Although use of the term “radio” may imply the exclusion of television, that is not the case. The
television should be looked at as no more than a sophisticated radio. To be historically correct,
it has to be stated that television was invented by the many scientists and engineers who made
incremental contributions while radio and television systems were being developed in parallel. It
is worth mentioning that the first patent for an electro–mechanical television system was granted to
Nipkow, a university student, back in 1884. In 1925, Baird demonstrated a system that paved the way
to the first practical use of television in 1929, when regular television broadcasts started in Germany.

After the groundbreaking work on radio transmission in the early twentieth century, it is safe to say
that there have been no new fundamental advances ever since. Incremental advances can be credited
only to engineering ingenuity and technological improvements, most notably the invention of the
transistor in 1948 (the three scientists who invented it received a Nobel Prize but never talked to
each other again) and the integrated circuit (IC) in 1958 (Kilby, a newly employed engineer at Texas
Instruments who did not yet have the right to a vacation, spent his summer working on this concept—it
earned him a Nobel Prize and a place in history).

To conclude this short historical review, the importance of radio development is such that most
engineers and scientists who have made major contributions also earned a Nobel Prize. They have
also served as inspiration for the generations of engineers who have followed in their footsteps.

1.3 Nature of Waves

As hinted at in the previous sections, our understanding of “waves” is more intuitive than exact.
Dropping a rock into a pond creates circular ripples that expand both in space and time (which we can
visualize, as in Fig. 1.4); a “wave” of spectators can travel around a packed stadium at a soccer game
(when each spectator stands up and sits down at the right moment). These familiar examples of waves
are perceived by our vision.

6US Patent 1113149, October 6, 1914.
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Fig. 1.4 Water ripples created in a pond by a small rock. Although the water particles move vertically, the wave expands
horizontally while carrying away the kinetic energy of the falling rock. Eventually, the energy is dissipated in the pond
and the wave dies out

N

Fig. 1.5 The direction of
magnetic field lines
represented by the
alignment of iron filings
sprinkled on paper placed
above a bar magnet. The
mutual attraction of
opposite poles of the iron
filings results in the
formation of elongated
clusters of filings along
“field lines”

We are also accustomed to talking about sound waves because we can detect them with our hearing
system. It is a bit more complicated to envision sound waves in our mind because we would need to
“see” air pressure regions that change from low pressure to high pressure and back. The situation
becomes even more difficult if we try to envision light waves. Attempts to explain the nature of light
waves led scientists into the development of theories of relativity and quantum mechanics, and touched
the deepest questions of human existence.

At the fundamental level, we can accept that water in a pond carries the water waves; we can
also accept that sound waves are carried by air; the natural question is to wonder what carries light
waves. After all, light waves come from outer space. Is the space empty? What are the waves? When
passing through airport security, how does the machine knows whether we are carrying metallic
objects without touching us? How does MRI equipment, which always stays outside the body, make
detailed pictures of the inside?

To answer these questions and create a meaningful model that correctly describes the observed
reality, Faraday introduced the concept of a field. This abstract concept, expanded by Maxwell and
many others, underlines many of the little mysteries we encounter in everyday life. Although it has
proved very useful, being a very abstract concept the concept of field still does not answer the question
of what waves are. Nevertheless, it does help us visualize something that otherwise would have been
beyond the reach of our senses.

We all remember the magic of the elementary school experiment in which iron filings were
sprinkled on paper above a bar magnet. When the paper was shaken, the iron filings aligned along
the “field lines” of the magnetic field (see Fig. 1.5). That experiment makes it become obvious why
a compass needle placed at a location close to a magnet always takes the direction that is tangential
to the field lines. It should be noted, however, that the field lines do not really “exist”. Instead, the
whole volume of space surrounding the magnet is filled in by the magnetic field, while the strength of
the magnetic force measured along the direction from one pole to the other changes in a way that it is
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Fig. 1.6 An electromagnetic wave may be imagined as a self-propagating transverse oscillating wave of electric and
magnetic fields. Starting, for instance, with a time-varying electric field, magnetic and electric fields are successively
generated indefinitely

proportional to the density of the field lines. In other words, the magnetic field is strongest at locations
where most of the field lines are crammed together, in this case close to the magnetic poles.

Visualizing the magnetic field certainly helps us to imagine other fields, especially the EM field
that was introduced by Maxwell to explain the wave nature of the light. According to Maxwell’s
equations, a spatially varying electric field generates a time-varying magnetic field and vice versa. As
an oscillating electric field generates an oscillating magnetic field, the magnetic field in turn generates
an oscillating electric field, and so on. These time-varying fields together form an EM wave that
propagates in space (see Fig. 1.6). A less obvious observation is that once the EM wave is established,
its source can be removed without further influencing the wave. In free space, an EM wave propagating
in the z direction is described as:

Ex = E0x sin(ωt −β z), (1.1)

Hy = H0y sin(ωt −β z), (1.2)

where Ex is the electric field vector in the x direction, H0x is its maximum amplitude in V/m, Hy is the
magnetic field vector in the y direction (which is orthogonal to both the electric field vector x and the
wave propagation vector z), H0y is its maximum amplitude in A/m, ω is the radial frequency in rad/s,
and β is the propagation constant defined as

β =
2π
λ

, (1.3)

where λ is the wavelength, which is defined in Sect. 1.4.5. Expanding on the propagation constant,
we define “phase velocity” vp as

vp =
ω
β
, (1.4)

which gives us information about how fast the wave phase propagates in space. A way to visualize
phase velocity is by focusing on one single point on the wave (for example, on the crest) and follow it
in space.

Motion of electric charges is, by definition, electric current. Electric current creates moving
magnetic field, which in return creates moving electric field. Once the process is started, the initial
source of this moving EM field (i.e., the moving electric charge) can be removed; the EM field keeps
moving in space in self-perpetuating motion. By experiment,7 the EM wave speed, i.e., its phase

7ε0 is measured through capacitance and dimension of the capacitor (1.12).
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velocity, c0 was found to be the same as the speed of light in a vacuum:

c0 =
1√μ0 ε0

= 299,792,458 m/s≈ 3× 108 m/s. (1.5)

Maxwell concluded that EM waves (i.e., radio waves) and light are fundamentally the same thing,
hence Maxwell’s equations deal with this moving EM wave and the relationship between electric and
magnetic fields.

Example 1.1. Calculate the wavelengths of EM waves at the following frequencies: f1 = 3 kHz,
f2 = 3 MHz, and f3 = 3 GHz.

Solution 1.1. EM waves have phase velocity of c0 ≈ 3× 108 m/s, hence, after substituting (1.4) into
(1.3), we write

λ =
2π
β

=
2π vp

ω
=

vp

f
, (1.6)

which results in

λ1 =
3× 108 m/s

3kHz
= 100× 103m; λ2 =

3× 108 m/s
3MHz

= 100m;

λ3 =
3× 108 m/s

3GHz
= 100× 10−3m.

An important observation to make is to realize what travels through space. Going back to the ripples
in the pond (Fig. 1.4) and dropping a cork into the water, it is easy to see that the cork moves only in
the vertical direction, indicating that the water particles move in the same way, i.e., they do not move
away from the centre of the ripples. Similarly, the spectators do not run around the stadium—each
person only moves up and down in their own seat. That is to say, it is not the particles of matter that
propagate through space in the z direction but the wave carrying the energy of the disturbed particles
while they vibrate around their nominal positions (in the x or y directions) in synchronicity with their
neighbours. These repetitive “up” and “down” vibrations are usually referred to as “oscillations”.

1.4 Wave Characteristics

Following the qualitative introduction of waves in the previous section, we now introduce a set of more
specific characteristics to help us quantify general wave function properties. It will be shown many
times in this book that, in its basic form, any general wave can be represented mathematically as the
sum of one or more sinusoidal functions. A vertical cross-section of water ripples, an instantaneous
picture of a piano string producing a single note, and the time-domain plot of a voltage signal recorded
at the terminals of an electrical resonator all resemble the familiar shape of the sinusoid. In analogy
with the sounds of a single note, these single sinusoidal functions are referred to as “single tones” or
simply just “tones” (even though we cannot really hear them in their original form).
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Fig. 1.7 A loud sound is
symbolized by a large
amplitude (A1) while a
relatively weak sound is
quantified by a small
amplitude (A2). By
definition, the numerical
value of the peak-to-peak
amplitude App is double
that of the single-sided
(peak) value A

Fig. 1.8 Lower frequency
tone (A1) has longer period
T1 relative to the higher
frequency tone (A2). In this
example, the A2 waveform
has a frequency about nine
times higher than the A1

waveform

1.4.1 Amplitude

Exploiting further the analogy of a sound wave created by a piano string playing a single note (for
example, A), the wave amplitude is manifested by the volume of the tone. The harder the string is
struck, the more violently it vibrates (i.e., the greater the displacement) or, to put it in technical terms,
the greater is the amplitude of the sound wave. Figure 1.7 shows the amplitude change in time for two
independent sinusoidal waves (A1 and A2).

Wave amplitude is quantified in two ways. It can be measured in the positive direction from the zero
point (in this case, the average value) to the wave’s maximum on the vertical scale (displacement),
for example, amplitudes A1 and A2 in Fig. 1.7. It can also be measured by the distance between the
wave’s extreme vertical points, for example, amplitudes A1pp and A2pp in Fig. 1.7, where the index
“pp” is pronounced “peak-to-peak”. It should be noted that, by definition, the numerical value of the
peak-to-peak (PP) amplitude A1pp (or A2pp) is double that of the single-sided (peak) value A1 (or A2).

1.4.2 Frequency

Various notes played on a piano, for example A and B, are perceived by our brains as different pitches.
This quality of a sound wave is directly related to the amount of time required by the wave to complete
one full pattern or, in technical terms, to complete one “period” (measured in seconds). In other words,
this is the time required for the string to complete one full movement up, down and back again along
the displacement axis in Fig. 1.8. This particular time is marked as T1 for the A1 waveform and as T2

for the A2 waveform.
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A period T is measured between two adjacent extreme amplitude points or at any other two points
on adjacent slopes of the same kind (i.e., either two up-slopes or two down-slopes) that have the same
displacement value. A shorter period T implies a greater number of patterns being repeated in a given
time—the waveform has higher frequency. Frequency is measured in hertz (abbreviated as Hz), where
1 Hz means that one full wave cycle took a second to complete; in other words, the associated period
T = 1 s. In Fig. 1.8, the A2 waveform has a frequency nine times higher than the A1 waveform. For
example, the middle-C tone played on a piano has a frequency of 261 Hz. The full frequency range8

of piano tones is 27–3,516 Hz. Young people with normal hearing can perceive tones in the range
of 20–20,000 Hz. Similarly, human eyes distinguish the various frequencies of light and our brain
perceives them as various colours. The visible frequency band for most people is approximately 400–
790 ×1012 Hz (i.e., 400–790 THz). This fascinating bandwidth represents almost unlimited resource
for signal transmission. As defined, the period and frequency of a waveform are inversely proportional:

f =
1
T

[Hz], (1.7)

where f is the frequency in Hz and T is the period in seconds. A more practical representation of
sinusoidal waveforms is based on a mathematical model known as a rotating phasor.9 In a geometrical
sense, the time to accomplish one pattern is easily mapped onto the time required to accomplish one
full rotation around the circle. The usefulness of the model comes from equivalency between one full
movement along the displacement axis and one full circle rotation of the phasor, which is expressed
in angle units as 2π , i.e.

ω = 2π f =
2π
T

[
rad
s

]
, (1.8)

where ω is called the “radian frequency”. It is important to keep this distinction of radian frequency
relative to “frequency” in mind because forgetting the 2π factor is one of the most common mistakes
that students make. Also, it is common engineering practice to use the term “single-tone” (or just
“tone”) while referring to a wave that, mathematically speaking, consists of a single sinusoidal
waveform, even in cases when the wave is not a sound wave. The term “wave” refers to the conceptual
phenomenon; “waveform” refers to a graphical representation of a wave. These terms are often used
interchangeably.

1.4.3 Envelope

Figure 1.9 shows an important case of a waveform. Similarly to an optical illusion drawing, where the
presented image is perceived as either of two possible (and completely different) images imbedded
in each other, it is valid to ask what you see in Fig. 1.9. Do you see a high-frequency tone whose
amplitude varies or do you see a low-frequency tone and its mirrored image?

We should be able to recognize that, indeed, the waveform consists of a high-frequency tone whose
amplitude is changing in accordance with a low-frequency sinusoidal function. The low-frequency
waveform (not necessarily sinusoidal) that is “riding” on the high frequency peaks is very important in
communications; it is referred to as the “envelope” of the high-frequency tone and the high-frequency
waveform is referred to as the “carrier”.

8In radio terminology, “range” means the distance that a waveform can travel. A range of frequencies is referred to as a
“band” or “bandwidth”.
9See Fig. 2.6.
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Fig. 1.9 A high-frequency
waveform (the solid line)
and its low-frequency
embedded envelope (the
dashed line)

Fig. 1.10 Two single-tone waveforms with normalized amplitudes and the same frequency that have phase difference
Δ = π/2. The dashed line shows that the peak of the A1 waveform coincides with the cross-over point of the A2 waveform,
i.e., the phase difference is Δ = 1/4 of the period. When two signals are in this relationship, they are said to be “in
quadrature”

Theoretical and practical techniques for imprinting an arbitrary envelope over a carrier (that
originally had a constant amplitude) and for extracting the envelope and discarding the high-frequency
carrier are the main subjects not only of this book, but also of the radio frequency (RF) circuit design
field in general. The process of “imprinting” the envelope signal into the carrier is referred to as
“modulation” and the process of envelope extraction is known as “demodulation”. We will devote a
large portion of this book to these two processes.

1.4.4 Phase, Group, and Signal Velocity

A stand-alone single-tone wave is fully described by its amplitude, frequency (or, equivalently, its
period), and phase. The concept of a phase is derived from the rotating phasor model and it assumes
sine (as opposed to cosine) as the default waveform function because at time t = 0 its phase is zero.
Consequently, one period T in the time domain is mapped onto an angle of a circle, i.e., T = 2π radians
(or 360◦). Note that numerical value for time T (measured in seconds) is scaled to a number 2π (with
no unit); these two measuring units are used interchangeably. Usually (but it is not mandatory), the
phase is measured at a point in time t = 0. Since the initial value of a sine function is zero (sin0 = 0),
its initial angle (or phase) is φ = 0. In Fig. 1.10, the A1 waveform has phase φ = 0 and the A2 waveform
has phase φ = π/2 (or 90◦) because sin π/2 = 1, which is the initial value of its sine function.

A “phase” is a relative term, hence, it makes much more sense to define the term “phase difference”,
which implies existence of the second wave. This requires the introduction of a fictional arbitrary
reference plane that serves as the “zero phase”. With two sinusoidal waves, once the amplitudes are
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normalized, it is important to compare their frequencies. If the frequencies are not the same than there
is not much left to say, but to note existence of two relatively independent waves. However, if the two
waves do have the same frequency (and not necessarily the same amplitude), than it makes sense to
ask which wave arrives first.

To answer that question, let us set up a “race”. The initial phase of one of the two waves is
arbitrarily declared the zero-phase reference. The stopwatch starts when the first wave’s amplitude
crosses the zero-amplitude value, for instance, on its way from higher amplitudes to lower amplitudes
(in technical terms, on its “falling edge”). The stopwatch stops when the second wave’s amplitude
crosses the zero value of its amplitude on its falling edge. Due to the fact that only either falling or
rising edges are used as the start–stop triggers, the relative “timing difference” between the two waves
must be within the range 0 to T (T is the common period of the two waveforms). It should be obvious
that the result of the race depends on neither the absolute value of the amplitude cross-over point (i.e.,
it does not have to be zero) nor the choice of the rising or falling edge.

Therefore, under the condition of frequency equality, the phase difference is either “constant” (see
Fig. 1.10) or, by definition, it does not exist. When it does exist, it is said that one wave either “leads”
or “lags” the second one by Δ seconds (or, equivalently, by Y degrees). It is important to keep in
mind that this measurement is “relative”. In a practical sense, it is much easier to express the phase
difference as a “fraction of the period”, i.e., in degrees, instead of using the absolute time units.
To illustrate the point, saying that the phase difference between two tones is, for instance, 5 ns still
requires additional information about the frequency value. Even then, it is not easy to visualize the
size of the 5 ns time difference relative to, for instance, a 100 Hz waveform or a 100 MHz waveform.
However, saying that the phase difference is π/2 instantaneously brings into our mind a mental picture
of two sinusoidal waves (see Fig. 1.10), where the peaks of one wave coincide with the zero-crossing
points of the second, regardless of the wave frequency. In that case, the phase difference is one quarter
of the cycle, i.e., 90◦, and the two waves are said to be “in quadrature”. The quadrature signals are
very important and widely used in radio communication systems.

Example 1.2. Calculate differences in the times of arrival Δ t for EM wave pairs with a phase
difference of Δφ = π/2 at each of the following three frequencies: f1 = 1 kHz, f2 = 1 MHz, and
f3 = 1 GHz.

Solution 1.2. First, we convert the given frequencies into their equivalent periods as:

T1 =
1
f1

=
1

1kHz
= 1ms; T2 =

1
f2

=
1

1MHz
= 1μs ; T3 =

1
f3

=
1

1GHz
= 1ns

then, by knowing that period T ≡ 2π (i.e., one full cycle), we conclude that π/2 is equivalent to T/4.
Therefore, in the time domain, the phase differences translate into

Δ t1 =
1ms

4
= 250μs ; Δ t2 =

1μs
4

= 250ns; Δ t3 =
1ns

4
= 250ps,

which illustrates how the phase difference translates into time-of-arrival differences at various
frequencies.

1.4.5 Wavelength

An obvious, but often ignored, fact is that Fig. 1.4 shows a wave frozen in time: after the water
wavefront has travelled outwards in space from the point where the rock hit the water to its last
position. Again, keep in mind that (ideally) the water particles have only vertical movement, i.e., it
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Fig. 1.11 By measuring
the distance in space
between the peaks (or any
other pairs of equivalent
points, as shown) the
spatial dimension,
wavelength λ , is
established. One wave
cycle is emphasized by a
bold line

is only the displacement (energy) that travels horizontally. From Fig. 1.4, it is possible to measure
the horizontal distance between any two wave peaks in space. This spatial dimension is denoted as
wavelength λ . If, instead of a single frame, the full movie were available to us, then it would be
possible to measure the same event in the time domain, namely, the period T for any given particle of
water to complete the full up, down and back again vertical swing. By now, a careful reader should
realize that the period T is the same time taken by the wavefront to travel distance λ . Figure 1.8
shows the vertical displacement of a single wave particle in time and Fig. 1.11 shows the vertical
displacement of all wave particles in space (measured horizontally from the wave starting point to its
end). It is important to keep a mental picture of these two views showing the same event .

As in any other case of linear motion in classical physics, knowing two of the three parameters
(i.e., the distance travelled, the time taken for the trip, and the average speed) enables calculation
of the third parameter. Using experimental methods, wave propagation speeds for sound and light
waves through various materials were established. For instance, it was established that a sound wave
travels at a speed of 343 m/s through dry air at 20◦C, or approximately one kilometer in three seconds.
Similarly, the speed of a light wave in a vacuum was established as 299,792,458m/s, which is often
rounded to 300,000 km/s. At this speed, it takes sunlight 8 min and 19 s to reach Earth.

Example 1.3. Estimate the distance of lightning if approximately nine seconds pass between the time
you registered the lightning flash and the time you heard the thunder.

Solution 1.3. The speed of light, for purposes of this problem, is infinite (unless we use very precise
measuring equipment); in 9 s, sound travels approximately 3 km. Therefore, we can ignore the
delay in light travelling 3 km (which is about 10μs) and just estimate that the lightning happened
approximately 3 km away.

In mathematical terms, wavelength is expressed by the equation

λ = νT =
ν
f

[m], (1.9)

where λ is the wavelength (i.e., the horizontal distance travelled by the disturbance while completing
one full cycle of the vertical disturbance) in meters, T is the time in seconds needed by the waveform to
travel the horizontal distance λ while completing one full vertical cycle, and ν is the wave propagation
speed10 in meters per second (denoted by c in the special case of the speed of light).

It should be noted that it is the frequency of the wave that determines the pitch (or colour).
The wavelength is a secondary phenomenon depending on the speed of the wave. To support this

10The correct term should be velocity, but most books (wrongly) use the speed instead.
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Fig. 1.12 Illustration for
Example 1.5

observation, imagine sending a sound of the same frequency through two parallel channels, water and
air. Even though the speed of sound in water is more than four times greater than the speed through
air (and, therefore, there is more than four times the wavelength), the perceived tone at the receiving
end remains the same in both cases, as confirmed by (1.9)—when λ → 4λ and ν → 4ν , the frequency
stays the same.

Example 1.4. For a voltage disturbance wave travelling at the speed of light and described as v1 =
sin(20π × 106 t) find:

(a) Its maximum amplitude
(b) Its frequency
(c) Its period
(d) Its wavelength
(e) Its phase at time t = 0 s

For a second wave v2 with the same maximum amplitude and with a phase difference of Δφ =+45◦,
find its amplitude at time t = 0 and the distance between one of its peaks and the following v1 peak.

Solution 1.4. Inspecting the wave v1 equation, we can write:

(a) Maximum value: Am = 1 V
(b) Radial frequency: ω = 2π f = 20π × 106 Hz, therefore f = 10 MHz
(c) Period: T = 1/ f = 100 ns
(d) Wavelength: λ = cT ≈ 30 m
(e) Phase at t = 0: φ = 0

The second wave is leading with a phase difference of Δφ = π/4= T/8, whose amplitude at t = 0 s
is v2 = sin(π/4) = 1/

√
2V ≈ 0.707V. The phase difference is T/8 in the time domain, therefore in

space domain it has to be λ/8 = 3.75 m.

Example 1.5. Imagine standing at a lakeshore’s boat dock that is w = 4 m wide, watching passing
waves created by a wind (see Fig. 1.12). Assuming that you have only a stopwatch, explain the
procedure to estimate the wavelength, frequency, period, and velocity of the passing waves.

Solution 1.5. First, observe and count how many wave crests fit along the dock’s w = 4 m side.
According to Fig. 1.12 there are approximately three crests from edge to edge. Compare the wave
shape with Fig. 1.11 and conclude that the dock’s width equals two wavelengths, i.e., w = 2λ ,
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Fig. 1.13 A complicated
waveform (solid dark line),
created by linear addition
of its first, third, and fifth
harmonics. Increasing the
number of harmonics to
15 or more would create
an almost-perfect,
square-pulse waveform

therefore λ = 2 m. Second, using a stopwatch, measure the time taken for one crest to travel along
the deck’s edge. If the measured time is t = 4 s, then the wave period is T = t/2 = 2 s, because the
total distance travelled by the wave is equal to two wavelengths. Third, it is now straightforward to
calculate the frequency of the wave as f = 1/T = 0.5 Hz. Finally, from (1.9) it follows that the wave
propagation speed is ν = λ f = 1 m/s.

1.4.6 Multitone Waveform

By now we should be comfortable with using terminology related to a single-tone waveform and
should be moving on to waveforms whose shapes do not have a simple sinusoidal form. For instance,
take a look at the waveform in Fig. 1.13 shown by the solid dark line. It looks more like a square-pulse
waveform than a single tone. A brilliant intuition led Fourier to speculate that an arbitrary waveform,
which is a typical shape found in nature, is composed of more than single-tone waveforms. Eventually,
he proved the idea and earned his space in history by developing the “Fourier transform”, which is
known to virtually every engineer and scientist in the world.

A very liberal interpretation of the Fourier transform is that any arbitrary waveform can be
synthesized from an infinite number of harmonics added together in a certain proportion, as prescribed
by a formula that was delivered for that particular waveform. We start with a single tone whose
frequency is ω , referred to as the first harmonic, the second harmonic is a single-tone sinusoidal
waveform whose frequency is 2ω , the third harmonic is a single-tone sinusoidal waveform whose
frequency is 3ω , and so on. All single-tone terms in a Fourier transform (referred to as “harmonics”)
are then appropriately scaled in amplitude and added together (1.10).

Using a Fourier transform, the squarish looking waveform y(t) in Fig. 1.13, is synthesized by using
only the first three odd harmonics as

y(t) =
4
π

[
sinωt +

1
3

sin3ωt +
1
5

sin5ωt + · · ·
]
, (1.10)

where sin terms, together with their respective frequencies n × ω (n = 1,3,5, . . . ) and amplitude
scaling coefficients (1, 1/3, 1/5, . . . ) multiplied by 4/π represent harmonics of the waveform y(t). One
way to interpret (1.10) is to say that waveform y(t) is constructed using the three single-tone signals
as its basic building blocks. In a way, the Fourier transform serves a similar role for a waveform as
an X-ray machine does for a body: it shows what a complicated waveform is made of. Or, to put it in
technical terms, the frequency spectrum of the waveform y(t) in (1.10) consists of the first, third, and
fifth harmonics.

We refer back to this section a number of times in the rest of the book because it is one of the most
important concepts in signal processing and RF circuit design.
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Fig. 1.14 The power
spectrum plot of the y(t)
waveform in Fig. 1.13 and
(1.10), showing the three
single tones (harmonics) in
the frequency domain and
the noise floor. (Note that,
due to the scale of the
vertical axis, relatively
small differences in powers
of the three tones are not
clearly visible.)

1.4.7 Frequency Spectrum

Once the familiar sinusoidal shape becomes a permanent image in our mind, there is no point in
looking at its time domain plot. The shape of a sinusoid is always the same and all that we need to
describe it are the three numbers representing its amplitude, frequency and phase. If the sine plot axes
are labelled, the three numbers are found by inspection.

However, a more complicated waveform, such as y(t) in Fig. 1.13, is not that easy to analyze by
visual inspection only, because it is defined by its amplitude, frequency and phase parameters in the
time domain plot. Instead, it is much more important to know its frequency spectrum, which may
contain many tones in an infinite number of combinations, as implied by (1.10). It is very useful to
create a plot that shows the relationship among all the harmonics in the frequency–power domain.
To illustrate the point, a fast Fourier transform (FFT) numerical algorithm is applied to time domain
waveform data, as calculated by (1.10), in order to transform it into its equivalent frequency spectrum
function, Fig. 1.14. For the purpose of frequency domain plots, it is common practice to convert
units of amplitude (for instance, volts or amperes) into decibels (dB) (a unit of relative power). In
Sect. 2.7.2, we introduce definitions and units for power calculations in more detail.

The graph in Fig. 1.14 is interpreted as follows. Starting from the zero frequency point (i.e., DC)
and moving along the horizontal axis (scaled in units of rad/s), each point of the graph symbolizes its
respective (x,y) = ( frequency, power) pair of numbers. In other words, each pixel of the curve shows
individual power levels for each of the infinite possible single tones within this frequency band. The
three distinct vertical lines represent the three waveform harmonics, each with its dB power level
quantified by the highest vertical point. It should not be difficult to realize that there is a “sea of noise”
(in technical terms, a “noise floor”), caused by various random sources that exist all around us, of
which the level is relatively consistent. Since we started with three ideal single tones and nothing else,
it is no surprise that they are far stronger than any other single tone at and below the noise floor. A
more detailed introduction of the noise floor is left for Sect. 13.3.1.1.

It should be emphasized that detailed examination of a complicated waveform includes both time
and frequency domain analysis. To help the process, an oscilloscope is a test instrument that serves as
a time domain waveform plotter and a spectrum analyzer is a test instrument that performs real-time
Fourier transformation of the given waveform and displays its “power spectrum plot”. It is assumed
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that all engineers and scientists are familiar with these two test instruments that enable us to see two
distinct, yet complementary, perspectives of the same waveform, in the same way as we need to see
all three projections of a solid before concluding its 3D shape.

A fine distinction needs to be noted. The noise floor in Fig. 1.14 is ideal, limited only by the
numerical resolution of the algorithm and computer used for the calculations. Hence, the calculated
noise floor is referred to as a “numerical noise”. For the same waveform, a spectrum analyzer shows
a similar plot, with the distinction that the measured noise floor is real. We keep in mind that the
real, measured noise floor is expected to be much higher than the ideal, numerical noise floor. It is
fair to say that a spectrum analyzer is among the most sophisticated and precise instruments ever
invented.

1.5 Electromagnetic Waves

In our discussion so far, both sound waves and light waves have been used to introduce and define
basic phenomena and definitions related to wave propagation.

Let us first elaborate a bit more on the process of creating sound waves. Our eardrums are extremely
sensitive organs capable of distinguishing a huge range of sound intensities. For instance, the softest
sound a healthy young human can detect is measured as a pressure of 20 μPa, which is so small that
it causes the eardrum to move a distance of less than one tenth the diameter of a single hydrogen
molecule. At the other extreme, the threshold of pain is measured as a pressure of 63.2 Pa, that is
to say 3,160,000 times louder than the softest detectable sound (in technical terms, eardrums have a
dynamic range of 130 dB; more details are given in Sects. 2.7.2 and 13.3.1).

Sound waves start with vibrations of our vocal cords that cause surrounding air molecules to start
moving. First, the molecules in the air layer closest to the cords are pushed away; the molecules a
bit further away (in the next layer of air) still have not detected any movement, which causes the
neighbouring air layers to move closer to each other. This phenomenon is due to the fact that the mass
of air molecules is still finite, although very small, which means that they exhibit some inertia and do
not instantaneously change the direction of their movement. Keep in mind that shortening the distance
between air molecules is also interpreted as an increase in pressure. By the time the first air layer starts
its outward movement, the cords have changed their direction of movement by 180◦ and, instead of
“pushing”, they start “pulling” the surrounding air molecules, which must follow (nature does not
like a vacuum very much). It is not difficult to envision this chain of push–pull actions spreading in
all directions and affecting more and more air layers, causing alternate spherical layers of high and
low air pressure to move outward (see Fig. 1.15). The imaginary expanding sphere that separates air
still not affected from the sound wave inside is the wavefront and its speed is what we refer to as the
“propagation speed”—the speed of sound, in this example. Eventually, the wavefront, followed by the
wave of high- and low-pressure layers, reaches our eardrums enabling the cochlea (which is our own
natural spectrum analyzer) to measure the wave’s frequency, which is then perceived by our mind as
a tone of a certain pitch. As a reminder, the sound wave’s wavelength λ is the distance between two
adjacent high-pressure or low-pressure layers (see Fig. 1.15).

To further exploit this analogy, imagine that you are trying to create sound waves by flapping your
arms. We can flap our arms only a few times per second, which is too slow for the air molecules to
start moving. Instead, the air molecules slip along the skin and allow the arm to pass easily. Obviously,
there are two options for creating air waves: (a) start flapping much faster, so that the air molecules
are “hit” in the same way as flying insects do with their wings; and/or (b) drastically increase the size
of your hands, say up to hundreds of square meters, so that a large volume of air (hence, large inertia)
is moved back and forth by your paddling. In the former case, we would be able to detect the waves
with our ears because the flapping frequency would be within our hearing range (we can hear buzzing
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Fig. 1.15 A spherical
wave spreading in all
directions. The imaginary
expanding sphere
(represented by the blue
circle) that separates space
still not affected from the
wave inside is the
wavefront. Its velocity
determines the wave
propagation speed ν . The
wavelength λ is the spatial
distance between two
subsequent crests

Table 1.1 Classification of radio frequency bands

Frequency band Abbreviation Frequency range Typical application

Extremely low ELF∗ 3.0–30 Hz Military underwater communications
Super low SLF∗ 30.0–300 Hz Military underwater communications
Ultra low ULF∗ 0.3–3 kHz Military underground communications
Very low VLF 3.0–30 kHz Submarine navigation
Low LF 30.0–300 kHz LORAN, time signals
Medium MF 0.3–3 MHz AM broadcasting, radio beacons
High HF 3.0–30 MHz Amateur radio
Very high VHF 30.0–300 MHz Short-distance terrestrial communication
Ultra high UHF 0.3–3 GHz TV broadcasting, cell phones
Super high SHF 3.0–30 GHz Wireless LAN, satellite links
Extremely high EHF 30.0–300 GHz Radio astronomy, research, military
∗ The whole earth may serve as an antenna

of a flying insect). In the latter case, however, even though the waves would be created, we would not
be able to hear them because their frequency would be below our hearing range. On the other hand,
they would cause neighbouring doors and windows to rattle and rumble.

In a very similar way, electric waves also create disturbance. Alas, because of the great speed of
electric waves, the antenna (which is equivalent to your waving hand or an insect’s flapping wings)
must “flap” proportionally faster. Unlike with sound waves, however, air molecules cannot respond
that fast. To radiate radio waves at audio frequencies, an antenna would have to be of the order of
kilometers, so one might just as well (and more conveniently) use it at ground level as a telephone
line. Fortunately, it turns out that RF waves do not need air to propagate. If anything, they travel much
easier through a vacuum. To summarize, the fundamental difference between sound waves and RF
waves is that sound waves propagate by mechanical vibration while RF waves radiate from antennas
in the form of EM waves, i.e., light.

Now we have learned how to create RF waves at any frequency, and considering that they need less
than a tenth of a second to circle the globe, they definitely qualify for the job of our chief message
carrier. With Maxwell’s help, we have learned that RF waves are of the same nature as light, the
only difference being their frequencies (i.e., wavelengths). Because of the very wide range of useful
frequencies used by radio communication systems, the most common frequency bands are categorized
into sub-bands as shown in Table 1.1.
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Fig. 1.16 Frequency band
with multiple channels
compared to a multi-wire
communication cable

Relative to the complete frequency spectrum known to exist in nature, our natural wave receptors
(ears and eyes) cover only two minor frequency ranges. In addition, there is a relatively big gap
between the two frequency bands. It is no surprise that most of our engineering efforts go into building
artificial wave receptors that operate in our “blind spots” and enable us to “see” the full EM spectrum.

1.5.1 Tuning

Even if it were practical to build wireless systems that operate in the audio frequency band for
communications over longer distances than those achieved by natural speech, it is easy to see the
immediate practical problem. We would create a world crammed with very loud giants all talking at
the same time, all the time. Moreover, we would be able to hear them without the assistance of any
artificial equipment.

Human speech, including music, requires a very narrow frequency band (only about 20 kHz wide,
known as the “audio band”). In comparison, the EM spectrum is immense. Splitting that enormous
frequency space into abutting “strips” 20 kHz wide would create many parallel “pipes” each of them
wide enough to conduct the full audio spectrum. It is easy to show that the number of possible pipes
(i.e., audio communication channels) is more than sufficient for human needs. It is important to note
that these communication channels are strictly separated only in the frequency domain; in real space
they co-exist at all times and everywhere (Fig. 1.16). Having the ability to visualize the same signal
in all three of these domains, i.e., frequency, time and space, is essential to understanding wireless
communication systems. Only then is it possible to understand how each of these communication
channels could be made to connect a receiver with a specific transmitter that is located somewhere in
space while, at the same time, an arbitrary number of other transmitter–receiver pairs also maintain
their connections. With that in mind, it is not difficult to imagine a wireless communication system
where each transmitter–receiver pair is assigned its own frequency channel for the duration of the
communication.
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However, in order for this multiple frequency band approach to be practical and for us to make use
of it, we need to resolve the following design issues: (a) how to shift the frequency of each individual
audio signal up and align it exactly with its assigned channel; (b) how to force the receiving equipment
to listen only to that particular channel, while ignoring communications in all other parallel channels;
and (c) how to shift the frequency of the received signal back to the audio range and decode the original
message. Solutions to these three fundamental steps are required for virtually all communication
systems invented so far.

A practical solution to the problem was enabled by the invention of tuning. In the case of
mechanical sound waves, if one object of a certain size is made to vibrate and produce a tone, bringing
a second object of similar size close to the first one causes the second object to vibrate with the
same frequency: consider tuning forks used by elementary school music teachers. This phenomenon
is known as “resonance” and the key point is that the two forks are of “similar mechanical size”.
It is possible to create equivalent conditions using EM waves; if one electronic circuit is made to
vibrate (we say, “to oscillate”), then a second circuit of similar “electrical size”, and within a certain
distance, oscillates with the same frequency. If the two “electrical sizes” do not match, then the second
circuit does not oscillate. Tuning (i.e., resonance) is one of the most important and most fundamental
phenomena in nature. It is quite possible that without it our universe would not have existed, let alone
practical wireless communication.

Engineering creativity supported by mathematical analysis is needed to remove the last obstacle in
our quest for practical RF communication—the invention of a practical device capable of precisely
shifting audio information up and down the frequency domain. The rest of this book deals with both
the theoretical background and the practical implementation of electronic circuits for modulation,
tuning, and frequency shifting.

1.5.2 Maxwell’s Equations

In this section, we review the basic definitions and terminology associated with EM waves. Existence
of the interleaved self-perpetuating magnetic and electric fields (Fig. 1.6) is fundamental to the
propagation of EM waves and, therefore, to wireless communication systems. Their relationship is
described by the set of Maxwell’s equations.

The main goal of this book is to provide a first introduction to the fundamental principles of
RF circuit design to students who have taken only introductory courses in electronics, without all
the complications associated with extremely high-frequency field (EHF) theory and circuit design
specifics. Because there is a big gap in the required theoretical background, complexity and design
methods between linear low-frequency circuits and, for instance, the millimeter wave RF circuits (see
Fig. 1.17), we focus only on relatively low-frequency non-linear RF circuits. The analysis of EHFs
is difficult and not always necessary. By focusing on low-frequency RF circuits, we are able to use
most of the methods acquired from previous courses and to apply approximate methods derived from
Maxwell’s equations under condition of low frequencies (see Fig. 1.18).

For the sake of completeness, let us review the basic definitions from EM theory related to the EM
field and Maxwell’s equations.

1.5.2.1 Magnetic Field

We determine the existence of a magnetic field in the space where a magnet is acted upon by a
magnetic force. The magnetic field is quantified by two properties: “magnetic intensity” or “field
strength” H, which is measured by the force acting on the magnet (in units of ampere-turn per meter,
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LF EHFRF

circuits
Fig. 1.17 The relationship
between EHF, RF, and LF
design methods with
respect to exact and
approximated Maxwell’s
equations

Fig. 1.18 The role of Maxwell’s equations relative to electrical circuit analysis. After the low-frequency approximation
is applied, i.e., d � λ (that is, the transmission distance is much smaller than the signal wavelength), Kirchhoff’s current
law (KCL) and Kirchhoff’s voltage law (KVL) equations are used instead of the full set of Maxwell’s equations

A/m); and “magnetic induction” or “magnetic flux density” B, which is measured by a force acting
upon moving electrical charges (in units of Tesla, T). Permeability of the medium where the magnetic
field exists is defined as the ratio μ = B/H. That is to say, the material dependent multiplication
constant μ is referred to as “magnetic permeability” and shows how much B is modified by the
material. In a vacuum, the two vectors B and H are identical, except for the vacuum permeability
constant μ0 = 4 π × 10−7 H/m (which is fixed through the definition of an ampere). In conclusion, a
magnetic field is a field of force produced in two ways: by moving electric charges, i.e., by electric
fields that vary in time, or by the “intrinsic” magnetic field of elementary particles associated with the
spin of the particle.

1.5.2.2 Electric Field

We determine the existence of an electric field in the space where an electric charge is acted upon
by an electric force. Similarly to a magnetic field, an electric field is quantified by two properties:
“electric intensity” or “electric field strength” E, which is measured in units of volts per meter (V/m);
and “electric flux density” or “induction” D, which is used to account for free charges within materials,
also referred to as an “electric displacement field”, measured in units of coulombs per square meter
(C/m2). The two electric fields E and B are connected through the permittivity constant ε as D = εE.
In a vacuum, the vectors E and B are identical, except for the vacuum permittivity constant ε0.
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Fig. 1.19 An electric field
and the induction lines
between two point charges

As opposed to a magnetic field, which originates and ends at the same magnetic dipole (i.e., it is
not possible to separate the “north” and “south” sections of a magnet), an electric field originates at
positive charges and sources at negative charges, regardless of the separation distance (see Fig. 1.19).

Example 1.6. Derive an expression for the capacitance of a parallel-plate capacitor with a plate area
of S and distance d between them, where the plate separation d is much smaller than the plate side
d �√

S, i.e., the fringe electric field is ignored.

Solution 1.6. If the two plates carry charges of +q C and −q C respectively, the flux density at any
point between the plates is

D ≡ q
S

[
C

m2

]
∴ E =

D
ε
=

q
ε S

[
V
m

]
(1.11)

because the electric field between the two plates is constant and homogeneous, the potential difference
between the plates is

V = E d =
q

ε S
d [V] ∴ C ≡ q

V
= ε

S
d

[F]. (1.12)

Example 1.7. Derive an expression for the capacitance of a co-axial capacitor, where the inner
cylinder has radius a m and the outer cylinder has radius b m. The capacitor is l m long. Again, ignore
the fringe electric field at the ends of the capacitor.

Solution 1.7. If the two cylinders carry charges of +q C and −q C respectively, the induction field is
radial, hence at point r between the plates, i.e., (a < r < b) the area of interest is S = 2πrl, leading to

D ≡ q
S
=

q
2π r l

[
C

m2

]
, (1.13)

∴

E =
D
ε
=

q
2π r l ε

[
V
m

]
. (1.14)

Because the electric field is not constant (it is radial and varies with r), we write an expression for the
potential difference between the plates as

dV = E dr V ∴ V =
∫ b

a
E dr =

∫ b

a

q
2π l ε

dr
r

=
q

2π l ε
ln

b
a

[V], (1.15)

∴

C ≡ q
V

= ε
2π l

ln
b
a

[F]. (1.16)
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Fig. 1.20 Electrical
shielding

It is important to note that if there is a potential difference between any two conductors, or two
points on the same conductor, then an electric field exists between them. The electric field can be
visualized as induction lines that terminate on induced charges in the conductors, therefore a “parasitic
capacitance” must exist between two points at different potentials. If the points are on the same
conductor, than the conductor has “self-capacitance”.

1.5.2.3 Electrical Shielding

In most cases, the unavoidable parasitic capacitance is not desired, which calls for some form of
isolation between two objects at different potentials. Consider the rather realistic situation in Fig. 1.20
(left), where an object A is at a higher potential than an object C, both referenced to an object B that
serves as the local reference, i.e., “ground”. Induction lines, therefore, originate at A and terminate
at B and C, which is to say that there is parasitic capacitance created by these three objects. If the
goal is to isolate object C from the influence of A, an additional “shield” must be added around C
(as in Fig. 1.20 (right)). Ideally, the shield must be at the same potential as the ground, so that the
induction lines are given an opportunity to terminate other than at C. In practice, sensitive electronics
are literally encased in a metal box (sometimes a partial metal screen can be used) that is connected
electrically to the local ground potential.

1.5.2.4 Magnetic Shielding

Magnetic shielding is a bit more complicated than electrostatic shielding and is never perfect.
Magnetic induction lines cannot be terminated, only diverted, hence a thick material of high
permeability is used to redirect magnetic flux away from the object that needs to be shielded.

1.5.2.5 Displacement Current

A fine point that has been ignored so far was, in fact, one of the most important issues that Maxwell had
to work around. Let us consider the case of a plate capacitor with a vacuum dielectric. That is, there
are no electrons nor any other charges to carry the current through the capacitor. Nevertheless, it was
proven by experiment that the charge–discharge current does flow through, which means that KCL
is not valid! In order to make his equations work, in a stroke of genius, Maxwell added a new term
called “displacement current” into Ampère’s current law equation. Displacement current is equal to
the charging and discharging currents in the external circuit. By doing this, Maxwell was able to derive
the EM wave equation and to prove theoretically the existence of EM waves and the speed of light. At
the time, the additional term in the equations could not be experimentally confirmed and the concept
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of a “field” was still some time ahead. As we now know, EM waves do exist, otherwise we would not,
which means that, although, we still do not know the real nature of the displacement current, we have
accepted it as part of our reality. If you think that Maxwell was the only one who artificially introduced
a new term into his equations (a new term that initially seemed to be an arbitrary addition and was
subsequently proven by experiment), just remember Einstein and Planck. If anything, these examples
only prove the power of applied mathematics. More recently, the development of string theory is
taking the same approach, although it may take a while (if ever) before it is proven experimentally.

For slow-changing fields, it is common practice to use quasi-static approximation of Maxwell’s
equations, which is what we will be using in this book.

Example 1.8. Derive an expression for the resistance R of a conductive piece of material having
cross-sectional area S and length l.

Solution 1.8. Starting from Maxwell’s equations, the definitions for potential difference ΔV along a
one-dimensional electric field and current density J give

E = ρ J =
J
ρ

ΔV =−
∫

Edl J =
I
S
, (1.17)

where E is magnitude of the electric field along the conductor, σ = 1/ρ is the conductivity of the
material, ρ is the resistivity of the material, J is the current density, S is the cross-sectional area of the
conductor, and l is the length of the conductor. Assuming a uniform electric field and homogenous
material, it follows that

E =
V
l

J =
I
S

∴ V
l
= ρ

I
S

∴ R ≡ V
I
= ρ

l
S

[Ω]. (1.18)

1.5.3 The Concept of High Frequency

We very often use the term “high frequency” (HF) and it is valid to ask how the term high frequency
is defined. Is there any particular number, for example 1 kHz or 1 GHz, that is accepted as defining
“high frequency” or is there something else that is important to notice?

In order to answer this question, let us take a look at a simple, one-dimensional wave of an electric
field travelling the z direction along the conductive wire’s length, whose length is l, as

Ex = E0x cos(ωt − kz), (1.19)

where Ex is the electric wave field component along the x coordinate, E0x is its maximum amplitude,
ω is the angular frequency, k = |k| = ω/c = 2π/λ is the wave vector value, z is the space coordinate
showing the direction of wave propagation (which is perpendicular to the electric field vector), and
the initial phase φ0 is assumed to be zero.

The electric wave travels inside a “long” conductive wire aligned along the z coordinate, where
the wave equation (1.19) explicitly shows the time t and space z arguments of the electric field. It is
very important to note that, in this case, the term “long” implies that the wire length d is measured
in units of the wavelength λ . In other words, this is a relative measurement where the wire length
d is measured by the number of wavelengths λ . For example, Fig. 1.21 shows the wire length to be
d ≈ 2.25λ . Therefore, it should be obvious that, for a given physical wire length d, whether the wire
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Fig. 1.21 A unidirectional wave front inside a conductive wire, with a single time frame shown in space. The measured
voltage amplitude along the wire drastically depends upon the current location in space along the z axis. Try to compare
the current that would flow into a branch connected at a point corresponding to z = λ/4 against the currents flowing into
branches connected at points where z = 2λ or z = 3λ/4

is quantified as “long” or “short” depends strictly on the signal frequency. Hence, a “short” wire is one
where the wire length is much shorter than the wavelength, i.e., d � λ , while a “long” wire implies
that the wire length d is either comparable to or longer than the waveform λ , regardless of whether
the signal frequency is 60 Hz, 1 kHz, 1 GHz or any other number. The engineering rule of thumb is to
estimate the wire length as “short” if d � λ/10; keep an open mind for the grey area between “short”
and “long”.

As a thought experiment, let us imagine that the time for this wave field has stopped (except for the
little ant), so that the ant can observe and closely examine a “single frame” of this movie, i.e., t = const,
while walking along a long conductive wire (see Fig. 1.21). Because this is a long wire, the waveform
goes through more than a full cycle in space, which is to say that the measured potential along the
wire varies between its minimum and maximum amplitude values in accordance with (1.19). A direct
consequence of this situation is that, if a network branch contains portions of this wire, Kirchhoff’s
voltage law (KVL) is not valid, i.e.

n

∑
i=1

Vi 	= 0. (1.20)

That consequence arises because KVL derived from Maxwell’s equations assumes that the wire length
is d = 0 (or, equivalently, λ = ∞), which in general is not the case, except for a DC signal. The spatial
behaviour of the voltage (and its corresponding current) must be taken into account in cases when the
signal wavelength is comparable to the conductor length (i.e., in the case of a “high-frequency signal”)
and Kirchhoff’s circuit laws cannot be directly applied in their approximated form. The realization of
this relationship led to the development of a mathematical model known as the transmission line
model.

In order to circumvent the above problem, a long conductor carrying a high-frequency signal is split
into a number of short-length sections Δz (mathematically Δz → 0), which is to say that KVL is valid
when applied to each section Δz separately (see Fig. 1.22). The physical properties of the wire section
are then modelled using distributed electrical parameters R, L, C and G, where the corresponding
electrical units are expressed in terms of the unit length, i.e., Ω /m, H/m, F/m, and S/m respectively.
Analysis of each section is reduced to the analysis of a traditional circuit with lumped parameters.

Electric circuit representation of the line sections is a very useful modelling tool because it:

• Is a very intuitive model that is consistent with the two-port network methodology.
• Permits analysis using KVL and KCL.
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Fig. 1.22 A long
conductor (relative to λ ) is
divided into infinitesimally
short sections Δz � λ and
each section is modelled
using distributed circuit
elements R, L, C, and G

It has the following limitations:

• It is a one-dimensional model that does not include leaking fields and interference with other
components.

• Material nonlinearities are mostly ignored.

In conclusion, KVL and KCL models are definitely applicable at DC and for “low-frequency”
signals. For example, a 60 Hz signal (λ ≈ 5,000 km) can be analyzed using Kirchhoff’s laws if the
signal is measured on a small PCB (with a wire length of, say, d = 10 cm). However, if the 60 Hz
signal is carried across a continent, i.e. λ ∼ d, than a more accurate transmission line model must
be used. Similarly, a 1 GHz signal (λ ≈ 300 mm) must be treated with the transmission line model if
used on a 10 cm long PCB but the KVL model would result in a close-enough solution if the 1 GHz
signal is carried by a 100μm long wire inside an IC. Finally, an analysis of antennas and EM wave
propagation through space must include full Maxwell’s equations.

A solid understanding of these two extreme approximations, i.e., low frequency (LF) and high
frequency (HF), is important for mastering RF circuit design. In this introductory book, however, we
employ only low-frequency, quasi-static RF circuit design techniques for purposes of mastering the
basic RF design principles without too much emphasis on specific properties of high and ultra-high
frequency systems, which are the subject of more advanced courses.

1.6 RF Communication Systems

By now, we should be ready to carry out, at least in principle, a feasibility study of an RF
communication system using the current technology. The goal is to transmit an audio signal using
RF waves and faithfully reproduce it at the receiving end. Based on the principles introduced in this
chapter, a rough block diagram of one possible system architecture is shown in Fig. 1.23.

At the beginning of the transmission chain, the mechanical sound wave produced by vocal cords
(1) must be converted into its equivalent electrical signal (2) by a microphone. This electrical signal
contains the complete information that needs to be transmitted and it is now ready to take a ride on
its assigned carrier. It is the job of the modulator (3) to accept the signal and mix it with the carrier,
which is enabled by the upconverter (4), so that the signal is imprinted as the carrier’s envelope.
The modulated carrier (5), with the information “riding” as its envelope, is now pushed into the
transmitting antenna (6) and radiated into open space in the form of an EM wave (7). At this point,
the information is available to anyone who is within the receiving range and whose “electrical length”
matches that of the carrier. It should be noted that, at the same time, space is very busy and filled with
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Fig. 1.23 A basic block
diagram of a wireless
communication system and
its required components

many other carriers trying to reach their respective destinations. For the time being, the most important
condition is that within the given space there must be no more than one carrier of any given frequency.
Otherwise, two information packages travelling on separate carriers with indistinguishable carrier
frequencies would unintentionally mix with each other and would be lost forever. In Sect. 9.6, we
expand this condition to include one more frequency that, for now, we refer to as a “ghost frequency”.
There is no restriction on the number of receivers within the receiving range; in fact, radio and TV
broadcasting companies spend vast amounts of money and resources to keep increasing the number
of receivers for their broadcasting signals within the receiving distance range. This receiving distance
range is limited by the power of the transmitted signal (its “loudness”) and the sensitivity of the
receiver (the quality of its “hearing system”).

A receiver expecting a message must first adjust its “electric length” to match the frequency of
the carrier. Under that condition, the receiving antenna (8) and the tuning section (9) start to oscillate
in synchronicity with the incoming carrier, while (ideally) ignoring all other carriers. Using a simple
analogy, we can visualize the receiver and the tuning section as a wall with a number of doors in
various colours. At any given time, only one door is open (i.e., tuned) and only carriers of the matching
colour get through. All other carriers face the wall with their matching colour doors closed.

Now there is no need for the carrier signal itself—it is the job of the demodulator (10) to extract
the envelope and discard the carrier. After travelling a long way, the incoming wave is very weak (it is
not economical to place receivers closer to the transmitter than needed), hence there is significant
amplification (11) present in the receiving path. Stated differently, it is beneficial to design receivers
with high sensitivity and maximize the distance between the transmitter and the receiver.

At the end of the receiving chain, the signal carrying the information is ready to be converted
from electrical to mechanical form by a speaker (12) and finish the last leg of the journey the way it
started—as a sound wave understandable by humans (13). The magic is done and the virtual distance
between two humans becomes independent of the physical distance.

1.7 Summary

In this chapter, we have surveyed the fundamental principles required to understand the transmission
of information over long distances using waves. The philosophy of building communication systems
intended for this purpose is driven by the main constraint that, at the end, the information must be
detectable by the human senses. The two most important are sight and hearing, both sensitive to wave
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stimulus. Our hearing is capable of distinguishing sound waves in the range of 20–20,000 Hz, thanks
to our internal spectrum analyzer, the cochlea. Each frequency from this band is perceived by our brain
as a tone of a certain pitch, which means that we are capable of processing complicated, fast-changing
sound signals and interpreting them, for instance, as speech, bird song, noise, or music. Our sight is
sensitive to EM waves within a narrow band of frequencies centred around 5×1014 Hz, which we refer
to as visible light. Unlike sound, light and other EM radiation does not need matter to travel through.
Although it is still debatable exactly how EM radiation propagates through the space, nothing stops us
from exploiting the fact that it does. Not only that, it travels at a speed of close to 300,000,000m/s and
is proven to be electrical in nature. An important parameter of any wave is its wavelength λ , which is
calculated by dividing the wave’s propagation speed by its frequency. Knowing a wave’s wavelength
helps us to compare waves to physical objects that need to interact with it. By doing so, we have
learned how to design antennas suitable for interaction with waves of a particular frequency.

Discovery of this vast frequency band gave us an extremely valuable resource capable of carrying
huge amounts of information simultaneously. It is comparable to a super highway with many parallel
lanes. In order to make practical use of it, we had to invent precise and controllable methods for
bidirectional translation of a given frequency to any other frequency and back, while preserving the
original information. Thus, we also had to establish “rules of the road” for the frequency shifting to
make sure that information travelling through very busy space does not collide. In order to do that,
the whole EM frequency band is split into a large number of narrow bands following a very strict set
of rules. We can visualize this collection of narrow frequency bands as a humongous set of parallel
pipes, where each pipe originates at the information transmitting point and is just wide enough to
carry that particular information. We use the terms “transmission channel” for each of these pipes
and bandwidth to denote the “diameter” of the pipe. Once the information is radiated into space by a
single transmitter and enters its assigned transmission channel, the number of receivers tapping into
the channel is unlimited. Specifications for the transmitting equipment and the rules of transmission
are strictly regulated by independent government agencies, for example, FCC in the USA and CRTC
in Canada.

The conversion of the original sound wave to a radio wave at a particular frequency, and back,
is done by electronic circuitry designed specifically to implement the mathematical operations of
upconversion and downconversion. Details of these two primary steps in wireless communications
were worked out using Maxwell’s equations and basic trigonometry. Since the communication system
is based on an application of electricity, the rest of this book is devoted to a detailed study of the
general principles of electricity and time-varying electrical signals, the mathematical principles behind
radio, and the design of practical electronic circuits that are synthesized to implement the required
mathematical equations.

Problems

1.1. Calculate the intrinsic wave impedance, phase velocity, and wavelength of an EM wave in free
space for the following frequencies: f1 = 10 MHz, f2 = 100 MHz, f3 = 10 GHz.

1.2. Starting from the electrical line section model, Fig. 1.22 derive: (a) an expression for the general
characteristic line impedance; (b) an expression for the lossless characteristic line impedance Z0.

1.3. Plot the graph of the radial magnetic field H(r) inside and outside an infinitely long wire in air
of radius a = 5 mm, aligned along the z axis and carrying a DC current of I = 5A.

1.4. Find the induced voltage of a thin wire loop of radius a = 5 mm in air subject to a time-varying
magnetic field H = H0 cosωt, where H0 = 5 A/m and the operating frequency is f = 100 MHz.
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1.5. The instantaneous voltage of a waveform is described as v(t) = Vm cos(2π f t +φ) where
ω = (2π 100) rad/s and φ = π/4. Calculate the phase at t = 15 ns.

1.6. The instantaneous voltage of a waveform is described as

v(t) = cos(2π × 1× 103 t)+
1
3

cos(2π × 2× 103 t)+
1
5

cos(2π × 3× 103 t) (1.21)

Using any plotting software, plot v(t) on the same graph as the three single-tone terms over at least
two periods of the slowest tone.

1.7. A sinusoidal wave is defined as v(t) = 10V sin(100 t + 45◦). Determine: (a) the amplitude;
(b) the vRMS value; (c) the wave frequency; (d) the wave period; and (e) the phase at time t = 1 s.
Convert v(t) into its equivalent cosine function.

1.8. An arbitrary waveform v(t) consists of DC = 1V, the fundamental tone v0 = 2 sinωt, and the
second harmonic v2 = 3/2 sin2ωt. Without using any plotting software, sketch the v(t) waveform to
scale.



Chapter 2
Basic Terminology

Abstract Our material world is reasonably well described by the set of working models that have
been systematically derived in classical physics to map our perception of reality into compressed
mathematical descriptions. These models are valid for most medium-intensity external conditions.
For the purpose of our discussion, we accept them with their limitations and approximations as if they
were the complete truth. That is, in this book we are not concerned with explaining the exact nature of
all things. Instead, we merrily move forward and learn how to use the various phenomena and design
new effects. In this section, we present the formulations of basic variables that are needed for RF
circuit design and define the basic terminology.

2.1 Matter and Electricity

Conclusions that all matter consists mostly of electricity and that electrons are responsible for all
chemical reactions in the known universe have been among the top intellectual achievements in human
history. A positively charged nucleus contains almost all the mass of the atom and determines which
element the atom is, e.g. silicon, oxygen, or any other element. The nucleus is generally very stable
and it takes high amounts of energy to take it apart, i.e., to convert an atom into another element.
In contrast, the fast-moving, negatively charged electrons contribute only a small percentage to the
total atomic mass, however they determine the types of chemical reaction into which the atom enters.
We can visualize fast-moving electrons as creating “shells” around the nucleus that are not easily
penetrable, similar to the barrier created by a fast-spinning airplane propeller. However, a behaviour
that is of much more relevance to our subject is that, in some cases, an electron may easily leave the
atom and, in other cases, an external electron may join an atom by finding a place in the outermost
shell. These “free-moving electrons” are responsible for a myriad of phenomena, only a small part of
which are studied in this book (Fig. 2.1).

2.2 Electromotive Force

Once an electron leaves its native atom or joins some other hosting atom, a number of interesting
things start happening. To start with, an atom that has lost one or more of its electrons is not electrically
neutral—it now has an overall surplus of positive charges and is referred to as a “positive ion”.
Similarly, an atom that receives one or more external electrons in its outermost shell gains a surplus
of negative charges and is referred to as a “negative ion”. It is important to notice that ions do not
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Fig. 2.1 The classical model of an atom consists of the nucleus (a massive central matter) and shells created by fast-
moving electrons. The number of positive charges (protons) is equal to the number of negative charges (electrons)
making the atom overall electrically neutral, even though an atom consists of charged particles. (Drawing not to scale.)

change the material itself, i.e., silicon is still silicon, oxygen is still oxygen, etc. However, charged
particles interact by means of the electric field between them (see Fig. 1.19), which is a source of
stress in the material that, theoretically, extends into the space infinitely far away. This stress due to
unequal distribution of charges is manifested by an attractive or repelling force between the charged
particles. Furthermore, the electric force is directly related to “potential energy”, which defines the
“potential” at a point inside the electric field, so that the potential energy of the charged particle at that
point is measured relative to the reference point in infinity. A relative, and more practical, measure of
potential is the “potential difference” (also known as the voltage) between two particles (or charged
objects), where one of the objects serves as the reference point. In other words, the voltage V between
objects A and B, is measured as the difference between their potentials, i.e., V = VA −VB. Most solid
materials have their ions fixed (liquids and gases do not), while free electrons are pushed by electric
field forces. Therefore, inside an electric field, the negatively charged electrons keep moving until,
eventually, the overall electrical balance is restored. It is important to note that, by being negatively
charged, the natural direction of the electron flow is towards the positive ions.

An interesting situation arises when, for example, a metallic wire (that happens to have a large
number of free electrons) is connected to a device called a “battery”. Then, the imbalance of the
charges is maintained because the battery serves as an infinite source of free electrons because it
provides “electromotive force” that moves the electrons from higher to lower potentials (which is
opposite to their natural flow). The assembly of the metallic wire and the battery is referred to as a
“closed circuit”, where the battery enables the constant flow of electrons within the loop, as long as the
path stays closed. This flow of free charged particles from higher potential to lower potential1 caused
by an electromotive force is referred to as “electric current”. A battery serves a similar role to a water
pump, which constantly pumps water to the top of a hill (i.e., increases its potential energy) and the
water is pulled back to the bottom of the hill by the gravitational force (i.e., the potential energy is
converted into kinetic energy). On its way down, the water flow may be used to do some extra work,
for example, to spin a watermill.

1Keep in mind that, for historical reasons, the definition of the positive electric current direction is opposite to the
direction of the moving electrons (a surplus of electrons means more negative charge).
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2.3 Electric Current Effects

Now that we have established why and how the electric current came to be, it is natural to ask what it
can do. At the very fundamental level, an electric current:

• Generates heat: The interaction of flowing electrons with the atomic lattice of a metallic material
causes the atoms to increase the amplitude of their vibrations, which manifests as an increase in
the material’s temperature. Sometimes this heat generation is desirable, e.g. in an electric heater,
and sometimes it is not, e.g. in a light bulb. Regardless of its desirability, it is very important to
quantify the rate of heat generation (more details are presented in Sect. 4.1.4).

• Generates a magnetic field around itself: This property of an electric current is fundamental for
wireless communication systems and is studied in great detail through the rest of the book.

• Causes a chemical change in some materials: This property of an electric current is exploited in
chemistry, especially when a current passes through a liquid and enables the process of charging
chemical batteries.

It should be noted that all of the above phenomena are bidirectional. Although of minor importance,
the production of electricity in thermocouples is widely used for manufacturing thermal sensors. By
far, the most exploited mechanism of electricity production is based on moving magnetic fields.
Chemical batteries are still the most commonly used source of electric current for our mobile
electronic devices.

2.4 Conductors, Semiconductors, and Insulators

In general, electrons do not have enough energy to leave a material. Instead, they keep exchanging
their position by jumping from one atom to another. Every electron jump leaves a vacant spot, referred
to as a positively charged “hole”, behind in the positively charged ion, which in turn attracts some other
electron and becomes neutral again. Due to large number of joggling electrons at any given time, a
useful model is to treat them as an “electron cloud”. Electron movements are induced in many ways,
e.g. heat, and they happen randomly in time, which means that the average direction of the moving
electron cloud is zero, similar to a swarm of bees that stays at one spot even though all the bees are
very busy buzzing around; i.e., there is no spontaneous current flow in any particular direction. In
order to force the electron cloud inside the material to have a non-zero average movement, an external
electric field must be applied, for example by means of a battery. The external battery that is connected
to a conductor serves as a “pump” that forces flow of the electrons from the battery’s negative terminal
through the conductor to its positive terminal. Materials that easily allow this directional drift of their
electron cloud are called conductors. Most metallic materials are good conductors of electric current.
A common model of a conductor assumes an ideal metallic wire, which allows an infinite electric
current flow, even if an infinitely small voltage is applied at its ends. In other words, the ideal conductor
is capable of dissipating an infinite amount of heat, which is to say that it can handle infinite power.
Although real conductors do not have these properties, this idealization is very useful and commonly
used every time you draw an electric schematic diagram. The connecting lines between the circuit
components are assumed to be ideal wire conductors. This approximation is mostly valid, especially
for circuits using low levels of current and operating at low frequencies.

Materials that do not have enough free charge–carriers to form the electron cloud are called
insulators. Most plastic and glass-based materials are good insulators. That means that even if an
internal electric field is created by an external potential difference across the isolating material and
electric stress is induced in the material, (to the first approximation) there is no free current flow



34 2 Basic Terminology and Definitions

through the insulator. A common model for the ideal insulator assumes that no single electron can
leave the insulating material if a constant electric field is applied. Moreover, the ideal insulator is
capable of handling infinite voltage across its terminals without allowing any current to flow. That
is, because no current flow is allowed, the ideal insulator does not dissipate any amount of heat.
This approximation is very useful because it enables us to model ideal discrete circuit components. In
reality, there is always a small “current leakage” flowing through an insulator, however in applications
with moderate requirements the leakage of current is safely ignored.

A third, and equally important, category of materials is known as “semiconductors”. In general,
semiconductive materials are neither good conductors nor good insulators. However, they do have
a sufficient number of freely moving electric charges for a given volume of the material, which is
strictly controlled so that the population of free charges is in the minority from the macro perspective.
Under specially orchestrated conditions, for some types of semiconductor structures, it is possible
to temporarily collect these free charges and to turn the non-conductive and localized volume of the
semiconductor material into a very good conductor, i.e., to locally “invert” its conductive property.
Once the controlling conditions are removed, everything reverts to the initial non-inverted state. This
process is non-destructive, repeatable, and under full control of the circuit designer. Important variants
of controlling current flow in semiconductor devices are outlined in Sect. 4.3.

2.5 Basic Electrical Variables

In this chapter, we have intuitively introduced the concept of “matter”, which is a form of energy, and
its basic property of “electric charge”. In that model, the fine point is that electrons and protons are
assumed to be merely material “carriers” of their respective charges.

2.5.1 Voltage

The concept of a particle charge, q (a scalar variable), leads to the concept of an electric field E (a
vector variable), and to the electrical potential VX (a scalar variable that is relative to a point infinitely
far away) of a charged particle that occupies a point in space at the coordinate X . Two particle charges,
occupying different points X and Y in space in the electric field, are therefore at different potentials.
Thus they are said to have potential difference (p.d.) between them, which is referred to as “voltage”
V and calculated as ΔV =VX −VY . Note that voltage is a relative measure that can be either positive
or negative, depending upon which of the two charge potentials is assumed to be the local reference.

In a broad sense, electric fields are classified as either “static” or “dynamic”. In the case of a static
electric field, the electric potential created by a point charge q is described by Coulomb’s law

E =
1

4πε0

q
r2 r, (2.1)

where E is the electric field vector, ε0 is the vacuum permittivity (or electric constant), q is a single
particle charge, r is the distance from the charge, and r is the unit vector pointing from the particle
charge to the evaluation point in space.

By definition, the electric potential at a point r in a static electric field E is given by the line integral

ΔVE =−
∫ L

0
E ·dl, (2.2)
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where L is an arbitrary path connecting the point in infinity (i.e., with zero potential) to point r and dl
is the unity path element. Note the dot product of the two vectors in the integral. In physical terms,
(2.2) represents the electric work W (scalar variable) of the electric field along the integral path

W = q
∫ l

0
E ·dl = qΔVE, (2.3)

∴

V =
dW
dq

[V], (2.4)

where voltage V is measured in volts [V]. Note that work represents the energy that is needed to move
a particle over a certain distance.2 In the case of a single particle charge q inside an electric field, (2.2)
yields its potential as

VE =
1

4πε0

q
r
. (2.5)

A time-varying electric field, which is relevant to our subject, is always linked to a time-varying
magnetic field (and vice versa). Consequently, it is not possible to describe the electric field in terms
of a scalar potential V (because the integral (2.2) is now path dependent). Instead, one must use
Maxwell’s fundamental equations. For the sake of argument, one possible solution for the scalar
potential is

−∇2V =
ρ
ε0
, (2.6)

where ρ is the charge density. For more details on Maxwell’s equations, the reader is advised to
consult more advanced textbooks on electromagnetism, some of which are listed in the references
section.

2.5.2 Current

We have established the concept of an electric charge and concluded that a charge moves in space
if a force F is applied, in this case, in the form of an electric field.3 Observing this flow of charged
particles, we define an electric current I (a scalar variable) as the net transfer of particle charges
across a surface per unit of time. As a simple analogy, imagine standing on a sidewalk while a parade
is marching by. Each person marching in the parade represents one unit of charge and the street width
determines how many persons can fit in parallel. Start a stopwatch and count the people who pass over
certain period of time, say, one second. Obviously, the wider the street, the more people pass through
the street in a given time, i.e., the higher the “current” of people. Strictly, an electric current I is defined
either as the rate of change of charge in time or the current density within the total conducting surface

I =
dQ
dt

=

∫
S

J ·ds [A], (2.7)

2By implication, one could sweat for whole day while trying to push a wall but no work would be done if the wall did
not move, i.e., dl = 0.
3The electric field E is defined as the force F per positive charge q that would be experienced by a stationary point
charge at a given location in the field, i.e., E = F/q.
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Fig. 2.2 Time diagram of
charge flow for
Example 2.1

where current I is measured in amperes [A], Q is the total amount of charge through the cross-sectional
area S (not to be confused with the quality factor notification Q used in this book), dt is the differential
unit of time, J is the current density vector, and s is the vector of the conducting surface element
oriented in space. Note the dot product of the two vectors in the integral. Thus, for the known current,
the total amount of transferred charge is

Q =

∫ t

0
i(t)dt. (2.8)

Example 2.1. A function that represents an instantaneous current amplitude is shown in Fig. 2.2 (left).
The current flows through a conductor whose cross-section is shown in Fig. 2.2 (right). Determine the
total amount of charge passing through: (a) from time zero to t = 1 s; (b) in the time period from
t1 = 1 s= to t2 = 2 s; and (c) from time zero to t = 2 s. In addition, find the value of the current
density J.

Solution 2.1. By definition, the amount of electric charge is calculated using the integral (2.8), which
in this case becomes trivial, because the flow of current is constant within each of the given time
frames, hence

Q1 =

∫ 1s

0
i(t)dt = 1A

∫ 1s

0
dt = 1C,

Q2 =

∫ 2s

1s
i(t)dt =−1A

∫ 2s

1s
dt =−1C,

∴

Q =
∫ 2s

0
i(t)dt = 0, (2.9)

that is, the net charge flow is zero. The current density is calculated by definition (2.7), which is also
trivial because the current is constant from zero to t =1s and, therefore the current density is constant,
i.e.,

I = J
∫

S
ds = J× S ∴ J =

I
S
=

1A
7mm2 =

1
7

A
mm2 ≈ 142.86× 103 A

m2 ,

where the cross-sectional area S is found by inspection of the plot Fig. 2.2 (right) to be S = 7 mm2.
Over the time period from t = 1 s to t = 2 s, the current density is J = −142.86× 103A/m2 because
the current vector I points to the negative side.
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Fig. 2.3 Block diagrams
for Example 2.2

2.5.3 Power

From the engineering perspective, it is important to establish not only the amount of energy needed to
perform a work, but also the rate of energy exchange, i.e., the rate of either generation or absorption
of energy. That brings us to the concept of power P (a scalar variable), which quantifies how fast, for
a given amount of energy, the work is finished. Or, in a strictly mathematical sense, after substituting
(2.4) and (2.7), the electrical power P is

P =
dW
dt

=
dW
dQ

dQ
dt

=VI [W], (2.10)

where power P is measured in watts [W]. To conclude, we keep in mind that all definitions introduced
in this section assume either a static or a quasi-static (i.e., steady state) electric field.

Example 2.2. Find the power being delivered to or absorbed by the three elements in Fig. 2.3 at time
instance t = 5 ms.

Solution 2.2. By definition, we write, −454.9 mW, 132 μW and 1.35 W.

2.5.4 Impedance

It is accepted convention to reserve the term resistance R for real resistive, i.e., frequency independent,
components and to use the term reactance for the equivalent resistance of an inductor XL or a capacitor
XC at a given frequency. By definition, a reactance is described only by the imaginary term jℑ
(including the j part, which takes care of the phase) of a complex number Z = ℜ+ jℑ. By the same
convention, a serial combination of a resistance and either capacitance or inductance is referred to
as impedance Z. For example, a serial connection of resistance R and inductance L is said to have
impedance of ZL = R+ jωL and ω is the radial frequency where the inductor reactance is calculated.
Similarly, a serial connection of resistance R and capacitance C is said to have impedance of ZC =
R+ 1/jωC = R− j/ωC. We note that inductive phase is positive and capacitive phase is negative.4

Two important parameters of any impedance are its absolute value |Z| and argument φ (also
referred to as a phase). In the complex plane, the real and imaginary axes are set at π/2 angle relative
to each other, thus the absolute value and argument of a complex number are calculated using
the Pythagorean theorem and trigonometric identities. For example, absolute values of RL and RC
impedances are

|ZRL|=
√

R2 +(ωL)2 |ZRC|=
√

R2 +

(
1

ωC

)2

, (2.11)

4See the definition of the phase of a complex number in Appendix D.
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while, by applying the same right-angle triangle rules, the phase is calculated as the ratio of the
reactance and resistance (i.e., the imaginary and real) parts of the impedance, while paying attention
to the sign of the reactance, i.e.

tanφRL =
ℑ
ℜ

=

∣∣∣∣ jωL
R

∣∣∣∣= ωL
R

, (2.12)

tanφRC =
1

jωCR
=−

∣∣∣∣j 1
ωCR

∣∣∣∣=− 1
ωCR

. (2.13)

We use all of these relationships extensively in the rest of the book. For the time being, just note that
both L/R and RC have dimensions of time.

Example 2.3. For an ideal capacitor C = 100 nF and an ideal inductor L = 100 nH, calculate the
following values at f = 100 MHz:

1. Find the impedance of a serial connection of the capacitor with a resistor R = 6mΩ.
2. Find the phase of a serial connection of the capacitor with a resistor R = 6mΩ.
3. Find the phase of a serial connection of the capacitor with a resistor R = 0Ω.
4. Find the impedance of a serial connection of the inductor with a resistor R = 4.6Ω.
5. Find the phase of a serial connection of the inductor with a resistor R = 4.6Ω.

Solution 2.3. It is handy to first convert the frequency into its equivalent radial frequency, i.e., ω =
2π ×100MHz = 628.319Mrad/s, and then by direct implementation of (2.11) to (2.13), we write:

1.

|ZRC|=

√√√√(6mΩ)2 +

(
1

628.319 Mrad
s × 100nF

)2

≈ 17mΩ.

2. For the phase calculation, we must pay attention to the sign of reactance, i.e.

tanφRC =− 1
ωCR

=− 1

628.319 Mrad
s × 100nF× 6mΩ

=−2.65258,

∴
φRC =−69.344◦ ≈ −70◦.

3. When resistance R = 0, then 1/ωRC → ∞, hence we must take a look at the limit of the tan
function. However, this time we pay attention to the sign of the reactance, and we look only at the
continuous range of angles5 within the range −90◦ to 90◦,

tanφRC =− lim
R→0

1
ωCR

=−∞ ∴ φRC =−90◦.

4.

|ZRL|=
√
(4.6Ω)2 +

(
628.319

Mrad
s

× 100nH

)2

= 63Ω.

5Remember that the tan function is periodic and its values tend to +∞ on one side and −∞ on the other.
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5.

tanφRL =
628.319 Mrad

s × 100nH

4.6Ω
∴ φRL = 85.813◦ ≈ 86◦.

6.

tanφRL = lim
R→0

ωL
R

=+∞ ∴ φRL = 90◦.

Therefore, we note that even a small resistance in series with a reactance introduces a visible phase
shift relative to the case of R = 0Ω, i.e., when the phase equals ±90◦.

2.6 Electronic Signals

In electronic communication systems, the useful information, i.e., the signal, is embedded and carried
in the form of voltage or current, or both. Time domain variations of either of these two variables are
then modelled using appropriate mathematical functions. For example, digital information is trans-
mitted by switching between two fixed voltage levels, which is modelled by using the pulse function.
In wireless radio communications, at least the ones that are the subject of this book, the transmitted
signal is embedded into a sinusoidal function. Therefore, we focus on properties of sine waves.

2.6.1 Properties of a Sine Wave

The basic characteristics of a travelling EM wave are based on a sinusoidal function (see Sect. 1.4).
Hence, in this section, we focus on several properties of a sine functions that are relevant to RF signal
analysis.

It is not difficult to prove that the average value of a sine wave over any integer number of cycles nT
is zero, where n is the number of cycles and T is the sine wave period. A geometrical interpretation is
that each period consists of one negative and one positive half-cycle, both having the same area. Since
the cosine and sine functions are related, cosω = sin(ω − π/2), for the purposes of this discussion, it
does not matter whether the sine or the cosine function is used in the analysis.

A very important case in engineering is the product of two sine waves. Let us consider the following
two sine wave functions, with frequencies ω1 and ω2 and an initial phase difference θ at t = 0,

A = asin(ω1t), (2.14)

B = bsin(ω2t −θ ), (2.15)

so that their product x = A B is simply written as6

6Use the trigonometric identity sin(α)sin(β ) = 1/2[cos(α −β )− cos(α +β )].
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x = absin(ω1t) sin(ω2t −θ )

=
ab
2

{cos [(ω1 −ω2)t +θ ]− cos [(ω1 +ω2)t −θ ]}

=
ab
2
(x1 − x2) (2.16)

and the average value xavg is then calculated as the sum of the averages of the two terms x1 and x2.
When ω1 	= ω2, the average of the first term x1avg is

x1avg = cos [(ω1 −ω2)t +θ ]avg = 0 (2.17)

for an integer number of cycles nT . Note, from (1.7), that the first term has a period of T = 1/( f1− f2).
Following the same argument, the same result is obtained for the second term,

x2avg = cos [(ω1 +ω2)t −θ ]avg = 0, (2.18)

which is to say that, for the case of ω1 	= ω2, the average value over the integer number of cycles of
the product of two sine waves is zero.

However, for the case of identical frequencies ω1 = ω2 = ω , (2.16) becomes

x =
ab
2

cosθ − ab
2

cos(2ωt −θ ), (2.19)

where the average of the second term cos(2ωt −θ ) is zero, which leads to

xavg =
ab
2

cosθ . (2.20)

In this case, the average value depends upon the phase difference (the two frequencies are identical)
and can, therefore, be adjusted to zero or anywhere between (±ab/2). As will be demonstrated
many times in this book, this observation is very important for RF design because the operation of
RF circuits for wireless communication is based on perfect frequency relationships among multiple
sinusoidal signals.

2.6.1.1 Root Mean Square

One possible view of a resistor is that it is a device that converts electrical energy into heat energy,
which is then dissipated either intentionally (as in a stove heater, for example) or as wasted energy (as
in a bulb, for example). Hence, it is important to know how much power is dissipated by the resistor
in case of both DC and AC over an integer number of cycles. To do so, let us first consider the simple
problem of calculating electrical power P dissipated by an ideal resistor R while conducting direct
(i.e., constant in time) current I. Electric power was defined in (2.10) and additional forms are

P =V I = I2 R =
V 2

R
, (2.21)

which, for a given resistance R, is dependent upon the current’s (or the voltage’s) squared value.
To find the answer for the case of periodic alternating current (e.g. i = Im sinωt), the calculation

of the constant current term I2 has to be replaced with the average value of time-varying quadratic
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current, i.e i2avg, which, by definition, represents a “quadratic mean” or root mean square (RMS) of
the current. Hence, calculation of the equivalent dissipated power is as follows,7

Pavg = ivavg = i2avg R ≡ irms R

=

√
1
T

∫ T

0
|i(t)|2 dt R =

√
1
T

∫ T

0
(Im sinωt)2 dt R

=
Im R
T

√∫ T

0
sin2 ωt dt =

Im R
T

√[
t
2
− sin2ωt

4ω

]T

0

=
Im√

2
R. (2.22)

The equivalent effective direct current (DC) of a sinusoidal alternating current is the AC peak divided
by the square root of two (2.22). In the case of a square wave, irms = Im, while for a sawtooth wave,
irms = Im/

√
3.

It should be noted that most handheld multimeters assume a sine waveform. They filter the
measured signal into an average value and then apply the 1/

√
2 correction RMS factor. Therefore, the

measured RMS voltage or current value is correct only if the input signal is sinusoidal. This is because
the true RMS value is proportional to the area under the waveform, not to the average value of the
waveform itself. For a sinusoidal waveform, the ratio of the average value to the area under the curve is
constant, so most of the time the measured result is correct but any distortion or offset leads to errors.

If several sinusoidal functions with various frequencies are added together, for example

i = asin(ω1t +α)+ bsin(ω2t +β )+ csin(ω3t + γ)+ · · · (2.23)

then the RMS value of the sum (2.23) must be squared, however, in this case all inter–products
between terms at different frequencies may be ignored because the average values of those products
are zero, which leads to

irms =

√(
a2

2
+

b2

2
+

c2

2
+ · · ·

)
. (2.24)

This result shows that, when calculating the power of a multi-tone signal, each tone’s power can be
calculated separately, which is the property exploited in Fourier’s analysis.

Finding the RMS value of a random signal is a bit more complicated and is left for a more advanced
course.

2.6.1.2 Common Mode of a Signal

A periodic function that fluctuates around an average value other than zero may be thought of as
being composed of a DC component ICM and an AC component added together (see Fig. 2.4), i.e.

7Use the trigonometric identity sin2 α = 1/2(1− cos(2α)).
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Fig. 2.4 A sinusoidal
current signal whose
common mode, i.e.,
average, level is ICM

Fig. 2.5 Graphs of a square signal for Example 2.4

A = ICM + Im sin ωt, (2.25)

where ICM is the constant value and Im is the maximum sine amplitude. Usually, ICM > Im (often
ICM � Im).

Example 2.4. Calculate the common mode level ICM, AC amplitude I, RMS value of the AC
component, and RMS value of the square signal in Fig. 2.5 (left). The value of current I is measured
in [A] and the time is measured in [ms].

Solution 2.4. A square function consists only of linear sections, hence the integration is simplified to
a simple addition over the period T . By inspection, the function period is T = 30 ms; write,

• The common mode of Fig. 2.5 (left), i.e., the DC level, is

Iavg =
4A× 10ms+ 1A× 20ms

30ms
= 2A. (2.26)

• The AC component is found by realizing that the square waveform is the sum of its DC and AC
components. By inspection, it is straightforward to recognize that the AC waveform must have
IAC = 2A during the first 10 ms and IAC =−1 A from 10 to 30 ms.

• The RMS value can be calculated, by definition, first for the AC component as

Irms(AC) =

√
(2A)2 × 10ms+(−1A)2 + 20ms

30ms
= 1.414A (2.27)

then, for the complete square waveform as

Irms =

√
(4A)2 × 10ms+(1A)2 + 20ms

30ms
= 2.45A (2.28)
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or, alternatively, the total RMS value could be calculated as the sum of the RMS squares of the DC
and AC components, as

Irms =
√

I2
DC + I2

rms(AC) =
√
(2A)2 +(1.414)2 = 2.45A, (2.29)

which gives the same result because the RMS value of a DC level does not change.

2.6.2 DC and AC Signals

A signal is loosely defined as any time–varying event being observed. In electronic communications,
signals are processed in form of either current or voltage; signal transmission can be either wired or
wireless.

Two general categories of electronic signals are DC signals that have constant amplitude in time
(for example, a battery voltage) and AC signals that have varying amplitude in time (for example,
voltage amplitude measured at the wall power outlet). Further, an AC signal can be either periodic
or aperiodic. Examples of periodic AC signal shapes are sinusoidal, square and saw waveforms, i.e.,
signals consisting of fixed, time-repetitive patterns. An example of an aperiodic electronic AC signal
waveform is thermal noise. Naturally, DC signals have a simpler mathematical representation and
treatment than periodic AC signals. On the other hand, aperiodic, or random, signals are more com-
plicated than periodic signals and they are treated using mathematical tools from statistical analysis.

In this section, we review terminology related only to the most important form of AC signals,
sinusoidal signals. Without being concerned about the nature of the signal, how it was generated, or
what physical quantity it represents, a general sine-wave function is represented by

a = Ap sin(ωt +φ) (2.30)

where:

a is the instantaneous value of time-varying quantity (voltage, current, power,. . . ).
Ap is the maximum or peak amplitude.
ω is the angular frequency (related to frequency as ω = 2π f ).
φ is the initial phase (often assumed to be zero).
t is the time variable.

Figure 2.6 shows two common representations of AC signal (2.30), namely a phasor (or rotating
vector) and its equivalent time-domain graph, where:

T is the period, i.e., the time interval required by the rotating vector to finish one full 2π cycle
(T = 1/ f ).

θ is the instantaneous angle (not to be confused with the initial phase φ ).

And, as we explained in Sect. 1.4.4, if two sinusoidal waveforms have the same frequency, then
they are also related by phase difference Δ = φ1 − φb (see Fig. 1.10). Further, depending upon the
relative values of the instantaneous phases of the two, it is said that one waveform is either “lagging”
or “leading” the other. For example, waveform A1 in Fig. 1.10 is leading waveform A2 by Δ . Of course,
we keep in mind that, because the two waveforms have the same frequency, the phase difference is
constant, otherwise it would not have been defined at all.
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Fig. 2.6 Sine-wave
representations: a phasor,
i.e., a rotating vector, (left)
and its equivalent
time-domain sinusoidal
function (right)

Fig. 2.7 A differential signal, V1 −V2, is constructed using two single-ended signals, V1 and V2. The two-single ended
signals have equal frequency, amplitude and common-mode values, while their phases are inverted, i.e., they are at 180◦
relative to each other. The amplitude of the differential signal is twice the amplitude of the single-ended signal, i.e.,
Vpp(diff ) = 2Vpp(se)

2.6.3 Single-Ended and Differential Signals

Typical signals, such as the sinusoids in Figs. 2.4 and 2.6, are also known as “single-ended” signals
because they consist of only one waveform that is referenced to the local ground. In this section, we
introduce a signal form that is very important to engineering, known as a differential signal, which is
created by using two single-ended sinusoidal waveforms in the following relationship. They have:

• Equal amplitudes
• Equal frequencies
• Equal common mode
• Opposite phases, i.e., the phase difference is π

Let us consider two sinusoidal signals v1 and v2 as

v1 =VCM +Vm sinωt, (2.31)

v2 =VCM −Vm sinωt, (2.32)

where (2.31) and (2.32) formalize the required relationship between the two waveforms, shown in
Fig. 2.7.
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If these two signals are added, then the sum is, obviously, v1 + v2 = 2VCM, which is a DC signal
and the v1 and v2 waveforms are lost. However, if they are subtracted, then we write

vdiff(t) = v1 − v2 = 2Vm sinωt, (2.33)

which is a very interesting result because the original waveform8 is still preserved, amplified by a fac-
tor of two and shifted down by the common mode value. The interesting part is that the amplification
was achieved by the addition of two signals (one of which was negative) instead of multiplication. We
note that the gain of factor two is significant, especially when we have weak signals to start with.

Let us explore this idea a bit further and assume that two conductive wires carrying the v1 and v2

signals are located physically close to each other. With that assumption, any interference signal n(t)
is added equally to both v1 and v2, i.e.

v1 =VCM + n(t)+Vm sinωt, (2.34)

v2 =VCM + n(t)−Vm sinωt, (2.35)

which, after subtraction again, results in (2.33). In other words, the common interfering signal is
removed from the differential signal. These two properties of differential signals, namely the gain
and the immunity to common noise, are beneficial and important enough that most modern, high-
performance, signal-processing circuits are designed to process differential signals. However, for the
sake of simplicity and accepted educational methodology, all circuits in this textbook are assumed to
be single-ended, leaving differential architectures for more advanced courses.

2.6.4 Constructive and Destructive Signal Interactions

The relative phase between two periodic signals is very important from the perspective of their sum.
In a circuit network, two currents entering the same node add up in accordance with KCL, while two
voltages within the same branch add in accordance with KVL. In a realistic circuit implementation,
it is almost inevitable to have two or more conductive wires in close proximity to each other. Unless
they have exactly the same potential along their full respective lengths at all times, there is always
capacitive cross-coupling between the two. Consequently, the two signals do interact, i.e., add, with
each other.

In Sect. 2.6.3, we encountered the intentional subtraction of two signals with opposite phases
for the purpose of creating a differential signal and exploiting its benefits, which is an example of
constructive signal addition. However, in general, the amplitudes, phases, and frequencies of two
adjacent signals are not equal (see Fig. 2.8). A special case of interest is when the two interacting
signals are opposite in phase and have equal frequency and equal (or almost equal) amplitude
(see Fig. 2.9). Under these special conditions, the two signals cancel, i.e., their sum is zero, and we
refer to this interaction as destructive addition. We keep in mind that the concept of signal addition
applies to all signals, not only to single tones. It is not difficult to see, for example, how one harmonic
within the complicated signal spectrum is easily removed from the spectrum with destructive addition
of the appropriate single tone, i.e., the one with the same frequency and amplitude and opposite phase.

8Remember, except for the phase difference, the two initial waveforms are identical.
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Fig. 2.8 A time domain
graph of two arbitrary
sinusoidal signals (the
dashed and thin lines) and
their sum (the solid thick
line)

Fig. 2.9 A time domain
graph of two sinusoidal
signals with equal
frequencies, inverted
phase, and almost equal
amplitudes (the dashed and
thin lines) and their sum
(the solid thick line). When
the amplitudes are equal,
the sum is exactly zero,
i.e., DC

It is important to realize that both constructive and destructive signal additions are used
intentionally in signal processing, as we will see later in this book.

2.7 Signal Quantification

Periodic signals are arguably the most important category of signals in the design of RF
communication systems. Therefore, it is important that we become familiar with the metrics used to
quantify periodic RF signals. Specifically, we are more interested in RF signal power levels than in
the instantaneous values of individual voltages and currents. The level of an RF signal’s RMS power
is traditionally expressed in dB.

2.7.1 AC Signal Power

So far, we have introduced AC through a pure resistive network. In general, we need to expand our
analysis to include inductive and capacitive elements as well. Being energy storage components,
these reactive elements may cause reversal of energy flow (i.e., power flow) within the network.
Consequently, it is common in the engineering community to define three “types” of power: real
power P (i.e., power delivered to a pure resistive network); reactive power Q (i.e., power delivered to
reactive components L and C); and complex power S (i.e., power delivered to a general RLC network);
where the modulus of complex power |S| is referred to as apparent power. At any given moment, the



2.7 Signal Quantification 47

Fig. 2.10 The instant-
aneous voltage (thin solid
line), current (dashed line),
and power (thick solid line)
in an AC circuit branch
showing phase difference φ

instantaneous power delivered to any circuit element or network is given by product p = vi, where p
is the instantaneous power, v is the instantaneous voltage and i is the instantaneous current. However,
in the case of alternating currents and voltages, there is a very important consequence to notice, which
we show here.

Let us assume that the instantaneous values of current and voltage in one branch of a circuit are
given as follows:

i = Ip sin ωt, (2.36)

v =Vp sin(ωt +φ). (2.37)

In other words, there is a phase difference of φ between the current and the voltage of that particular
branch. Then, the instantaneous power is calculated as

p = vi =VpIp sinωt sin(ωt +φ). (2.38)

Surprisingly, (2.38) suggests that at some instances in time the power is positive and at other instances
the power is negative (see Fig. 2.10). In order to correctly interpret the above statement, keep in
mind that the sign of power indicates only the direction of energy flow. Simply put, “positive power”
indicates that external world is supplying power to the circuit, while “negative power” indicates that
the circuit is delivering power to the world. This is possible only if some devices capable of storing
energy are present in the circuit, i.e., inductors or capacitors.

Using the same method to calculate the average power of this circuit branch as for obtaining (2.22),
we write

P =
1
T

∫ T

0
vi dt =

VpIp

T

∫ T

0
sinωt sin(ωt +φ) dt

=
VpIp

T

[
cosφ

∫ T

0
sin2 ωt dt + sinφ

∫ T

0
cosωt sin ωt dt

]
,

∴

P =
VpIp

2
cosφ =VrmsIrms cosφ =

V 2
rms

R
cosφ . (2.39)

An important observation regarding this result is that AC power depends upon the cosine of the phase
difference between the corresponding current and voltage. A direct consequence of this relationship



48 2 Basic Terminology and Definitions

is that in special cases when the phase difference φ = ±90◦ (i.e., in a purely reactive circuit), the
AC power factor cosφ is zero. When the power factor cosφ = 1 (i.e., in a purely resistive circuit)
the power is at maximum. Therefore, a power factor less than one always indicates the presence of
reactive (i.e., L and C) components in the circuit. Keep this important observation in mind until we
reach the discussion on capacitors and inductors in Chap. 4.

2.7.2 The Decibel Scale

In wireless communication systems, it is common to have an RF transmitter delivering signals at
power levels of the order of watts, kilowatts or even megawatts. As a comparison, the signal power
level at the receiving antenna can be only a few picowatts. That is, the power ratio of the transmitted
and received signals may be as large as 1,000,000,000,000,000 : 1. Clearly, using absolute numbers
is not the most convenient way of presenting RF signal relations.

By definition, the dB is a logarithmic unit of measurement that expresses the magnitude of a
physical quantity (usually power) relative to a specified or implied reference level. Its logarithmic
nature allows very large and very small ratios to be represented by a convenient number. Being a
simple ratio of two quantities, the dB is a dimensionless unit.

The Bel scale is defined as the logarithm of the base 10 of the power ratio. One Bel is a factor of
10, two Bels is a factor of 100, and so on. It is common, however, to use a more practical dB unit, so
that 10 dB is a power ratio of 10, 20 dB is a ratio of 100, and so on. It is useful to remember that 3 dB
is a power ratio of ≈2, 6 dB is a power ratio of ≈4, and so on.

Thus, power ratio (i.e., power gain G) is expressed in dB as

GdB = 10log
P2

P1
, (2.40)

where P1 and P2 are the two signal powers being compared, for example, the input and output powers
of an amplifier. Keep in mind that when GdB is a positive number, it indicates that P2 > P1 (often
referred to as “gain”), while a negative GdB number indicates that P1 > P2 (often referred to as “loss”).

If we want to express a voltage (or current) ratio (i.e., a voltage or current gain A) of two signals
v2 and v1 in the dB scale, and assuming that both signals are measured at the same impedance Z, then
the gain is expressed in dB as:

AdB = 10log
P2

P1
= 10log

v2
2/Z

v2
1/Z

= 20log
v2

v1
, (2.41)

which is to say that a voltage (or current) ratio of 10 equals 20 dB gain, a ratio of 0.1 equals −20 dB
gain, a ratio of 100 is equal to 40 dB gain, etc. It is handy to practice mental conversion between ratios
and dB units by taking the number of zeros in the ratio exponent and multiplying it by 10 for power
or by 20 for voltage or current; the final number is in dB units.

Because dB numbers are dimensionless they do not say anything about the absolute power levels
being compared. Hence, from a specified gain, we can only conclude whether there was power
amplification or power loss. From such a statement, however, we cannot conclude either what kind of
gain it is (i.e., power, voltage, or current) or which two absolute signal values are being compared.

Therefore, for low-power applications, the standard reference value for power specification is
defined in the form of the dBm scale, which is set to compare a given power level relative to the
absolute power level of P1 = 1 mW. After substituting the 1 mW level in (2.40), we write

GdBm = 10log
P2

1mW
(2.42)
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Fig. 2.11 A circuit with
ground potential (for
Example 2.6)

indicating that 1 mW of power is equivalent to 0 dBm. Similarly, if an amplifier delivers 10 mW of
power, it is usually expressed as 10 dBm gain, 100 mW as 20 dBm, etc. Note that, due to the same
scale, in power calculations the units of dB and dBm are added to or subtracted from each other, i.e
they are interchangeable as long as we keep the 1 mW absolute reference in mind.

Example 2.5. A cell phone transmits P1 = +30 dBm of signal power from its antenna. At the
receiving side, the signal power is P2 = 5 pW. Calculate the propagation loss of the transmitting
medium.

Solution 2.5. We convert the received power into dBm units as

P2 = 10log
P2

1mW
= 10log

5pW
1mW

=−83dBm. (2.43)

Therefore the signal experienced attenuation A of

A = P2 −P1 = 30dBm− (−83dBm) =−113dBm. (2.44)

2.7.3 The Meaning of “Ground”

In our discussions, we routinely assume that the concept of “ground” is clear to everyone and we
simply assume that the ground is at zero potential. Often, we forget that the zero level was set as
a relative point, not the absolute. Let us be reminded that any measured voltage value is implicitly
assumed to be the potential difference between two points, one of which is arbitrarily declared the
“ground”, i.e., the zero reference. The absolute potentials are, by definition, measured relative to
some point at infinity. Because of that, it is more practical to arbitrarily pick one of the two points
and declare it to be the “local ground”. When it is necessary to emphasize that a voltage is measured
between two specific points in a circuit, the notation VAB is used, where A is the node with higher
potential and B is the node with lower potential (keep in mind that VAB = −VBA). It is especially
important to have a clear understanding of the concept of “ground” when dealing with differential
signal circuits because a differential signal is always measured as a difference between the two signals
and its value is independent of the ground level.

Example 2.6. What is the value of resistance (Ra,b) between points a and b, in Fig. 2.11 if: (a)
V = 1 V; (b) V = 0 V; (c) V =−1 V; (d) V =−1 MV?

Solution 2.6. If, for the moment, we completely ignore the existence of the voltage source V ,
then between points a and b there is a serial connection of two resistors, so we normally write
Ra,b = R1 +R2. Did you notice that in order to calculate the equivalent serial resistance, we did not
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need to find the potential at the joining node �1 between the two resistors? That is, the potential at
node �1 is not part of the equation. Hence, the serial resistance stays the same whatever the potential
at node �1 . The voltage V is referenced to an arbitrary point in space that we temporarily declared
the ground; it could have been node �1 with no difference whatsoever.

2.8 Summary

Each profession has its own technical language and fluency in the language is critical for one’s
professional career. Similar to native speakers who immediately pick up even the smallest mistake by
a non-native speaker, experienced professionals in a field are able to estimate the competence of the
other person simply by picking up on incorrect use of terminology. In this chapter, we reviewed some
of the very basic definitions that are considered fundamental knowledge in the field and are found in
the vocabulary of all engineers and scientists.

Problems

2.1. Using a graphing tool of your choice, create overlapping plots of the following single-tone
signals at f = 10 MHz:

S1 = 2.0sin(ωt), S2 = 2.0sin(ωt + π/3), S3 = 2.0sin(ωt + π/2),

S4 = 2.0sin(ωt + 3π/4), S5 = 2.0sin(ωt + 2π), S6 = 2.0sin(ωt + 4π/3). (2.45)

Observe the relationships between various signals in terms of their phase differences (hint: to start,
begin at the zero time) and how the amplitudes are related to each other at any given point in time.
Practice calculating the signal amplitudes at various time points by knowing their phase. For a given
frequency, practice expressing various phase differences in the units of time.

2.2. Using a graphing tool of your choice, create plots of the following signals at f = 10 MHz:

S1 = 2.0sin(ωt),

S2 = 2.0sin(ωt +θ ). (2.46)

Plot S3 = S1 + S2 for the following phase differences: θ = 0,π/3,π/2, π , 3π/2, 2π , 3π , 4π , . . . Observe
how the amplitude of S3 changes relative to the phase differences between S1 and S2. In particular,
pay attention to what happens to the amplitude of S3 when θ = kπ and k = 0,1,2,3, . . . .

2.3. Overlap plots of the following single-tone signals (assume f = 10 MHz):

S1 = 2sin(ωt), S2 =−sin(2ωt), S3 =
2
3

sin(3ωt),

S4 =−1
2

sin (4ωt), S5 =
2
5

sin(5ωt), S =
5

∑
k=1

Sk. (2.47)

To what waveform shape is S converging, starting with S = S1 + S2, then S = S1 + S2 + S3, etc.,
assuming that more Sk terms are added to the sum? Now, plot the sum without, for example, the S2

term and observe what the S waveform looks like. What about without the S3 term? Try dropping
other terms or combinations of terms from the sum and observe the outcome.
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Fig. 2.12 Schematic diagram for Problem 2.7 (left) and Problem 2.9 (right)

This exercise demonstrates the frequency spectrum components of a complicated signal and
how the signal becomes unrecognizable (i.e., distorted) to various extents if some of its terms are
filtered out.

Note that this particular waveform consists (aside from the fundamental tone ω) of both even and
odd harmonics, i.e., 2ω , 3ω , 4ω , . . . .

2.4. Overlap plots of the following single-tone signals (assume f = 10 MHz):

S1 =
4
π

sin(ωt), S2 =
4

3π
sin (3ωt), S3 =

4
5π

sin(5ωt),

S4 =
4

7π
sin(7ωt), S5 =

4
9π

sin (9ωt), S =
5

∑
k=1

Sk. (2.48)

Note that the frequency spectrum of this particular S signal comprises (aside from the fundamental
tone ω) only odd harmonics, i.e., 3ω , 5ω , 7ω , . . . .

2.5. Calculate the average energy in a rectangular pulse whose amplitude is v = 2V and width is
t = 1 ms. The energy is dissipated in a resistor R = 100Ω.

2.6. A current flowing in a positive direction through a wire is defined as:

i(t) =

{
−2t, if t < 0

+3t, if t � 0
. (2.49)

Find the following values:

(a) i(−2.2s).
(b) i(+2.2s).
(c) The total charge g that has flowed through the wire within the time interval −2s≤ t≤3s.
(d) The average value of i(t) within the same time interval.

2.7. Find the power absorbed by each element in the circuit shown in Fig. 2.12 (left).

2.8. For a resistor R with a current i entering its more positive terminal and voltage v across its
terminals, find:

(a) The resistance R if i =−1.6 mA and v =−6.3 V.
(b) The absorbed power P if v =−6.3V and R = 21Ω.
(c) The current i if the voltage is v = 8 V and R absorbs power P = 0.24 W.
(d) The conductance G if the voltage is v =−8 V and R absorbs power P = 3 mW.
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Fig. 2.13 Schematic diagrams for Problem 2.10 (right) and Problem 2.11 (left)

Fig. 2.14 Schematic
diagram for Problem 2.13

2.9. Find vR2 and vx, shown in Fig. 2.12 (right).

2.10. Find the power absorbed by each component in Fig. 2.13 (right).

2.11. Find the equivalent Thévenin (see Sect. 4.2.3) circuit in Fig. 2.13 (left).

2.12. Find the RMS for the following waveforms where t is time, f is frequency, a is the peak
amplitude, and T is the function period:

(a) Square wave

y =

{
a t < 0.5T

−a t � 0.5T
. (2.50)

(b) Modified square wave

y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t < 0.25T

a 0.25 � t < 0.5T

0 0.5 � t < 0.75T

−a t � 0.75T

. (2.51)

(c) Sawtooth wave

y = 2at − a (2.52)

2.13. Calculate the average power delivered to an R = 5Ω resistor and irms for the current waveform
in Fig. 2.14.

2.14. Calculate the average power delivered to an R = 4Ω resistor if the instantaneous current is: (a)
i = (2cos10t − 3cos20t)A; and (b) i = (2cos10t − 3cos10t)A.



Chapter 3
Electrical Noise

Abstract Any electrical signal that makes recovery of the information signal more difficult is
considered noise. For example, “white snow” on a TV picture and “hum” in an audio signal are typical
electrical noise manifestations. Noise mainly affects receiving systems, where it sets the minimum
signal level that it is possible to recover before it becomes swamped by the noise. It is important to
note that amplifying a signal already mixed with noise does not help the signal recovery process at all.
Once it enters the amplifier, noise is also amplified, which is to say that the ratio of S/N power does
not improve and that is what matters. When the power of the noise signal becomes too large relative
to the power of the information signal, information content may be irreversibly lost. In this chapter,
we study the basic classification of noise sources and methods for evaluation of noise effects.

3.1 Thermal Noise

At the fundamental level, the numerical value of electrical current is just an average number of
electrons coming out of the conductor per unit of time. Keep in mind that, even without any
external electric field, an electron cloud moves inside a material and interacts with the vibrating
ions, each electron moving in Brownian motion (i.e., similar to a pinball). The random motion of
each individual electron makes a micro current that, together with all the other micro currents in the
given volume, adds up to a macro current with zero average value. Due to its random nature, this
current does not contain information, therefore we consider it “noise”. This motion is responsible
for the conductor’s temperature, hence it is known as “thermal” noise; in real conductors, it is what
constitutes the conductor’s resistance. Given that the movement of electrons produces current, and
current through a resistor creates voltage across its terminals, we also consider a resistor as a random
noise generator. Both experiments and theory have found that the power spectrum of thermal noise is
flat, which (loosely) means that each frequency component in the noise spectrum has the same power
level, as shown in Fig. 3.1 (right). This conclusion is valid over a very wide range of frequencies (up to
approximately 1013 Hz). Similarly to white light, which contains all colours (i.e., light frequencies), a
noise signal that contains single tones at all possible frequencies is called, appropriately, white noise.
Of course, it is only a very good approximation, because the implication is that, if measured over all
possible frequencies, the total noise energy would be infinite. To accurately address this issue, we
would need to delve into quantum mechanics theory, which is not the subject of this book.

Variables that have zero average, which is the case with thermal noise, are much better evaluated
by measuring their RMS value as in Fig. 3.1 (left). Using methods from statistical thermodynamics
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Fig. 3.1 Thermal noise in
the time domain (left) and
the noise power spectrum
density (right)

and quantum mechanics, it has been shown that the noise spectrum density Sn (sometimes referred to
as the available noise power) within a 1 Hz bandwidth, is

Sn( f ) = k T

[
W
Hz

]
, (3.1)

which is not a function of frequency, i.e., it is constant, Fig. 3.1 (right). Therefore, the noise power
generated within frequency bandwidth Δ f is, by definition

Pn =

∫ f1+Δ f

f1
Sn( f )d f = Sn( f )

∫ f1+Δ f

f1
d f = k TΔ f [W], (3.2)

where

k is Boltzmann’s constant (1.38× 10−23 J/K).
T is the absolute temperature of the conductor (in K).
Δ f is the frequency bandwidth in which the noise measured (in Hz).

It is interesting to note that, even though it is modelled with a resistor, the noise power does not
depend on the resistance of the conductor. Equation (3.2), also known as Johnson’s law, implies that it
is desirable to reduce the bandwidth of the receiver to a minimum since the noise power is proportional
to the system bandwidth.

Example 3.1. Find:

(a) The spectrum density for thermal noise at room temperature (T =300K).
(b) The available noise power within a bandwidth of 1 MHz.
(c) The available signal power for a 1 μV signal from a 50Ω source delivered to the matched load.
(d) The SNR for the noise in part (b) and the signal in part (c).

Solution 3.1.

(a) Sn = 1.38× 10−23× 300 = 4.14× 10−21W/Hz

(b) Pn = 4.14× 10−21× 106 = 4.14× 10−15W

(c) Ps =
(1× 10−6/2)2

50
= 5× 10−15 W

(d) SNR =
Ps

Pn
=

5× 10−15

4.14× 10−15 = 0.82dB



3.1 Thermal Noise 55

Fig. 3.2 Equivalent noise generator En with internal resistance R (left) and noise power delivered to a system whose
input impedance is RL = Z (right)

Because the real conductor with resistance R generates the electrical noise power, it is modelled
as the equivalent voltage (or the equivalent current) generator circuit consisting of an ideal voltage
source En and an ideal resistor R, Fig. 3.2. The average power delivered by a voltage generator of
internal RMS voltage Es and internal resistance Rs to a load RL is at maximum, assuming matched
impedances (i.e., Rs = RL),1 as shown in Fig. 3.2 (right). After substituting (3.2), we have

PLmax =
(En/2)2

R
∴ k TΔ f =

E2
n

4R
∴ En =

√
4Rk TΔ f . (3.3)

Equation (3.3) is one of the most often used representations of electrical noise and is therefore widely
used in calculating the system noise performance. Sometimes, because of the square root, it is more
convenient to work with E2

n instead of En.
The equivalent noise voltage of combinations of resistors in series and in parallel is calculated after

finding the equivalent resistance R or conductance G as

E2
n = 4(R1 +R2 + · · ·)k TΔ f = E2

n1 +E2
n2 + · · · , (3.4)

I2
n = 4(G1 +G2 + · · ·)k T Δ f = I2

n1 + I2
n2 + · · · , (3.5)

where R is the equivalent noise resistance, G = 1/R is the equivalent noise conductance, En is the
equivalent noise voltage, In is the equivalent noise current.

Example 3.2. Resistors R1 = 20kΩ and R2 = 50kΩ are at room temperature T = 290 K. For a given
bandwidth of BW = 100 kHz, find: (a) the thermal noise voltage for each resistor; (b) for the resistors
combined in series; (c) for the resistors combined in parallel.

Solution 3.2.

(a) From (3.3), it follows that

E2
n(R1) = 4× 20kΩ× 1.38× 10−23× 290K× 100kHz= 32× 10−12 V2,

E2
n(R2) = 4× 50kΩ× 1.38× 10−23× 290K× 100kHz= 80× 10−12 V2,

∴
En(R1) = 5.658μV,

En(R2) = 8.946μV.

(b) Serial resistance is Rs = 70kΩ ∴ En(Rs) = 10.59μV.
(c) Parallel resistance is Rp = 14.286kΩ ∴ En(Rs) = 4.78μV.

1This statement is elaborated in more detail in Chap. 6.
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3.2 Equivalent Noise Bandwidth

Although reactive components do not generate thermal noise because they do not dissipate thermal
power, it is important to estimate the noise power of networks that contain inductive and capacitive
reactances. This is because both capacitive and inductive components do influence the frequency
bandwidth, hence, the effect of reactances on the noise spectrum must be taken into account. We
consider two important network cases for thermal noise calculations: resistor–capacitor (RC) networks
and resistor–inductor–capacitor (RLC) networks.

3.2.1 Noise Bandwidth in an RC Network

It can be shown that, when noise passes through a passive filter which has a complex transfer function
H(ω), the noise output spectrum density Sno for the input spectrum density (3.1) is (in general)
calculated as

Sno = |H(ω)|2 k T. (3.6)

In the case of capacitive load (see Fig. 3.3 (left)), the LP filter with noise generator E2
n and output

voltage V 2
n taken across the capacitor has the transfer function H(s) as

|H(ω)|= 1√
1+(ωRC)2

∴ Sno =
k T

1+(ωRC)2 , (3.7)

Pno =

∫ ∞

0
Sno d f =

∫ ∞

0

k T
1+(2πRC f )2 d f =

k T
2πRC

∫ ∞

0

1
1+ x2 dx. (3.8)

The output spectrum, therefore, decreases as the frequency increases due to the bandwidth limiting of
the LP filter. The total noise power available at the output is obtained by integrating (3.8) from zero
to infinity. The integral is not difficult2 and the result is

Pno =
k T

2πRC
arctanx|∞0 =

k T
4RC

= k T Δ feff ∴ Δ feff =
1

4RC
, (3.9)

where we introduced Δ feff as “effective noise bandwidth”. This definition allows introduction of the
equivalent circuit in Fig. 3.3 (right). Thus, the noise spectrum density within the effective bandwidth
Δ feff is considered to be equal to k T and zero everywhere else.

Fig. 3.3 Equivalent noise
voltage in an RC circuit

2Use of the substitution (2πRC f = x) leads to the tabular integral
∫ 1

1+x2 = arctanx.
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Fig. 3.4 Equivalent noise
voltage in an RLC tuned
circuit

Furthermore, the equivalent noise voltage Vn can be written as

V 2
n = 4Rk T

1
4RC

=
k T
C

, (3.10)

which shows that even though the noise was generated by the resistor R, the output noise voltage is
not a function of the resistor R. Instead, it is determined by the capacitor C, which does not generate
the thermal noise by itself.

Example 3.3. Calculate the equivalent noise voltage Vn generated by a resistor R in series with a
C = 100 pF capacitor at room temperature T = 300 K.

Solution 3.3. A straightforward implementation of (3.10) yields

V 2
n =

k T
C

=
1.38× 10−23× 300K

100pF
= 4.14× 10−11 V2 ∴ Vn = 6.434μV.

3.2.2 Noise Bandwidth in an RLC Network

The RLC tuned circuit in Fig. 3.4 consists of the ideal lossless capacitor C, and a real inductor L whose
resistance r generates noise. We consider the noise voltage En as the input to the network and Vn as the
output from the network, thus, the modulus of the transfer H(ω) function is found (using the voltage
divider rule) as

|H(ω)|= |Xc|
|Zs| , (3.11)

where Zs is the series impedance of the resonant circuit (5.38)3 and Xc is the reactance of capacitor C.
If the noise calculation is limited to a narrow bandwidth Δ f � f0 around the resonant frequency f0

then the transfer function H(ω0) (3.11) is approximated as H(ω0)≈ Q, i.e., the Q factor of the RLC
network. Solving an integral similar to (3.6), the mean square output noise voltage is found to be

V 2
n = Q2E2

n = Q2 4r k T Δ f = 4RD k T Δ f , (3.12)

where RD = Q2r is the “dynamic impedance” of the RLC circuit at resonance. This result is very
important for practical calculations because the noise bandwidth in RLC tuned networks is indeed
limited to a narrow bandwidth around the resonant frequency.

3For more details see Sect. 5.2.1.
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If the noise calculation is performed for unrestricted frequency bandwidth, the total noise spectrum
must be taken into account by repeating a procedure similar to that in Sect. 3.2.1, while assuming the
Q factor to be independent of frequency. After solving a rather more complicated integral, the total
noise power is found as

Pno =
k T

4RDC
= k TΔ feff, (3.13)

where Δ feff = 1/4RDC is the effective noise bandwidth of the RLC network at resonance. It is practical
to find the relation between the effective noise bandwidth Δeff and the bandwidth B3dB of the resonant
circuit. It was shown that

RD =
1

2πB3dBC
∴ Δ feff =

π
2

B3dB. (3.14)

Even though it was assumed that the Q factor was constant over the full frequency range, which
simplified the analysis, (3.14) is a good indicator of the expected noise. The idea of an equivalent
noise bandwidth can be extended to amplifiers and receivers as well.

Example 3.4. A tuned parallel LC tank has the following data: f0 = 120 MHz, C = 25 pF, Q = 30,
bandwidth Δ f = 10 kHz. Find the effective noise voltage of the LC tank at room temperature within
the given bandwidth.

Solution 3.4. From (5.81), the dynamic resistance of an LC resonator at resonance is calculated as

RD =
Q

ω0C
=

30
2π ·120MHz · 25pF

= 1.59 kΩ

then from (3.12)

V 2
n = 4Q2RLk TΔ f = 4RDk TΔ f = 0.254× 10−12 V2,

∴
Vn = 0.50μV.

3.3 Signal to Noise Ratio

One of the most (arguably, the most) important quantitative measures of a signal’s “noisiness” is the
signal-to-noise ratio (SNR), which is defined as the ratio of the signal and noise powers,

SNR =
Ps

Pn
, (3.15)

where Ps is the signal power and Pn the noise power. As defined, it shows how many times more
powerful is the signal than the noise; it is a relative measure of the two powers. Note that SNR is a
unit-less number that merely shows the value of the signal-to-noise power ratio.
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It is customary (and also very practical) to express the power ratios in units of dB, defined as
follows:

SNR = 10log
Ps

Pn
dB (3.16)

= 10log
V 2

s /R
V 2

n /R
= 20log

Vs

Vn
dB, (3.17)

where Vs the signal voltage and Vn is the noise voltage, measured across the resistive load R terminals.
Note the multiplication constants in the expressions for power (3.16) and voltage (3.17). It is trivial
to derive an expression similar to (3.17) for currents instead of voltages. Although it may appear a bit
counterintuitive to introduce the cumbersome logarithmic function to replace the clean ratio, it turns
out that calculations in units of dB are much simpler because the ratios become differences,4 which is
a much simpler arithmetic operation.

The relative measure of power (3.16) tells us only that, for example, P1 is double P2 in the case of
SNR = 3 dB. It does not tell us whether we compared 6 mW to 3 mW or 6 kW to 3 kW, i.e. it does not
tell us anything about the absolute power levels. In order to convey that information as well, we need
to define the absolute unit of power PdBm as

PdBm = 10log
P1

1mW
dBm, (3.18)

where P1 power is normalized to 1 mW. In the following sections, we will show examples of how to
use dBm units. Its unity step is identical to the dB unity step, which means that adding dB and dBm
units is a perfectly legal mathematical operation.

Example 3.5. Convert signal power levels of: (a) P1 = 1 mW, (b) P2 = 1 W, and (c) P3 = 10 W into
dBm units. Then, find the SNR of the same three signals if the noise power is Pn = 1 mW.

Solution 3.5. A straightforward application of (3.18) leads to: (a) P1 = 0 dBm, (b) P2 = 30 dBm, and
(c) P3 = 40 dBm. A straightforward application of (3.16) leads to: (a) SNR=0 dB, (b) SNR=30 dB,
and (c) SNR=40 dB.

Note that in the first set of calculations, the signal power levels are still showing the absolute values
in dBm, while the second set of calculations show the signal power levels relative to the noise power
of 1 mW.

3.4 Noise Figure

Knowing SNR(in) of the signal presented to the input terminals of a circuit network is only one step
in the circuit design process. For the purposes of measuring the “noisiness” of the circuit itself, i.e.,
of finding out how much noise was generated by the circuit’s internal components, SNR is measured
both at the input and output terminals (see Fig. 3.5),

SNR(in) =
Ps(in)
Pn(in)

, (3.19)

4Some of the basic logarithmic identities are: log(x/y) = log(x)− log(y); log(xy) = log(x) + log(y); log(xn) =
n log(x).
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SNRin
Ps(in)
Pn(in)

= SNRout
Ps(out)
Pn(out)

=

Gs

Fig. 3.5 A single stage
with signal gain Gs,
showing input and output
SNRs

SNR(out) =
Ps(out)
Pn(out)

, (3.20)

∴

F =
SNR(in)

SNR(out)
=

Ps(in)Pn(out)
Pn(in)Ps(out)

=
Pn(out)

AP Pn(in)
, (3.21)

where noise factor F is the ratio of the output and input SNRs and AP = Ps(out)/Ps(in) is the signal
power gain. In practice, any of the three forms in (3.21) can be used to calculate F . If, for example,
SNR(out) = SNR(in) then F = 1, which is to say that there was no additional noise contribution
between the input and output terminals, hence the circuit is noiseless. Note that, as defined, noise
factor F is a unit-less number. It is practical to introduce the noise figure (NF) as

NF = 10logF dB, (3.22)

where the noiseless circuit is said to have noise figure NF = 0 dB, which is the ideal case, yet not
achievable in real systems.

Example 3.6. An amplifier has SNR of SNR(in) = 10 at its input and SNR(out) = 5 at its output.
Calculate its F and NF.

Solution 3.6. Using (3.19)–(3.21), simply write

F =
SNR(in)

SNR(out)
=

10
5

= 2,

∴
NF = 10log2 = 3dB.

3.5 Noise Temperature

Thermal noise power was defined earlier, in (3.2), as,

Tn =
Pn

kΔ f
, (3.23)

where index n is added to temperature T to indicate that the noise temperature Tn is referring to the
noise power Pn.

For a given amplifier, however, its thermal noise is generated by the internal components and it can
be measured at the output terminal. It is convenient in noise analysis to refer the noise back to the
input terminal of the circuit and imagine that it is generated by the equivalent external noise source,
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Fig. 3.6 Equivalent input
referred noise power for a
noiseless amplifier

while the circuit itself is assumed noiseless. If the circuit’s power gain is AP and if the equivalent noise
power at the input is Pni (see Fig. 3.6), then the output noise power Pno is calculated simply as

Pno = AP Pni ∴ Pni =
Pno

AP
. (3.24)

On the other hand, if the input signal power is Psi and the input noise power is Pni = kTΔ f , than
from (3.19) the input side signal to noise ratio SNRin is

SNRin =
Psi

k T Δ f
(3.25)

then, while keeping in mind that both signal and noise are amplified with the same gain AP, (3.21) can
be formatted as

F =
Pno

AP k T Δ f
. (3.26)

Substituting (3.26) back into (3.23), it follows that the total available noise at the input is

Pni = F k T Δ f . (3.27)

Therefore, the amplifier’s noise contribution Pna is simply the difference between the output and input
noise powers

Pna = F k T Δ f − k T Δ f = (F − 1) k T Δ f . (3.28)

Substituting (3.28) into (3.23) (in the case of an amplifier for which Pn = Pna), it is straightforward to
write

Tn = (F − 1) T, (3.29)

where Tn is the noise temperature and T is the ambient temperature. The significance of (3.29) is
that it shows the equivalence between noise factor F and equivalent noise temperature Tn (which is
not as same as the temperature of the noise source): if one is known, so is the other. In addition, in
cases of low noise power levels, noise temperature turns out to be more sensitive than noise factor,
which makes the measurements easier. Because of that, noise temperature is used mostly at higher
frequencies and in radio astronomy.

Example 3.7. The equivalent noise temperature of an amplifier is T0 = 50 K. Calculate the amplifier’s
noise factor F at room temperature T = 300 K.
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Solution 3.7. Direct implementation of (3.29) leads to

Tn = (F − 1) T ∴ 50K = (F − 1)× 300K ∴ F =
50K

300K
+ 1 = 1.167,

∴
NF = 10log1.167 = 0.669dB.

3.6 Noise Figure of Cascaded Networks

Analysis in Sect. 3.4 and Sect. 3.5 demonstrated that any noise signal Pni presented at the input
terminals of an amplifier (or any general circuit, for that matter) is multiplied with its gain AP and
produces the output noise signal Pno, as shown by (3.23). In addition, the amplifier itself generates
internal noise Pna, which is quantified by its noise factor F , as shown by (3.28). Therefore, a single-
stage amplifier generates total output noise power P1 as

P1 = Pno +Pna = AP Pni +(F − 1) k T Δ f , (3.30)

or, in general, rearranging (3.26) we can also write for the total output noise power

P(no)(tot) = F(tot) AP(tot) k T Δ f , (3.31)

where (tot) is added to indicate that the internal structure of the amplifier may consist of multiple
stages.

Let us now evaluate the noise factor of a cascade of networks, each stage with its own noise factor
Fi (i = 1, . . . ,n). Considering that system-level analysis is almost always based on a cascade of driver–
load pairs, it is important to find an expression for the total noise factor of the cascaded system (see
Fig. 3.7).

In its simplest, very important case, the system consists of only two stages (i = 1,2), so that the
noise factor F12 of the combination is calculated as follows. The input to the first stage is connected
to a resistor Req, which is used to model the thermal noise injected into the two-stage system. For
the sake of simplicity, let us assume that the two noise bandwidths Δ f of the stages are identical and
equal to the noise bandwidth Δ f of the cascaded combination.

The total gain AP12 of the two stages, obviously, must be

AP12 = AP1 AP2 (3.32)

and, according to (3.26), the noise output P(no)(1) after the first stage is

P(no)(1) = F1 AP1 k T Δ f , (3.33)

Fig. 3.7 Cascaded system
of n stages, each with its
own noise factor Fi

(i = 1, . . .,n)
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which, after being multiplied by the second stage gain AP2 is

P(no)(2) = AP2 P(no)(1) = F1 AP1 AP2 k T Δ f (3.34)

if the second stage were noiseless. However, it amplifies its own input referred thermal noise

Pi2 = AP2 (F2 − 1) k T Δ f . (3.35)

Therefore, the total noise output from the second stage is the sum of (3.35) and (3.34)

P2 = AP2 (F2 − 1) k T Δ f +F1 AP1 AP2 k T Δ f

=

(
F1 +

F2 − 1
AP1

)
AP1 AP2 k T Δ f

=

(
F1 +

F2 − 1
AP1

)
AP12 k T Δ f . (3.36)

By comparison of (3.31) and (3.36) we have

F(tot) = F1 +
F2 − 1

AP1
, (3.37)

which is the noise factor expression for a two-stage cascaded network. It is not difficult to generalize
(3.37) to a cascaded network of n stages, resulting in

F(tot) = F1 +
F2 − 1

AP1
+

F3 − 1
AP1AP2

+ · · ·+ Fn − 1
AP1AP2 · · ·AP(n−1)

. (3.38)

Equation (3.38) is known as Friis’s formula and is widely used for evaluating the NF of cascaded
networks. Obviously, Friis’s formula suggests that in a cascaded network, the noise factor of the very
first stage, i.e., F1, is the most critical because noise factors of the subsequent stages are divided by
the combined gain of all previous stages.

Example 3.8. A three-stage amplifier has the following specifications: gain of the first stage is
AP1 = 14 dB and its noise figure is NF1 = 3 dB; the second stage has AP2 = 20 dB, and its noise figure
is NF2 = 8 dB; and the third-stage amplifier is identical to the second stage. Calculate the overall
noise figure NF of the system.

Solution 3.8. Using Friis’s formula, we write:

AP1 = 14dB = 25.1, AP2 = AP3 = 20dB = 100,

NF1 = 3dB, F1 = 2, NF2 = NF3 = 8dB, F2 = F3 = 6.31,

therefore,

F(tot) = 2+
6.31− 1

25.1
+

6.31− 1
25.1× 100

= 2.212 ∴ NF = 10log2.212 = 3.448dB.
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3.7 Noise in Active Devices

Semiconductor devices generate internal noise due to the discrete nature of electrons crossing p–n
junctions. Similar to thermal noise, “shot noise” has a uniform spectrum density. Intuitively, it should
not be difficult to visualize that the mean-square shot noise current depends upon the biasing point of
the corresponding p–n junction. A number of models describe noise generated by the device, but the
following two models are used most often.

First, a temperature-limited diode model (see Sect. 4.3.2) assumes that the emission from the
cathode is limited only by temperature, and the mean-square shot noise current is given by

I2
n = 2qe IDCΔ f

[
A2] , (3.39)

where

In is the p–n junction noise current in A.
qe is the electron charge (1.6× 10−19 C).
IDC is the biasing DC in A.
Δ f is the effective noise bandwidth in Hz.

The simplicity of the above model is that the shot noise current is calculated based solely on the
biasing current.

The second model applies to the semiconductor p–n junction diode and shows that

I2
n = 2qe (IDC + 2I0)Δ f

[
A2] , (3.40)

where I0 is the reverse saturation current. This model applies only at low frequencies and for low
current injection.

More complex device behaviour is observed in form of flicker (or 1/ f ) noise and burst (or 1/ f 2)
noise. Both of them are very difficult to express analytically so we rely mostly on experimental
results, which are usually published by device manufacturers. A qualitative function of noise against
frequency dependence is shown in Fig. 3.8.

Example 3.9. For the amplifier in Fig. 3.9 (left), calculate the signal voltage Vs and the equivalent
noise voltage Vn appearing at the input terminals. Data: bandwidth Δ f = 10 kHz, room temperature
T = 290 K, equivalent internal noise resistance Rn = 400 Ω, amplifier input resistance Ri = 600Ω,
source resistance Rs = 50Ω, and source voltage Vs = 1μV.

Solution 3.9. Application of Thévenin’s theorem on the Es, Rs, and Ri network results in the following:

Rt =
Rs Ri

Rs +Ri
= 46.15Ω,

Fig. 3.8 Equivalent noise
current spectral density for
a bipolar transistor: 1/ f
dependence at low
frequencies, approximately
constant at medium
frequencies (shot and
thermal noise), and f 2

dependence at higher
frequencies
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Fig. 3.9 An amplifier with internal noise and input resistances (left), the noise equivalent voltage generator (centre),
and equivalent Thévenin representation (right)

Vt =Vs
Ri

Rs +Ri
= 0.923μV.

The equivalent noise voltage at the amplifier input is calculated for the serial combination of Rt +Rn =
446.15Ω, which after applying (3.3), results in Vn = 0.267μV.

3.8 Summary

The topic of noise analysis is much broader than presented in this short chapter. A large number of
research publications and textbooks are available for further study. In this chapter, we reviewed the
most important basic definitions and applications that are considered essential for further discussion.
The reader is encouraged to become fluent with the terminology and principles related to noise
analysis. In Sect. 13.3.1.1, we expand on the role of noise within the context of signal dynamic range
and system sensitivity.

Problems

3.1. Find:

(a) Spectrum density for thermal noise at room temperature (T = 300 K).
(b) Available noise power within a bandwidth of 1 MHz.
(c) Available signal power for a 1μV signal from a 50 Ω source delivered to the matched load.
(d) SNR for the noise in part 2 and the signal in part 3.

3.2. Determine the noise voltage generated by 50 Ω, 5 kΩ, and 5 MΩ resistors at room temperature
300 K and within a 20 kHz bandwidth.

3.3. Resistors R1 = 20 kΩ and R2 = 50 kΩ are at room temperature T = 290 K. For a given bandwidth
of BW = 100 kHz, find the thermal noise voltage for: (a) each resistor; (b) for their combination in
series; (c) for their combination in parallel.

3.4. A tuned parallel LC tank has the following data: f0 = 120 MHz, C = 25 pF, Q = 30, bandwidth
Δ f = 10 kHz. Find the effective noise voltage of the LC tank at room temperature within the given
bandwidth.

3.5. For the amplifier in Fig. 3.9, calculate the signal voltage Vs and the equivalent noise voltage
Vn appearing at the input terminals. Data: bandwidth Δ f = 10 kHz, room temperature T = 290 K,
equivalent noise resistance Rn = 400Ω, amplifier input resistance Ri = 600Ω, source resistance Rs =
50Ω, and source voltage Vs = 1μV.
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3.6. An oscilloscope probe is specified as R = 1MΩ and C = 20 pF, with bandwidth of BW =
200 MHz. Determine the noise voltage generated due to the probe. If internal circuits of the
oscilloscope add 20 dB of noise, determine the effective noise at the input of the oscilloscope.

3.7. A television set consists of the following chain of sub-blocks: two RF amplifiers with 20 dB gain
and 3 dB NF each; a mixer with a gain of −6 dB and NF of 8 dB; two additional amplifiers with 20 dB
gain and NF of 10 dB each. Calculate: (a) the system NF and (b) the system noise temperature.

3.8. An amplifier with input signal power of 5× 10−16 W and input noise power 1× 10−16 W has
output signal power of 5× 10−12 W and output noise power of 4× 10−12 W. Determine the noise
factor F and the NF of this amplifier.

3.9. Calculate the noise current and equivalent noise voltage for a diode biased with IDC = 1 mA at
room temperature 300 K and within the bandwidth of 1 MHz.

3.10. The equivalent noise resistance of an amplifier is Rin = 300Ω and the equivalent shot noise
current is 5 μA at room temperature T = 300 K. The signal generator has internal resistance RS =
150Ω and provides a signal of VS = 10μVrms. Calculate the input SNR(in), if the operational
bandwidth is Δ f = 10 MHz.

3.11. A front-end RF amplifier whose gain is 50 dB and noise temperature is 90 K provides a signal
to a receiver that has a NF of 12 dB. Calculate the noise temperature of the receiver by itself and the
overall noise temperature of the amplifier plus the receiver system at room temperature T = 300 K.



Chapter 4
Electronic Devices

Abstract Analysis and modelling of a general electrical network is based on four fundamental
mathematical functions, associated with the behaviour of ideal devices, namely resistance (R),
capacitance (C), inductance (L), and memristance (M). Each of these four fundamental elements is
assumed to have one and one only property under all conditions and at any given time. For example,
resistance R is always assumed to be the multiplying constant in the linear relationship between
voltage and current at its terminals, i.e. V = R× I. It is also assumed that both voltage and current
can take any numerical value within the [−∞,+∞] range. That is, the ideal elements have an infinite
power-handling capability, either as the energy source or the energy sink.

In a very broad sense, all network elements that obey basic network laws can be classified as being
either passive or active. In this chapter, we review the properties of the fundamental electronic devices
and the basic laws.

4.1 Simple Circuit Elements

The main property of passive elements is that they absorb energy and subsequently convert it, for
example, into heat. However, passive elements cannot generate energy, that is, passive elements
are not capable of “power gain”. In this section, we review the properties of the following basic
passive elements: a simple conducting wire, ideal voltage and current sources, resistance, capacitance,
inductance, a transformer, and memristance. In addition, we review arguably the simplest and one of
the most important passive networks, the voltage divider.

4.1.1 Simple Conductive Wire

In circuit theory, an ideal conductive wire is defined as the most basic electrical element, possessing
the following properties:

• It may be an arbitrary length from zero to infinity.
• Its surface is an ideal equipotential entity.
• It is a non-material entity capable of carrying an infinite amount of power.

A direct consequence of these assumptions is that there is no voltage difference between any two
points on the wire, under all conditions. That is, an ideal conductive wire has zero resistance, zero
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capacitance, and zero inductance. These simplifications greatly reduce the complexity of circuit
analysis because, as a first approximation, the electrical influence of the wires is completely neglected.

A real wire, on the other hand, is made of physical matter (e.g. aluminum, gold, or copper), which
means that there must be a physical limit to how much energy it can absorb before it overheats and
melts due to its internal resistance. Hence, in reality, a wire does not behave as an equipotential entity.
Consequently, there is always some voltage difference between the various points on its surface whose
amplitude depends both on the external conditions and its internal structure. The operating range of
a real wire is limited and set, on one side, by the inherent atomic thermal vibrations that generate
electrical noise. The noise sets a limit on the minimum level of signal that the wire can carry before
the signal is swamped by the noise. On the other side, too high a current forced through the wire
causes the internal atomic vibrations to increase too much, which is perceived by the external world
as an increase in temperature, which causes eventual physical destruction of the wire. As a side note,
this heating phenomenon is not always necessarily a bad thing. For example, an electrical fuse is
designed to exploit exactly that property of a real wire—if too much current is forced through it, the
fuse wire splits, which breaks the current flow and protects other devices down the stream. In all other
cases where the heat generation is not the primary goal, reduction of the wire’s internal resistance is
desired for a number of reasons, e.g. low resistance of the wire reduces the waste of energy due to
thermal power dissipation and it enables the design of a coil with a high Q factor (see Sect. 4.1.6).
In order to quantify its imperfection level relative to the ideal wire, a real wire is modelled as an
RLC network where the internal RLC values are derived from the wire’s geometry and its material
properties. Because the wire is not intended to behave as a resistor, a capacitor or an inductor, those
RLC values are referred to as “parasitic components” and they are, therefore, included in the realistic
approximate wire model.

4.1.1.1 DC and RF Behaviours of a Simple Wire

Resistance to electric current flow is a fundamental property of all material conductors, including
“simple” metal wires and printed circuit board (PCB) traces. For purposes of developing a good
engineering feeling about a conductor’s real behaviour across a range of frequencies, we need to
consider currents starting from zero frequency ω = 0, (i.e. DC) to the unachievable theoretical limit
of infinite frequency (ω → ∞). It is important to learn how to quantify the change of the conductor’s
resistance as a function of the frequency so that we can determine its practical range of operation.
Starting from the zero-frequency case, i.e. DC, it can be shown that the DC wire resistance is directly
proportional to the conductor’s length l and inversely proportional to the wire’s cross-sectional area
S and the material’s conductivity σ . Intuitively, we visualize DC current flow as a river of electrons
(i.e. the charge carriers) rushing through the conductor which, from the inside, looks more like a long
prison hallway with bars every few steps because the metallic crystal lattice behaves as a rigid three-
dimensional mesh. The longer the flow path, the higher the probability that more electrons collide with
atoms in the lattice and pass on some of their kinetic energy, which increases the lattice vibrations,
i.e. the conductor temperature. Continuing the prison hallway analogy, everything else being equal,
the wider the diameter of the hallway (i.e. the larger the conductor’s cross-sectional area), the more
easily the current flows because there is more space for the electrons to spread (i.e. reduce the current
density) and, therefore, it reduces the probability of hitting the lattice too often. In addition, not all
materials have the same shape as a crystal lattice; some are more dense than others, therefore their
resistivity constant ρ is widely different. The higher the resistivity, the higher the wire’s resistance to
the current flow. This reasoning is summarized in the well-known formula for wire resistance at DC

RDC = ρcond
l
S
=

l
σcond S

=
l

σcond πa2 =
J

σcond
, (4.1)
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Fig. 4.1 Induced current
causing the skin effect
inside a cylindrical
conducting wire

Fig. 4.2 Cross-sectional
view of a round wire
showing the skin effect.
Note that the border
between the conducting
“skin” layer and the
internal section of the wire
is not as abrupt as
shown—the change of
resistance is gradual and
the border line is calculated
using the formula for skin
depth

where RDC is the DC wire resistance, l is the wire length, ρ = 1/σ is the metal resistivity constant, σ
is the metal conductivity constant, S is the wire’s cross-sectional area (S = πa2 in the case of a round
wire whose radius is a), and J = I/S is the current density across the cross-sectional area S.

A less obvious, and trivial at first glance, but very important point to note in (4.1) is that it assumes
the DC I is uniformly distributed across the cross-sectional area S = πa2, i.e. that the DC density
is constant throughout the entire volume of the conducting wire. That assumption results in good
accuracy of (4.1) for calculating a wire’s DC resistance.

However, that conclusion becomes questionable in the more complicated case of alternating current
(AC) flowing through the wire. In accordance with Faraday’s law (Sect. 1.5.2), AC flow creates an
alternating magnetic field, which further induces an alternating electric field. This induced electric
field forces its own induced current (also known as “eddy currents”) whose direction is such that it
opposes the initial AC current flow (see Fig. 4.1). Moreover, this effect is not uniform; it is strongest at
the wire’s centre, i.e. for radius r = 0(r ≤ a). This skin effect is perceived, in accordance with Ohm’s
law, as being a consequence of increased material resistance in inner regions of the wire, leaving only
a thin layer close to the surface to carry all the current (that is where the “skin” part of the expression
“skin effect” comes from), which is to say that the cross-sectional area of the wire is effectively
reduced to a ring close to the wire perimeter (see Fig. 4.2). More importantly, the skin effect is more
and more pronounced as the frequency increases, which is to say that at very high frequencies the
cylindrical wire is reduced to a tube with a thin wall, as shown in Fig. 4.2 (bottom).

The observation that an increase of the AC frequency causes progressive increase in the wire
resistance is very important because the wire’s cross-sectional area (which, at DC, was a full circle) is
reduced to a narrow ring and one could, rightly, conclude that at high frequencies there is no advantage
to using a solid conductive wire. Instead, the same current carrying capability is achieved using hollow
tubes, with the benefit of using less material, which results in much lighter wire transmission systems.
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4.1.1.2 Skin Depth of a Simple Wire

In order to quantify the skin depth for a given frequency and material conductivity, one starts from
Maxwell’s equations (B.6) and (B.8). Eventually, it is shown that AC density Jz in the z direction is

Jz =
p I

2πa
J0(pr)
J1(pa)

, (4.2)

where Jz is the density of the total current I along the z axis, p2 = − jωμσcond, J0 and J1 are Bessel
functions of the zeroth and first orders, respectively, a is the wire diameter, and r ≤ a is a distance
from the wire centre inside the wire. Hence, for a given wire diameter 2a, Jz is a complex function of
the radius r, [0 � r � a]. In the case of DC, (4.2) reduces to the known equation for current density J
in a round cylindrical wire

Jz0 =
I

πa2 , (4.3)

where Jz0 is the DC density in the z direction.
The skin effect was noticed and studied relatively early in history. The studies of interaction

between an EM wave and a conductive material uncovered a decline in AC density with the depth of
the material, with the AC magnitude being greatest at the conductor’s surface. Theoretical analysis of
an infinitely thick slab of conductive material revealed that the current density decreases exponentially
with depth d from the surface:

J(d) = JS e
−
(

d
δ

)

, (4.4)

where J is the current density inside the conductive material at depth d, JS is the current density at the
conductor’s surface, and δ is the skin depth. By convention, at skin depth d = δ , the current density
falls to 1/e of its value JS at the surface (4.4). The widely cited formula for skin depth is

δ =

√
2ρcond

ωμcond
=

√
1

π f μcond σcond
, (4.5)

where ρ is the conductor resistivity, ω = 2π f is the angular frequency of the current, μcond = μ0μr is
the magnetic permeability of the conductor, μ0 is the magnetic permeability of the vacuum, μr is the
relative magnetic permeability of the conductor, and σcond is the conductor’s conductivity.

A detailed derivation of (4.5) from Maxwell’s equations can be found in a number of textbooks.
The calculated skin depth for three commonly used metals is shown in Fig. 4.3. Equation (4.5) shows
that the skin depth is inversely proportional to the square root of the material conductivity σcond and
drops to zero for a perfect conductor, i.e. the EM wave cannot penetrate a perfect conductor, it simply
reflects back. Only lossy realistic materials suffer from the skin effect.

A long cylindrical conductive wire, whose diameter is D � δ , has resistance approximately equal
to that of a hollow tube with wall thickness δ carrying DC. That is, its AC resistance is approximately:

R = ρ
l
S
= ρ

l
πD2

4 − π(D−2δ )2

4

=
ρ
δ

l
π(D− δ )

≈ ρ
δ

l
πD

, (4.6)

where l is the wire length and D = 2a is its diameter. It should be noted that (4.6) is valid only for a
single isolated wire. If there is a second wire nearby that also carries alternating current, then there is
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Fig. 4.3 Skin depth for
three commonly used
metals: gold, aluminum
and copper

Fig. 4.4 An ideal voltage
source circuit symbol and
its V–I characteristics

additional eddy current induced in the first wire. This phenomenon is known as the “proximity effect”.
Analysis of the overall current density distribution becomes much more complicated in this case. For
purposes of discussion in this book, the proximity effect is ignored.

4.1.2 Ideal Voltage Source

Circuit network analysis is based on the assumption that every ideal basic circuit element performs
one and one only function under all (mathematically) possible conditions. Here, the term “function”
refers to a relationship between voltage and its corresponding current at each of the device’s nodes.
The problem (or opportunity, depending on how you look at it) is that there is an infinite number of
possible functions that can establish the voltage–current relationship, which leads to an equal number
of possible ideal devices that can be defined. The simplest possible voltage function is that the voltage
does not depend upon its corresponding current, i.e. V 	= f (I), under all conditions. In other words,
an ideal two-terminal element is capable of holding the preset voltage V0 amplitude at its terminals,
regardless of how much current flows through. The mathematical abstraction of such an element is
known as an “ideal independent voltage source” (Fig. 4.4). In addition, as a general case, it is also
possible to define a controlled ideal voltage source as a four-terminal device, two at the input and
two at the output, where the output voltage is controlled by either voltage or current at its input
terminals. Therefore, there are three possible flavours of ideal voltage source: an independent voltage
source (a two-terminal device as shown in Fig. 4.4); a voltage-controlled voltage source (VCVS)
(a four-terminal device); and a current-controlled voltage source (CCVS) (a four-terminal device).
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Fig. 4.5 An ideal current
source symbol and its V–I
characteristics

The theoretical ideal voltage source is capable of either delivering or absorbing an infinite
amount of power because the current is allowed to take any value within the range [−∞,+∞]. The
usual convention in circuit theory is that if current is entering a terminal at higher potential, the
corresponding power is considered to be absorbed by the ideal element. The ideal element is said
to deliver power to the outside circuit if the current is leaving the node at higher potential. Another
important property of an ideal voltage source is its internal resistance, as seen through its output
terminals. By definition, resistance is the change in voltage over the change in current, i.e. the
derivative of voltage against current,

R � lim
Δ→0

ΔV
Δ I

=
dV
dI

=
0
dI

= 0, (4.7)

which leads to the conclusion that, inherently, the internal resistance of an ideal voltage source must
equal zero. This property is very important, because any physical device or circuit that presents very
low resistance at its terminals may be approximated and classified as a voltage source within a finite
range of voltage and current values at its terminals. Of course, unlike their mathematical abstraction,
a realistic device (e.g. a bipolar junction transistor) cannot hold voltage at its emitter terminal over an
infinitely wide range of emitter currents. Hence, real devices can only approximate the ideal voltage
source model over a very limited range of voltages and currents.

4.1.3 Ideal Current Source

A similar element is known as an “ideal current source” (see Fig. 4.5). By definition, an ideal current
source is capable of holding the preset current amplitude regardless of the voltage at its terminals.
Most of the comments made about ideal voltage sources apply also to ideal current sources, e.g. ideal
current sources can also absorb or deliver an infinite amount of power. Again, as a general case, it
is possible to define a controlled ideal current source as a four-terminal device, two at the input and
two at the output, where the output current is controlled by either the voltage or current at its input
terminals. Therefore, there are three possible flavours of ideal current source: an independent current
source (a two-terminal device as shown in Fig. 4.5); a voltage-controlled current source (VCCS)
(a four-terminal device); and a current-controlled current source (CCCS) (a four-terminal device).

A very important observation is that internal resistance of an ideal current source, as seen through
its output terminals, is very different. Again, by definition, resistance is the change in voltage over the
change in current, i.e. the derivative of voltage against current,

R � lim
Δ→0

ΔV
Δ I

=
dV
dI

=
dV
0

= ∞, (4.8)

which leads to the conclusion that, inherently, the internal resistance of an ideal current source must
equal infinity. This property is very important because any physical device or circuit that presents very
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Fig. 4.6 Ideal V–I resistor
characteristics

high resistance at its terminals may be approximated and classified as a current source within a finite
range of voltage and current values at its terminals. Of course, unlike its mathematical abstraction,
realistic devices cannot hold current at their terminals over an infinitely wide range of voltages.

4.1.4 Resistance

A resistor (a two-terminal device) is defined by a mathematical function that describes the relationship
between voltage and current at its terminals. By definition, an ideal resistor is a linear device whose
voltage and current at its terminals are proportional to each other in accordance with Ohm’s law as

V = R I, (4.9)

where resistance R is, in the case of a linear ideal device, the proportionality constant (see Fig. 4.6). In
other words, the main purpose of a linear resistor is to create a voltage difference at its terminals that
is proportional to the current flowing through. It achieves that task by converting some of the electrical
energy into heat energy. An ideal resistive element is capable of absorbing an infinite amount of power.

Many types of material can be used to create a slab whose main property is to create a voltage
difference at its terminals, within limited ranges of voltages and currents. Some of most commonly
used materials for manufacturing realistic resistive components are:

• High-density carbon composites, usually in the shape of a cylinder.
• Metal film, either thick or thin.
• Metal wire wound around a nonconductive cylindrical core.
• Doped silicon or poly-silicon, used in IC technologies.

Traditional resistors are mostly through-hole components, i.e. cylindric devices that have wire leads as
terminals, while modern RF and high-speed circuits employ much smaller surface-mounted devices
(SMD) (see Fig. 4.7) that have much smaller parasitic components. The relationship between a
resistor’s geometry (its physical parameters) and its resistance (its electrical parameter) is given by

R = ρ
l
S
, (4.10)
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Fig. 4.7 State-of-the-art
surface-mounted resistors
are only a couple of
millimetres long

Fig. 4.8 Equivalent electrical circuit model of a high-frequency, wire-wound resistor. This model is based on lumped
ideal RLC elements and is, therefore, suitable for a low to medium range of frequencies. In the case of very high
frequencies, a more elaborate model, based on distributed elements, needs to be used

where R is the resistance, ρ is the material’s resistive constant, l is the length, and S is the cross-
sectional area.

The electrical behaviour of a real resistor is much more complicated than the basic ideal model (4.9)
suggests. The main reason is that a real resistor is build using several materials, each of them with a
different conductivity constant σ , a different temperature coefficient (TC), and so on. In Sect. 4.1.1.1 it
was shown that even a simple wire on its own, which is commonly used to make the lead terminals for
through-hole resistors, turns into a very complicated device once AC starts to flow through. To make
things worse, a wire-wound resistor is designed to be the same shape as a regular inductor. The only
difference is in the resistivity constant of the two wires: inductors are made of a very low-resistance
metal wire and resistors are made of high-resistance alloys. In addition, there is a capacitive effect
between the wire turns, between the resistor’s body and the environment, and between the two wire
terminals.

Consequently, the equivalent electrical circuit model needed to capture the behaviour of a real
resistor over a range of frequencies includes, aside from the intended resistor device, the parasitic
capacitances and inductances needed to model the behaviour of the real materials used to manufacture
the resistor. In one commonly used model (suitable for a low to medium range of frequencies),
component R represents the ideal intended value of the resistor, L1 represents the parasitic inductance
of the wire used to create the resistor, L2 is the inductance of the wire used to crate the resistor’s
leads (ignored in the case of carbon or metal film resistors), C1 is the parasitic capacitance associated
with the wire coil used to create the resistor, and C2 is the parasitic capacitance associated with the
leads and the whole resistor itself, often referred to as the “feed-through” or “stray” capacitance (see
Fig. 4.8).

A simple numerical analysis (see Fig. 4.9) of a resistor model whose DC resistance value was
designed to be (for example) R = 500Ω, shows that there are four distinctly different frequency
regions where the resistor’s behaviour is drastically different. Although the numbers shown in Fig. 4.9
are specific only for this particular example, the curve shape is similar for other examples.

• DC to 20 MHz: Inside this frequency region, the resistance is dominant. Note that the resistor’s
value does not change significantly with the frequency increase, i.e. |Z| ≈ R 	= f (ω).
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Fig. 4.9 Absolute
impedance against
frequency characteristics of
a typical wire-wound
resistor. A real resistor
model (Fig. 4.8) used the
following ideal component
values: R = 500Ω,
L1 = 1.54/

√
f , and

Ca = 5 pF

• 100 MHz to 10 GHz: Beyond the region in which |Z| is approximately constant, the capacitive
behaviour becomes dominant, which is illustrated by the drop in the impedance amplitude. It is
consistent with capacitive impedance behaviour (capacitive impedance is inversely proportional to
the frequency).

• 10 to 30 GHz: A sharp, pointy region is a very important property of any physical object. For the
time being, let us only remember the frequency of the minimal point (in this case approximately
25 GHz) as the “self-resonating” frequency. More details of resonance in general are given in
Chap. 5. In addition, resonance as a phenomenon is the fundamental principle behind wireless
radio transmission and remains one of the main topics throughout this book.

• Above 30 GHz: At very high frequencies, inductive behaviour becomes most prominent, which is
characterized by an increase in the impedance amplitude as the frequency increases, which is the
typical behaviour of an ideal inductor.

This example illustrates the complexity of behaviour associated with real components due to
frequency dependence that is caused by their internal parasitics, which directly limits the useful
operating range of frequencies of real components.

4.1.4.1 Linear and Nonlinear Resistance

The definition of linear resistance in its basic form, (4.9), applies only to ideal linear resistor
components whose voltage vs. current derivative is constant. In both cases, direct application of (4.9)
is correct because the ratio of voltage to current is constant, i.e. R is constant. In a more realistic
general case of resistance, which is inherently nonlinear in terms of the voltage–current relationship
at the resistor’s terminals, the change in voltage that corresponds to a change in current gives the
correct value of point-by-point resistance.

One of the three possible forms of Ohm’s law, which describes the relationship of time-varying
voltage and current, is:

v = iR ⇒ R =
v
i
, (4.11)

∴

R � lim
Δ→0

Δv
Δ i

=
dv
di
, (4.12)
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Fig. 4.10 Voltage–current
characteristics of a linear
element (left) and a
nonlinear element (right)

which should be interpreted as being valid only at a particular voltage–current point. To clarify this
statement, take a look at Fig. 4.10 which shows two VI characteristics: one for a linear element (e.g., an
ideal resistor) and one for a nonlinear element (e.g., a diode). As shown in (4.12), strictly speaking, a
resistance is defined as the first derivative of voltage over current, which implies the validity of (4.12)
only at that particular VI point, which is a more natural interpretation of the concepts of negative
resistance and the biasing point.

In the case of a linear resistor, the first derivative does not change from point to point in the VI
plane, Fig. 4.10 (left); the resistance of linear devices is constant, i.e. R1 = R2 = R3. For a nonlinear
device, Fig. 4.10 (right), it should be obvious not only that at each point R1, R2, and R3 the respective
derivatives are different, but also that two possible values for resistance can be calculated at each point.
For example, for point R1, direct use of (4.9) results in the value of R1 = V1/I1, while use of (4.12)
generates a quite different value for R1, which is due the definition of the first derivative. The situation
at point R2 is even more surprising: direct application of (4.9) gives R2 = V2/I2 and application of
(4.12) results in R2 = 0. Finally, at point R3, direct application of (4.9) gives R3 = V3/I3, however,
(4.12) gives R3 < 0. What is more, two current values are associated with the same voltage value: note
that the voltages across R1 and R3 are equal, while the currents are widely different.

The problem arises from the fact that application of (4.9) requires only a single measurement of the
current and voltage. This is not sufficient to answer the question of what happens with the voltage–
current relationship at other points. In contrast, application of (4.12) requires several readings, i.e. a
priori knowledge of several voltage–current readings in close proximity to each of the points (Vk, Ik)
before it is possible to apply (4.9). Usually, full nonlinear V–I characteristics are provided for practical
nonlinear devices. Points defined by the (Vk, Ik) pairs are referred to as “DC biasing points”, resistances
calculated by (4.9) are “DC resistances” and resistances calculated using (4.12) are known as “AC
resistances”. Therefore, we have not one but two valid results for resistance at the same (Vk, Ik) pair,
hence the need to specify the corresponding biasing points when calculating AC parameters of a
circuit that contains nonlinear devices, such as diodes and transistors.

4.1.4.2 AC Signal Generator and Resistive Load

Parallel connection of a single-tone generator and a purely resistive load, as shown in Fig. 4.11 (left),
forms the simplest AC circuit. In this section, we review the important characteristics of this class
of circuits in terms of its voltage–current–power relationship. Because an AC signal, mathematically
described by sinusoidal function, constantly changes in time, it is convenient to use its RMS value
to quantify the energy transfer between the source and the load. We already know (Sect. 2.7.1) that
electrical power is the product of voltage and current. In the same section, (2.39) showed that the phase
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Fig. 4.11 A circuit with
purely resistive load and
AC voltage generator (left)
and the corresponding
voltage–current–power
time domain plot (right). In
this example,
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and iR = 1.5sin(ωt) mA

difference between voltage and current waveforms is an important factor. By inspection of (4.9), we
note that resistance by itself does not have a frequency-dependent component, hence its voltage vR

and current iR measured at the terminals must be in phase, as shown in Fig. 4.11 (right).
It is important to observe that:1

• Because the voltage and the current through a resistor are in phase, i.e. for half a cycle both are
positive and for half a cycle both are negative, the power is always positive (it always flows out of
the generator into the resistor and dissipates in heat).

• The power cycle is half the signal cycle.
• Even though average values for voltage and current are zero, the average power is halfway between

its minimum and peak values; for Fig. 4.11 (right), it is calculated as (3 mW + 0 mW)/2=1.5 mW.
• At any moment, the resistor value is R = v(t)/i(t); for Fig. 4.11 (right), R = 2V/1.5mA =

1.333kΩ.
• The equivalent DC voltage E that is needed to generate a power level equal to the average power

is E =
√

PR; for Fig. 4.11 (right), E =
√

1.5mW× 1.333kΩ= 1.414V.

By now, we should be quick to realize that the effective DC voltage E is what is commonly referred
to as the “RMS” value of the AC peak voltage Vm. The same 1/

√
2 factor applies to the current

peak value, which leads to a relation for the RMS power as Prms = 1/
√

2Vm ×1/
√

2Im = 1/2VmIm. To
conclude, the average and RMS values are not equal, even if (for example) the voltage and current are
calculated over the same half cycle.

4.1.5 Capacitance

The intuitive introduction of resistance as a material property in Sect. 4.1.1.1 is based on a physical
argument that follows from the flow of electrons inside a slab of material and their interaction with the
material’s crystal lattice. We concluded that resistance is related to the ability of the material to allow
the flow of free electrons that are influenced by a force due to the electrical field caused by potential
difference at the material surfaces. We keep in mind though that the voltage difference was caused by
an imbalance in the number of electrons at the two surfaces of the slab. The internal stress was created

1Reminder: asin(x)×bsinx = ab
2 sin(2x).
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Fig. 4.12 Parallel plate
capacitor structure

by the attracting electric force and it is reduced only by providing a low-resistance path between the
two surfaces. However, if there is an external “pump” (i.e. an electron source—a battery) attached to
the slab that is capable of reintroducing the electron imbalance, then the electric force is maintained
and we perceive the steady flow of the electrons as the current. Based on this reasoning, we learned
how to control the current by designing various conductive materials and voltage sources.

Following the same idea, we could ask how the charging process itself is controlled before the
current is allowed to flow. Obviously, in order to introduce a potential difference between two objects
separated in space (i.e. with no conductive path between them), we need to bring a certain number of
electrons Q to one of the objects and store it there. We define capacitance C as the proportionality
constant that defines the number of electrons Q that are required to create V = 1 V potential difference
between the two objects, i.e.

Q ≡C×V, (4.13)

where the charge Q and the potential V hold as long as the two objects are separated.
From a physical perspective, capacitance is calculated either for any two objects at different

potentials separated in space by the high-resistance insulating layer or for any two points of the same
object at different potentials (which is referred to as “self-capacitance” or parasitic capacitance). If
resistance of the insulation material is assumed infinitely high, then equal and opposite charges placed
on these two objects can never combine through the insulating layer; the charge recombination can
happen only through the external path. We define a capacitor as a two-terminal device whose main
role is to store and hold charges on its two separated surfaces. That is why a capacitor is also referred
to as an energy storage device, where the energy is stored in its internal electric field.

From the implementation perspective, the most commonly used shape of capacitor is a parallel
plate capacitor, which is made of two thin metal sheets with a thin insulating layer sandwiched
between them. Similarly to (4.10), the relationship between the geometric properties of a parallel
plate capacitor and its capacitance is given as

C = ε
S
d
= ε0εr

S
d
, (4.14)

where C is the capacitance that is directly proportional to the surface area S of the two conducting
plates and to the permittivity of the insulating layer ε = ε0εr and inversely proportional to the
separation distance d between the plates (see Fig. 4.12). The relative permittivity of the insulating
material is εr and ε0 is the vacuum permittivity. Even though (4.14), strictly speaking, applies only to
a plate capacitor, the capacitance of many other shapes can be reasonably well approximated by the
same formula. In order to reduce the component size, especially for larger values of capacitance C,
a parallel plate capacitor is usually rolled into a cylindrical tube. To further increase the capacitance
within a given volume, materials with higher permittivity values must be used, for example electrolytic
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capacitors use an electrolyte (an ionic conducting liquid) as one of the plates. And, of course, making
the insulation layer thinner increases the capacitance, as long as the insulating material’s resistance is
high enough to stop leakage of current caused by the strong electric field.

In the general case, when the voltage potential across the capacitor is not constant, we define the
process of the capacitor charging by monitoring how fast the charges are brought to the capacitor
plate. Mathematically, it is equivalent to finding the first derivative of (4.13), i.e.

d
dt

Q ≡ i =C
dv
dt
, (4.15)

where AC voltage v and current i satisfy the convention for passive elements, i.e. the current enters
the terminal that is at higher potential. Therefore, the general definition of capacitance C is that it is
the proportionality constant between the instantaneous current and the change of voltage over time.

4.1.5.1 Capacitive Reactance

Capacitive behaviour is in many ways parallel to pure resistive behaviour with a few important
differences, as implied by (4.15). Capacitive current is proportional to the rate of change of its voltage.
Therefore, if there is no voltage change, i.e. the capacitive voltage frequency is zero, then the term
dv/dt = 0 in (4.15) becomes zero, with the direct consequence that the capacitive current must be zero
by definition. We, therefore, conclude that, once the charging process is over, a capacitor does not let
DC through, which is as same as saying that capacitive DC resistance is infinite.

An important case that is also of practical use is when the capacitive voltage changes periodically
in time by following the sinusoidal function, which is also known as “steady-state analysis”. Steady
state signals change by the rate of radian frequency (1.8), ω = 2π/T , therefore the maximum capacitor
voltage Vm changes at the same rate. Mathematically, we define a periodic capacitor voltage as vC =
Vm cosωt and we are able to rewrite (4.15) as

iC =C
d
dt

vC =C
d
dt

Vm cosωt =−ωC Vm sinωt

= ωC Vm cos
(

ωt +
π
2

)
= ωC jvC, (4.16)

∴

ZC ≡ vC

iC
=

1
jωC

, (4.17)

where the capital letters denote steady state variables. We have defined the steady-state capacitor
impedance ZC by forcing (4.15) into the shape of Ohm’s law, which has revealed the expression
1/jωC associated with capacitance that physically represents the capacitor resistance at frequency ω .
Equation (4.17) shows the value of capacitive reactance and also shows the phase relationship between
the capacitor voltage and current, through the complex variable j, which accounts for the 90◦ phase
shift in (4.16) between the voltage and current.

The initial assumption of infinite resistance associated with the insulating layer is an abstraction
that cannot be achieved in reality, of course. Good insulators, however, do block DC reasonably well,
which makes the capacitor leakage current negligible. As a result, a well charged capacitor can hold
its charge over very long periods of time where the leakage current is close to zero.

Example 4.1. To illustrate how capacitor impedance changes with frequency, calculate the impedance
of a C = 159 pF capacitor using (4.17) at the following frequencies: 1 Hz, 100 Hz, 10 kHz, 1 MHz,
100 MHz, and 1 GHz.
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Table 4.1 Capacitor
impedance for various
frequencies, C = 159 pF

Frequency Reactance

1 Hz 1 GΩ
100 Hz 10 MΩ
10 kHz 100 kΩ
1 MHz 1 kΩ
100 MHz 10 Ω
1 GHz 1 Ω

C
L

RC

RS

Fig. 4.13 Equivalent
electrical circuit model of a
high-frequency plate
capacitor

Solution 4.1. Numerical results after substitution of the required frequency values in (4.17) are
tabulated as shown in Table 4.1.

Because real dielectric materials are lossy (which is to say that there is a small current flow under all
conditions)—in other words, a real capacitor insulator is leaky—the finite resistance of the insulating
material is calculated in the same way as any other resistive material using (4.10). This parasitic
resistance is perceived as being in parallel with the desired capacitance (effectively, it provides a DC
path between the capacitor terminals), hence it is easier to take the inverse of (4.10) and calculate the
conductance of the insulating dielectric as

GC =
1

RC
= σdiel

S
d
, (4.18)

where GC is the dielectric conductance, RC dielectric resistance, σdiel is the conductivity of the
dielectric, S is the conductive cross-section, i.e. the surface of the plate, and d is the thickness of the
dielectric material, i.e. the equivalent to resistive length l in (4.10). Engineering practice is to quantify
the dielectric properties of material used as the insulating layer inside a capacitor by introducing the
series loss tangent tanΔs as

tanΔs = ε
ω

σdiel
, (4.19)

so that (4.18) is written as

GC = σdiel
S
d
= ω

εS
d

1
tanΔs

=
ωC

tanΔs
. (4.20)

The equivalent electrical circuit for a real capacitor includes the desired capacitance C, the parasitic
series resistance RS, the inductance L of lead wires, and the dielectric loss resistance RC (see Fig. 4.13).
The overall impedance of a real capacitor ZCr is then calculated as

ZCr = (RS + jωL)+
1

GC + jωC
. (4.21)
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impedance value against
frequency of a typical
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A simple numerical analysis of the realistic capacitor model in Fig. 4.13, whose capacitance was
designed to be, for example, C = 47 pF, shows that there are three distinctly different frequency regions
where the capacitor’s behaviour is drastically different (see Fig. 4.14). For purposes of comparison,
an impedance amplitude of an ideal capacitor is shown in the same plot. Although the numbers used
to create Fig. 4.14 are specific only for this particular numerical example, the curve shape is similar
for other examples.

• Below 1 GHz: In this frequency region, the capacitance closely follows the one for the ideal
capacitor, which is to say that the parasitic components are negligible.

• 1 to 10 GHz: The resonant behaviour of the real capacitor is clearly visible with a self-resonant
frequency at approximately 8 GHz.

• Above 10 GHz: In this frequency region, the inductive parasitics are dominant, turning this
capacitor into an inductor, and the desired capacitive function is completely suppressed.

This example illustrates the complexity of the behaviour associated with real capacitive components
in the frequency domain due to their internal parasitics, which directly limits their useful frequency
range of operation.

4.1.5.2 AC Steady State of a Circuit with Capacitor

A parallel connection of a single-tone generator and purely capacitive load is shown in Fig. 4.15 (left).
In this section, we take a closer look at the important characteristics of this class of circuits in terms
of the AC voltage–current relationship.

Although it may look trivial, (4.15) is very important for understanding the voltage–current
relationship in Fig. 4.15, because it states that the AC through a capacitor depends on the rate of
voltage change, i.e. on its first derivative in respect to time. At the beginning of the voltage waveform
in Fig. 4.15 (right), i.e. at t = 0, the capacitor is discharged and, according to (4.15), the voltage
vC must also be zero. However, at that moment, the rate of voltage change is highest, which means
that, according to (4.15), the corresponding current iC must be at its maximum value. Moving along
the voltage waveform, e.g. at the point t = π/2, the value of vC is at its maximum but the rate of
change is zero. The corresponding current iC also must be zero, which is exactly what the plot shows.
Once this analysis is done for all points in time, we reach the conclusion that the current waveform
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Fig. 4.15 A circuit with purely capacitive load and AC voltage generator (left) and the corresponding voltage–current–
power time domain plot (right). In this particular example, E0(t) = 2sin(ωt) = vC V and iR = 1.5sin(ωt) mA

also takes a sinusoidal shape, however it is “out of phase”, i.e. it is 90◦ ahead of the voltage waveform.
This “ahead” wording is a source of confusion for a number of students who ask the valid question
“How the current could possibly know its value a quarter of the cycle ahead in time?” It does not
know: at any given point in time the current value is proportional to the instantaneous rate of change
of the corresponding voltage value, and the voltage value is a quarter of the cycle ahead in time.
Indeed, this voltage–current relationship is conveniently described by saying that “the current leads
the voltage by 90◦”.

For the specific numerical example in Fig. 4.15, the important points to observe are:

• Because the voltage and current through a capacitor are out of phase, the power changes from its
most positive value through zero to its most negative value, and back. Its waveform also follows a
sinusoidal shape. For half of its cycle, the power flows out of the generator into the capacitor where
it is stored in the form of an electrical field. For the other half, the power flows out of the capacitor
back into the voltage generator.

• The power cycle is half the signal cycle.
• The average power is zero, i.e. it keeps bouncing back and forth between the source and the

capacitor. In short, in an ideal capacitor there is no thermal power dissipation.

4.1.5.3 Transient Capacitive Current

Under certain conditions, i.e. the capacitor C is not charged at the beginning and the abrupt voltage
change, a.k.a. step function, is introduced by the pulse function (see Fig. 4.16), the behaviour of the
capacitor in the time domain is not a steady state. It is derived as follows.

At any given moment in time, the source voltage E0 is split between the voltages across the resistor
vR and across the capacitor vC. At the beginning, the capacitor is not charged, which is to say that
vC = 0 (both plates are at the same potential). At the moment t = t0, when the voltage E0 becomes
abruptly high, the source voltage is distributed only over the resistor (there is no voltage drop across
the capacitor) and the current abruptly jumps to i(0) = E0/R. However, as soon as the current starts
to flow, the charges are “tending to” the capacitor plate, which is the equivalent of saying that the
capacitor’s voltage vC starts to rise at a very high rate (limited only by the initial current i(0)). As a
consequence, less voltage is left across the resistor, which further lowers the current, while the rate
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Fig. 4.16 A circuit with a capacitor C, limiting resistor R0, and pulse voltage generator E0 (left) and the corresponding
voltage–current time domain plot (right). In this particular example, E0(t) = 1V ·pulse(10ns). and R0 = 1kΩ

of current change is constantly reduced. Theoretically, the process (which is very common in nature)
keeps going forever. It is known as “exponential decay” or “natural growth”.

Mathematically, the exponential decay process is modelled by a first-order differential equation.
Keep in mind that the two constant voltage pulse levels by themselves are considered DC voltages,
i.e. the same pulse shape could have been created with a DC source and a two-way switch. Hence, we
write the Kirchhoff’s current law (KCL) equation and take its derivative as

E0 = vR(t)+ vC(t) = i(t)R+
q(t)
C

, (4.22)

therefore,

0 = R
di(t)

dt
+

1
C

dq(t)
dt

, (4.23)

0 =
di(t)

dt
+

1
RC

i(t). (4.24)

The solution to the first-order differential equation for i(t), with the initial condition i(0) = E0/R, is

i(t) = iC(t) =
E0

R
e
−t/τ0

, (4.25)

where τ0 = RC is the “time constant” of the system. After substituting (4.25) into (4.22), we find the
voltage across the capacitor as

E0 = i(t)R+ vC(t) ∴ vC(t) = E0

(
1− e−t/τ0

)
. (4.26)

Equations (4.25) and (4.26) describe how the voltage and current across a capacitor follow abrupt
changes in the DC voltage level across the capacitor terminals. The technical term for this type of
change is that it is “transient” and it is, obviously, a very nonlinear process. Points to note are:

• A capacitor is very good at passing fast, abrupt voltage changes while presenting an open circuit
for direct current.

• Theoretically, a capacitor never reaches the level of E0 voltage, it only keeps tending towards it
forever. Because of that, a practical decision is usually made that a capacitor is “fully charged” at
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about t = 5τ0, because at that moment the capacitor voltage vC is at over 99% of the maximum
level set by E0 (which is easily proved by (4.26)).

An important question regarding the charging and discharging process is “Where does the power
go?” At the beginning, during the capacitor charging period, when the voltage across the capacitor
abruptly jumps from low to high voltage, almost the whole power is dissipated in the resistor. As the
transition current lowers due to the increase of the capacitor voltage, the portion of power being stored
in the capacitor in form of an electrostatic field increases. When the polarity at the capacitor terminals
is reversed (at the falling edge of the pulse), the capacitor serves as the source of energy, which now
flows into the resistor where it is dissipated. At the end of the charge–discharge cycle, the total energy
initially provided by the voltage source has been dissipated in the resistor. These two phases of the
full cycle must contain exactly the same amounts of energy, which must add up to the total available
energy, thus we can say that the total charge Q must result in voltage V = Q/C. That is to say, the
average voltage must have been one half, i.e. Vavg = Q/2C. Therefore, the work (and the energy W )
that was stored in the capacitor C is calculated as the charge Q times the average voltage Vavg, i.e.

W = QVavg = Q
Q
2C

=
Q2

2C
=

V 2
avgC2

2C
=

V 2
avg

2C
, (4.27)

which is a commonly used expression for the amount of energy in a capacitor.

4.1.6 Inductance

Inductors are not often used in low-frequency electronic circuits. However, in wireless RF designs
they are absolutely essential components. What is more, the frequency behaviour of an RF inductor
arguably influences the final specifications of an RF circuit more than any other component.

Similar to a capacitor, an inductor is a two-terminal device that is capable of storing energy. This
time the energy is stored in the form of an internal magnetic field. The voltage–current relationship at
the inductor’s terminals is described as

v = L
di
dt
, (4.28)

where voltage v and the change of current di/dt are connected by the proportionality constant L, which
is defined as inductance. Hence, voltage generated at terminals of an inductor is proportional to rate
of change of the current flowing through.

Using the same methodology as in Sect. 4.1.5.1, the periodic current iL = Im cosωt. After
expanding (4.28), we show that the inductive reactance ZL is defined as

ZL ≡ vL

iL
= jωL. (4.29)

As a side note, there is an important version of an inductor known as “RF choke” (RFC) of which
the main characteristic is that it is made intentionally large. Consequently, at higher frequencies it
serves as an AC-blocking device while allowing DC to flow. It is used extensively in RF circuits for
providing DC biasing to active devices without interfering with the AC signal. To conclude, we note
that an RFC has the same relationship to AC signals as a capacitor to DC signals, and vice versa.

Example 4.2. To illustrate how inductor impedance changes with frequency, calculate the impedance
of a, L = 159 nH inductor at the following frequencies: 100 Hz, 10 kHz, 1 MHz, 100 MHz, and
10 GHz.
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Table 4.2 Inductor
impedance for various
frequencies, L = 159 nH

Frequency Reactance

100 Hz 100 μΩ
10 kHz 10 mΩ
1 MHz 1 Ω
100 MHz 100 Ω
10 GHz 1 kΩ

I

Fig. 4.17 Magnetic field
of a straight wire (left) and
a cylindrical air-core
inductor (right)

Solution 4.2. The numerical results after substitution of the required frequency values in (4.29) are
tabulated as shown in Table 4.2.

Typically, inductors are built by winding low-resistance wire around a cylindrical body (see
Fig. 4.17). An approximate formula commonly used for short cylindrical air-core inductors is

L =
πr2μ0N2

l
, (4.30)

where L is the desired inductance, r is the coil radius, l is the coil length, N is the number of turns,
and μ0 is permeability in a vacuum.

Example 4.3. Estimate the inductance L of a coil formed by N = 50 turns of a copper wire with radius
a = 80μm, a radius of air core r = 2 mm, and length of the coil l = 10 mm. Note that the distance
between two adjacent turns is d = l/N = 100μm.

Solution 4.3. A commonly used formula for estimating the inductance of an air-core solenoid for
r � l is

L =
πr2μ0N2

l
≈ 3.948μH,

which is a close estimate of the coil inductance.
As simple as it sounds, inductor design is still considered as much an art as engineering. The

problem is that, according to Faraday’s law of EM induction, any current-carrying wire creates a
magnetic field around it (see Fig. 4.17 (left)). Hence, it can be stated that every real wire also behaves
as an inductor with finite internal resistance. Moreover, a current-carrying wire could always be rightly
considered as one “plate” of a capacitor where the other “plate” could be the adjacent wire or any of
the surrounding objects that happen to be at a different potential. Now, one could ask the following
question: if a single wire exhibits behaviour typical of a resistor, a capacitor and an inductor, all at
the same time, how do we use it so that (at least within some finite frequency–voltage–current range)
it resembles a device known as an “ideal inductor”? That is, how close can we get to ideal inductor
behaviour in reality?
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Fig. 4.18 Equivalent
electrical circuit model for
a high-frequency inductor
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and C = 0.087 pF

First, let us deal with the “resembling inductor behaviour” part of the question. The magnetic
field around a straight wire, Fig. 4.17 (left), is relatively weak. Bending the wire into a circular shape
forces all sections of the magnetic field, which are spread along the wire’s length to fold over and
“come close” to each other. Effectively, the magnetic energy density is increased within the encircled
space, which is to say that the wire behaves more like an inductor. By increasing the number of turns
and creating a cylindrical solenoid, Fig. 4.17 (right), the inductive behaviour is further emphasized.
The magnetic field inside the solenoid is now much stronger (and more uniform) than the straight
wire, implying that a considerable amount of energy is “stored” in the inductor’s magnetic field.

Second, it should be noted that the internal resistance of the wire is always present with
parasitic capacitances between the neighbouring turns and between the inductor and the surrounding
environment, which means that it is possible to achieve a close approximation of ideal inductor
behaviour, but never to become an ideal inductor. Therefore, a real inductor resembles the behaviour
of a relatively complex RLC network with dominant inductive behaviour only within a limited range
of operation, quickly losing its inductive property outside the optimal range. One of the limiting
factors is a phenomenon known as “self-resonance”, which is explained in more detail in the following
paragraphs.

One of the possible equivalent circuits of a high-frequency inductor (see Fig. 4.18) includes the
desired inductance L, the serial resistance of the wire Rs, and the parasitic shunt capacitance between
the inductor’s terminals Cs.

The typical realistic frequency behaviour of an inductor (Fig. 4.19) clearly shows three distinct
regions. For purposes of comparison, an impedance amplitude of an ideal inductor is shown in the
same plot. Although the numbers shown in Fig. 4.19 are specific only to this particular numerical
example, the curve shape is similar for other values:

• Below 1 GHz: In this frequency region, the intended function, i.e. the inductance, closely follows
that for the ideal inductor, which is to say that parasitic components are negligible.
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Fig. 4.20 A circuit with purely inductive load and AC voltage generator (left) and the corresponding voltage–current–
power time domain plot (right). In this particular example, E0(t) = 2sin(ωt) = vC V and iR = 1.5sin(ωt)mA

• 1 to 10 GHz: A sharp, resonant behaviour of the real inductor is clearly visible with self-resonant
frequency at approximately 2 GHz.

• Above 10 GHz: In this frequency region, capacitive parasitics are dominant (the desired function
is almost completely suppressed), turning this inductor into a capacitor.

This example illustrates the complexity of behaviour associated with real components in the frequency
domain due to their internal parasitics, which directly limits range of frequencies over which they are
useful.

4.1.6.1 AC Steady State of a Circuit with Inductor

The parallel connection of a single-tone generator and purely inductive load is shown in
Fig. 4.20 (left). In many ways, inductance (which is caused by magnetic phenomena) is equivalent
to capacitance (which is caused by electrostatic phenomena). This means that they are like mirror
images of each other, with some roles being swapped. In the case of inductance, the changing current
forces its magnetic field to change, which in return forces the induced voltage to change.

Let us take a closer look at the voltage–current relationship in Fig. 4.20 (right). At the beginning of
the voltage waveform cycle, i.e. at t = 0, it is at its maximum rate of change, which means that the rate
of current change is highest, however it is negative. It is opposing the large rate of voltage change. On
the other hand, when the current is at its maximum, with its first derivative equal to zero, the inductor
voltage must be zero as well. This point in time is followed by a reduction in the current amplitude,
which causes negative voltage, and the cycle keeps repeating. Once this analysis is done for all points
in time, we reach the conclusion that the current waveform also takes a sinusoidal shape, however it
is out of phase, 90◦ behind (i.e. it “lags”) the voltage waveform. This voltage–current relationship is
conveniently described by saying that “the current lags the voltage by 90◦”.

For the specific numerical example in Fig. 4.20, the important points to observe are:

• Because the voltage and current through an inductor are out of phase, the power changes from its
most negative value through zero to its most positive value, and back. Its waveform also follows
a sinusoidal shape. That means for half of its cycle the power flows out of the generator into the
inductor where it is stored in the form of a magnetic field. For the other half, the power flows out
of the inductor back into the voltage generator.

• The power cycle is half the signal cycle.
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Fig. 4.21 A circuit with an inductor, limiting resistor R0, and pulse voltage generator E0 (left) and its corresponding
voltage–current time domain plot (right). In this particular example, E0(t) = 1V ·pulse(10ns) and R0 = 1kΩ

• The average power is zero, i.e. it keeps bouncing back and forth between the source and the
inductor. In short, there is no thermal power dissipation in an ideal inductor.

4.1.6.2 Transient Inductive Current

For the most part, the story of the inductor–resistor network is similar to that of the capacitor–
resistor network in Sect. 4.1.5.2, except that this time we start by looking at relationship (4.28).
Again, at the time t = 0 the current is at its maximum negative value and its first derivative is zero.
Hence, the induced voltage, according to (4.28), takes zero value. Following through the rest of the
current waveform, we reach similar conclusions to those in Sect. 4.1.5.2 and we confirm the current–
voltage waveform relationship, Fig. 4.20 (right). In conclusion, the current waveform lags the voltage
waveform by a quarter of the cycle, i.e.

vR = iR, (4.31)

vL = L
di
dL

, (4.32)

Ri+L
di
dL

=V, (4.33)

∴

i =
V
R

(
1− e−(R/L) t

)
, (4.34)

where τ0 = R/L is the timing constant of the LR circuit and the current follows the natural growth
law. This example illustrates the duality of capacitor and inductor devices in terms of their time and
frequency domain behaviour (Fig. 4.21).
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Fig. 4.22 Simple inductor
with magnetic toroidal core

4.1.7 Transformer

Our definition of inductance (introduced in Sect. 4.1.6) was, strictly speaking, a definition of
“self-inductance”. We now generalize the definition by taking a closer look at how inductance works
and then by introducing a second inductor in close proximity to the first. The presence of the second
inductor creates a structure known as a “transformer”.

Let us start with a single inductor connected to a voltage meter (Fig. 4.22), whose air core is
replaced by a magnetic toroidal ring. The magnetic core serves as a container for magnetic flux Ψ
and, for the moment, we assume the existence of a current I in the wire. To a first approximation, the
magnetic flux Ψ is proportional to the current i and the number of inductor turns N as

Ψ = K N i, (4.35)

where K is the proportionality constant that depends on the geometry and material properties of the
toroidal ring. Magnetic flux is a vector variable, whose direction is determined using the right hand
rule. In accordance with Faraday’s law, a varying magnetic flux induces voltage in N turns of the
inductor, after substituting (4.35), as

d
dt
(NΨ ) = v ∴ v = N

d
dt

Ψ = N
d
dt
(K N i) = K N2 di

dt
∴ v = L

di
dt
, (4.36)

where inductance is defined as

L ≡ K N2, (4.37)

which simply states that the inductance is a function of the square of the number of inductive turns
and properties of the core. Alternatively, by using complex notation for the case of periodic magnetic
flux, (4.36) is rewritten as

V = jωLI, (4.38)

which is the form commonly used in steady-state-circuit analysis. We recognize that magnetic flux
is produced by a current, where the flux is proportional to the current, and voltage is produced by a
time-varying magnetic flux, where the voltage is proportional to the rate of change of the magnetic
flux. Therefore, voltage is proportional to the rate of change of the current.

Adding a second coil that shares the magnetic flux of the first coil (see Fig. 4.23) extends the
single-coil argument and the structure is known as a “transformer”. We note that a single coil is a two-
terminal device, while a transformer is a four-terminal device. Although the roles of the two inductors
are interchangeable, it is common to use the term “primary” when referring to the input side and
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Fig. 4.23 Two coils
forming a transformer.
For simplicity, an air core
is used

“secondary” when referring to the output side of the transformer. Intuitively, we expect that a voltage
is induced in both coils if the flux is changed and it is interesting to find out how the two coils interact
compared with how much of the flux is actually shared. By inspecting the transformer example in
Fig. 4.22, we can deduce that if a second coil was added around the same magnetic coil then, in the
ideal case, both coils would experience almost exactly the magnetic flux that is contained in the core.
In contrast, if the two coils are separated as in Fig. 4.23 than only part of the flux going through the
primary coil crosses to the secondary coil.

A current flowing through the primary coil produces magnetic flux not only in the primary but also
in the secondary coil. Therefore, the time-varying flux in the secondary coil produces a voltage at its
terminals that is proportional to the rate of change of current in the primary coil. Similar to (4.36), we
write an expression for the secondary voltage vS generated by secondary flux ΨS through NS turns as

vS = NS
d
dt

ΨS, (4.39)

where the secondary flux ΨS is a fraction of the primary flux ΨP. Hence we can establish their ratio as

k =
ΨS

ΨP
, (4.40)

where k is a coupling coefficient that can take any value between zero and one. We can now connect
the secondary voltage with the primary flux as

vS = NS k
d
dt

ΨP, (4.41)

which, after substituting (4.35) for the primary side and (4.37) for both sides, yields

vS = NS k
d
dt
(K NP iP) = k K NP NS

diP
dt

= k K

√(
LP

K

)√(
LS

K

)
diP
dt

= k
√

LS LP
diP
dt

= M
diP
dt

,

∴
VS = jωM IP, (4.42)

where,

M ≡ k
√

LS LP (4.43)
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defines “mutual inductance”, which is formally equivalent to the definition of inductance of a single
coil in (4.36). Although it can be proven mathematically, we intuitively conclude that the mutual
inductance M is equal in both directions, i.e. looking from the primary side as well as looking from
the secondary side. Equivalently, following the same argument, we conclude that due to the mutual
inductance there is additional voltage added in the primary side, i.e.

v0 = LP
diP
dt

+M
diS
dt

, (4.44)

∴
V0 = jωLP + jωMIS, (4.45)

which simply states that the input side voltage V0 is the sum of the induced voltage in the primary coil
(due to the change of the source current jωLP) and the induced voltage due to change of the secondary
current jωMIS, where the capitalized notation of voltages and currents indicates complex numbers.

Example 4.4. Determine the voltage induced on the secondary side of a transformer whose primary
side is driven by a sinusoidal current with maximum value 1 mA at 10 MHz. Primary inductance is
LP = 50 nH, secondary inductance is LS = 100μH, and the coupling factor is k = 0.5.

Solution 4.4. A straightforward implementation of (4.43) and (4.42) yields a result for mutual
inductance and the induced secondary voltage as

M = k
√

LS LP = 0.5
√

100μH× 50nH = 1.118μH,

∴
|VS|= ωM IP = 2π × 10 MHz× 1.118μH× 1mA = 70.248mV.

4.1.7.1 Energy Stored in a Transformer

A pair of coupled inductors have energy stored in the form of a magnetic field that can be found
starting from the zero energy initial condition and by looking at how the energy inside the transformer
is built up step by step while using the following mathematical formalism. With no load on the
secondary (i.e. iS = 0 or vSiS = 0), we increase the primary current from iP = 0 to an instantaneous
value iP = i1(t1) over the period of time from zero to t = t1. Therefore, power and energy in the
primary coil is found as

vPiP = LP
diP
dt

i1, (4.46)

∴

WP(t1) =
∫ t1

0
vPiP dt =

∫ t1

0
LP iP diP =

1
2

LP i2P(t1), (4.47)

which means that the total transformer energy is still stored in the primary. The change of current
in the primary during the period of time from zero to t1, is followed by the induced voltage vP in
the secondary even though the primary current iP(t1) is held constant during the period from t1 to t2,
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Fig. 4.24 Conventions
regarding the direction of
the input current and
direction of the primary
and secondary coil
windings relative to the
induced secondary voltage
polarity

therefore the secondary induced current changed from zero to the instantaneous value of iS = is(t2),
hence the energy in the secondary is

WS(t2) =
∫ t2

t1
vSiS dt =

∫ t2

0
LS iS diS =

1
2

LS i2S(t2). (4.48)

However, we should not forget that during the change of the secondary current there is an additional
induced current in the primary, which contains energy WPi(t2) as

WPi(t2) =
∫ t2

t1
vPiP(t1)dt =

∫ t2

t1
M

diS
dt

iP(t1)dt

= M iP(t1)
∫ t2

0
diS = M iP(t2) iS(t2), (4.49)

where iP(t2) = iP(t1) is the current caused by the primary source that did not change during the period
t1 to t2 and was already found in (4.47).

Adding all three energy components that are found at the moment in time t = t2, or any other point
in time t for that matter, gives the total energy W accumulated in the transformer as

W (t) =WP(t)+WS(t)+WPi(t) =
1
2

LP i2P(t)+
1
2

LS i2S(t)±M iP(t) iS(t). (4.50)

So far, we have silently assumed positive values for the currents and voltages. In fact, the polarity of
the primary and secondary voltages and currents depends upon the orientation of the coil windings,
which results in four possible combinations (see Fig. 4.24) and two possible polarities of the induced
secondary voltage, while we assume that the mutual inductance is always positive.

4.1.7.2 Transformer Loading

The analysis of a loaded transformer (Fig. 4.25) is based on the assumption that the transformer is
linear. Strictly speaking that is not correct, because the magnetic core material used in a transformer
almost always has a nonlinear magnetic flux–current characteristic. In the general case of a loaded
transformer, we derive an expression for the input impedance, with reference to Fig. 4.25, as follows.

Total input impedance is the sum of the resistance and reactance associated with the input
inductor LP

Z1 = RP + jωLP = ℜ(Z1)+ j ℑ(Z1). (4.51)
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Fig. 4.25 A transformer
with the signal source v0
and loading impedance ZL.
Both primary and
secondary resistances are
included

The output impedance is the sum of the secondary impedance and the load

Z2 = RS + jωLS +(RL + jXL) = (RS +RL)+ j(ωLS +XL)

= ℜ(Z2)+ jℑ(Z2), (4.52)

where the type of loading impedance ZL is yet to be specified. Network equations in complex number
notation for the input and output sides are as follows

V0 = Z1IP + jωM IS, (4.53)

0 =−jωMIP +Z2 IS, (4.54)

which, after substituting IS from (4.54) into (4.53), leads to the following expression for the input
impedance

ZP =
V0

I1
= Z1 − (jωM)2

Z2
, (4.55)

where, we note, the position of dots and polarities in Fig. 4.25 have no influence on the plus and minus
signs. In addition, the input impedance equals the impedance of the primary coil Z1, as expected,
which is reduced by the term due to the presence of the secondary coil. This new term is referred to
as “reflected impedance” and it plays a very important role in the behaviour of a transformer. Let us
expand (4.55) and take a closer look at how the input impedance is changed.

ZP = [ℜ(Z1)+ jℑ(Z1)]+
(ωM)2

ℜ(Z2)+ jℑ(Z2)

= [ℜ(Z1)+ jℑ(Z1)]+
(ωM)2

ℜ(Z2)+ jℑ(Z2)

ℜ(Z2)− j ℑ(Z2)

ℜ(Z2)− jℑ(Z2)

=

[
ℜ(Z1)+

ℜ(Z2)(ωM)2

ℜ2(Z2)+ℑ2(Z2)

]
+ j

[
ℑ(Z1)− ℑ(Z2)(ωM)2

ℜ2(Z2)+ℑ2(Z2)

]
(4.56)

= ℜ(ZP)+ jℑ(ZP), (4.57)

which clearly states that the real part of the input impedance has increased due to the reflected
impedance which, at the same time, has caused the reactance part to reduce. Equation (4.56) is a
general result that applies to a realistic, loosely coupled transformer that is loaded with impedance
ZL. We simplify this result by assuming an ideal transformer that consists of two ideal inductors, that
is, inductors whose Q factors and inductances tend to infinity, LP,LS,Q → ∞. In addition, an ideal
transformer is tightly coupled, hence its coupling index becomes k = 1, that is, the mutual inductance
becomes M2 = LP LS. Also, the two inductances may be expressed in the form of their ratio, hence,
using (4.37) we write
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LS = K N2
S ,

LP = K N2
P ,

∴

LS

LP
=

N2
S

N2
P

= n2 ∴ LS = n2 LP, (4.58)

which further enables us to rewrite (4.55), after substituting RS = RL = 0, as

ZP = jωLP +
ω2LPLS

jωLS +ZL
= jωLP +

ω2n2 L2
P

jωn2LP +ZL

=
jωLPZL −ω2n2L2

P +ω2n2 L2
P

jωn2LP +ZL

=
jωLPZL

jωn2LP +ZL
≈ jωLPZL

jωn2LP
,

∴

ZP =
ZL

n2 , (4.59)

where the assumption for the ideal inductor (jωLP → ∞) allowed for approximation jωn2LP +ZL ≈
jωn2LP. The last result is very important because it states that, for ideal transformers, the loading
impedance ZL is perceived at the side of the transformer as another impedance that is equal to RL/n2,
which is under the control of the designer. This “impedance scaling” property of an ideal transformer
is very useful in RF circuit design.

Example 4.5. If the number of turns of the ideal transformer primary coil is NP = 100 and the number
of turns of the secondary coil is NS = 10,000, what is the perceived impedance at the input side ZP if:
(a) ZL = 20kΩ; (b) ZL = jω200mH; and (c) ZL = 1/jω100 pF.

Solution 4.5. The turn ratio of this transformer is n = NS/NP = 10,000/100 = 100. A direct
implementation of (4.59) yields the following results:

(a) ZP =
ZL

n2 =
20kΩ
1002 = 2Ω

(b) ZP =
jω (200mH)

1002 = jω (20 μH)

(c) ZP =
1

jω (100pF)× 1002 =
1

jω (1 μF)

Let us determine the relationship between the primary and secondary currents for an ideal transformer.
From (4.54), we write

IS

IP
=

jω M
jω LS +ZL

≈ jω M
jω LS

=

√
LP LS

LS
=

√
LP

LS
=

1
n
=

NP

NS
, (4.60)
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hence, we conclude that

NP IP = NS IS. (4.61)

Similarly, knowing that the power taken by the primary side must equal the power on the secondary
side, we write

VS = IS ZL; VP = IP ZP = IP
ZL

n2 ,

∴
VS

VP
= n2 IS

IP
= n2 1

n
=

NS

NP
,

∴
NPVS = NSVP. (4.62)

This relationship for the primary and secondary voltages can be combined with (4.61) and we
conclude that

VPIP =VSIS. (4.63)

Equations (4.59), (4.61), and (4.63) are commonly used relations for an ideal, close-coupled
transformer model.

From the perspective of RF circuit applications, the single-tuned transformer and the double-tuned
transformer are important. Let us take a look at these two important cases.

1. Single-Tuned Transformer: in the case when the loading impedance is due to a pure capacitor,
ZL = 1/jωCL, and when the resonant frequency of the secondary circuit is set to

ω0 =
1√

LSCL
(4.64)

then the output impedance becomes real, i.e. XS = 0 and for a loose-coupled transformer (4.55)
becomes

ZP = Z1 − (jω0M)2

R2
≈ (ω0M)2

R2
(4.65)

because Z1 is much smaller. This can be written symmetrically for the secondary impedance as

ZS = R2 − (jω0M)2

Z1
≈ (ω0M)2

Z1
. (4.66)

2. Double-Tuned Transformer: This is a more complicated and interesting case, where both primary
and secondary sides are tuned to the same frequency (see Fig. 4.26). We find the relationship
between the voltage appearing across the secondary resonator vL and the source signal v0. By
inspection of the circuit network in Fig. 4.26, we write

V0 =

[
RP + j

(
ωLP − 1

ωCP

)]
IP + jωM IS, (4.67)

0 = jωM IP +

[
RS + j

(
ωLS − 1

ωCS

)]
IS, (4.68)
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Fig. 4.26 A double-tuned
transformer circuit with
both primary and
secondary sides tuned to
the same frequency

which is straightforward to solve for current IS as

IS =− jωMV0[
RP + j

(
ωLP − 1

ωCP

)] [
RS + j

(
ωLS − 1

ωCS

)]
+(ωM)2

. (4.69)

The secondary current is also found as

IS =
VL

1
jωCS

, (4.70)

therefore, the transformer voltage gain becomes

AV =
VL

V0
=−

jωM
jωCS[

RP + j
(

ωLP − 1
ωCP

)] [
RS + j

(
ωLS − 1

ωCS

)]
+(ωM)2

, (4.71)

We keep in mind that both sides of the transformer are tuned to the same resonant frequency and,
assuming Q ≥ 10,

ω0 =
1√

LS CL
=

1√
LP CP

, (4.72)

QP =
ω0LP

RP
=

1
ω0CPRP

=
1

RP

√
LP

CP
, (4.73)

QS =
ω0LS

RS
=

1
ω0CSRS

=
1

RS

√
LS

CS
. (4.74)

In addition, we introduce the useful substitution2

δ =
ω
ω0

− 1 ∴ because (ω0 ≈ ω) ∴ (δ � 1). (4.75)

2ω0δ = BW/2, which is used again shortly.
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Fig. 4.27 Plot of
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as a function of variable x
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Substitution of (4.75) helps to simplify the following expression

R+ j

(
ωL− 1

ωC

)
= R

[
1+ j

ωL
R

(
1− 1

ω2LC

)]

= R

[
1+ jQ

(
ω
ω0

− ω0

ω

)]
= R

[
1+ jQ

(
δ + 1− 1

δ + 1

)]

= R

[
1+ jQ

δ 2 + 2δ
δ + 1

]

≈ R(1+ j2δQ) (4.76)

because δ 2 ≈ 0 and δ + 1 ≈ 1. For simplicity, we assume QS = QP = Q, which, after applying
substitutions to (4.71), results in

AV =
VL

V0
=−

ω0M
RP RS

1
ω0 CS

(1+ j2δQP)(1+ j2δQS)+
(ω0M)2

RP RS

=−
ω0M√
RP RS

1
ω0 CS

√
RP RS

1+ j4Qδ − 4δ 2Q2 + (ω0M)2

RP RS

=− aK
1+ j4x − 4x2 + a2 , (4.77)

where we introduced substitutions

a =
ω0M√
RP RS

; K =
1

ω0 CS
√

RP RS
; x = Qδ ,

so that (4.77) can be simplified in its shape. A normalized plot of |AV/K| for a double-tuned
transformer is shown in Fig. 4.27 as a function of variable x and parameter a.
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If the two resonators have equal Q factor and the parameter a = 1 (also known as “critical
coupling”), then the response has the maximum possible peak. By further increasing parameter a (i.e.
over-coupling), two separate peaks start showing and the bandwidth is increased, which makes double-
tuned transformers useful in AM radio receivers, because the bandwidth allows reception of sidebands
as well. By differentiating (4.77) and finding the extreme points of the function, it is not difficult to
derive analytical expressions for the locations of the two peaks. Under conditions of resonance, i.e.
δ = 0, (4.77) becomes

AV(ω0) =− aK
1+ a2 , (4.78)

therefore, the bandwidth (for the critical coupling a = 1) is found when the ratio of (4.77) and (4.78)
is 1/

√
2, as

AV

AV(ω0)
=

1+ a2

1+ j4x − 4x2 + a2

=
1+ 1

1+ j4x− 4x2+ 1
=

1
1− 2x2 + j2x

,

∣∣∣∣ AV

AV(ω0)

∣∣∣∣= 1√
1+ 4x4

=
1√
2
,

4x4 = 1 ∴ 4Q4δ 4 = 1 ∴ 2Q2δ 2 = 1. (4.79)

Because we already know that BW = 2δω0, substitution of (4.79) yields

BW = 2δω0 = 2
1

Q
√

2
ω0 =

√
2

ω0

Q
, (4.80)

which shows a bandwidth that is a factor of
√

2 wider than a single-tuned LC resonator.

4.1.8 Memristance

For a long time, traditional engineering network theory was based on the three basic elements of
the RLC. The capacitive element was discovered first, around 1745, by E. G. von Kleist who was
experimenting with storing electric charges. He was followed by P. van Musschenbroek, who further
refined the capacitive device by inventing the Leyden jar. Credit for the invention of the resistor goes
to G. Ohm in 1827. M. Faraday and J. Henry are credited for inventing the inductor in 1831. For a
long time, it seemed that those three elements were all there is in network theory.

However, in 1971, L. Chua hypothesized that there must be a fourth element. His symmetrical
argument was based on the following reasoning:

1. The first fundamental physical property of matter is charge q, which is used to define electric
current as

i =
dq
dt

. (4.81)
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2. Charged objects are associated with an EM field. The concept of magnetic flux φ is used to quantify
the corresponding forces among charged objects, by introducing a potential v (voltage is just the
difference between two potentials) as

v =
dφ
dt

. (4.82)

3. With those four variables (charge q, magnetic flux φ , current i and potential v) in place, it is possible
to define, capacitance C as

C =
dq
dv

(4.83)

resistance R as

R =
dv
di

(4.84)

and inductance L as

L =
dφ
di

. (4.85)

That is where it all stopped, until Chua observed that it is possible to define one more relationship:

M =
dφ
dq

, (4.86)

which must represent a new, fourth, fundamental element because it cannot be derived by using any
combination of the other three elements. He named it a “memristor” M and concluded that it must have
a property of “remembering” its state after it was turned off. Unlike the other three, a memristor is a
dynamic, nonlinear element. Even though scientists observed many phenomena that satisfy (4.86), it
took more than 40 years before the proposed element was confirmed experimentally. In the meantime,
Chua and his colleagues further developed the theory by discovering more elements with memristive
properties.

The significance of the fourth element is still to be seen. A large number of research groups are
racing to develop more practical devices and further refine the possible applications. Probably the most
fascinating implication of the initial experiments involving memristive elements is that the learning
mechanism used by single-cell living beings, amebas for example, appears to be similar to circuit
models based on memristive elements. The following questions are yet to be answered: Are we on the
verge of being able to design machines capable of learning, in a similar manner to human beings? Is
the memristor the missing link needed to enable the design of intelligent machines, i.e. real artificial
intelligence?

Although, not directly related to the subject of the book, the topic of memristors is introduced in
this section for the sake of completeness and to raise awareness, especially because it is still not clear
how large an impact this element is going to have on our traditional methods of circuit design.

4.1.9 Voltage Divider

Strictly speaking, a voltage divider in its basic form of two impedances connected in series is not a de-
vice. Nevertheless, it is the simplest circuit structure that is widely used in circuit analysis at the same
level as the other basic circuit elements. In all its simplicity, like the other basic devices of this section,
it has been an indispensable tool in every engineer’s tool box. If only two of the three basic devices are
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Fig. 4.28 Simple resistive
voltage divider

used to build a voltage divider then there are nine possible serial configurations, each having slightly
different behaviour. In this section, we review a few of most important configurations. The two main
applications of a voltage divider can be categorized loosely as the literal and the conceptual.

When applied literally, a voltage divider is used simply to scale down the amplitude of a voltage
(either DC or AC) applied at its terminals. In a more sophisticated version of the literal application,
a single voltage divider is designed to impose different scaling factors on different tones in the signal
frequency spectrum. In other words, the voltage divider is used to modify the “frequency profile” of
the input signal in accordance with a Fourier transform (see Sect. 1.4.7), i.e. it serves as a filter.

When applied conceptually, a voltage divider is used to model the signal transfer process between
any two system-level blocks. In Sect. 6.1, we introduce the concept of system partitioning based
on voltage dividers in more detail. For the time being, we cannot emphasize enough that a clear
understanding of simple voltage divider behaviour is of utmost importance to all electrical engineers.
In the following sections, we review three of the most important voltage divider structures.

4.1.9.1 Resistive Voltage Divider

One of the most important simple networks consists of one ideal voltage source and two resistors
connected in series. It is assumed that all the elements are ideal and, aside from the conversion of
electrical energy into thermal energy, there is no energy loss. Analysis of this network structure is
simple and the goal is to find the relationship between the source voltage Vin and the output voltage
Vout at node �1 (the connecting point between the two resistors) in Fig. 4.28. In the ideal case, there
is no current flow in or out of node �1 and the two resistors present serial resistance R1 +R2 to the
voltage source. A straightforward application of Ohm’s law (or Kirchhoff’s laws, if you prefer) leads
to an expression for the voltage gain AV from the source Vin to the output voltage Vout at node �1 as

iR =
Vin

R1 +R2
; vout = iR R2 ⇒ vout =

vin

R1 +R2
R2, (4.87)

∴

AV =
vout

vin
=

R2

R1 +R2
=

1

1+ R1
R2

. (4.88)

In other words, the ratio of the output voltage Vout and source voltage Vin is the same as the ratio of
their respective resistances. The output voltage Vout is measured across R2, while the source voltage
Vin is distributed across (R1 +R2) (see Fig. 4.28). When (4.88) is applied for a conceptual analysis, it
is important to note that perfect signal transfer, i.e.equality of the voltage source Vin (i.e. the driver)
and voltage at node �1 (i.e. across the load), is possible only in two cases: R2 → ∞ and R1 = 0,
then Vout = Vin. Hence, (4.88) suggests that if a maximum voltage signal transfer efficiency is to be
achieved, the loading resistance R2 has to be infinite or the source resistance R1 has to be zero. That
is, in reality the input impedance of the loading stage (here symbolized by R2) must be designed to
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be much higher than the output impedance of the driver stage (here symbolized by R1) so that the
R1/R2 term in (4.88) is minimized. If that condition is not met, i.e. if the loading resistance is very
low relative to the driver resistance, the real drivers are expected to deliver very high currents to keep
the amplitude of the output voltage Vout away from zero value. This issue is of critical importance to
all, not only RF circuit designs.

Example 4.6. Derive an expression for the maximum possible power Pmax that can be delivered by a
realistic voltage generator, i.e. with non-zero internal resistance, to a resistive load. This case is
modelled with the circuit network in Fig. 4.28 where the ideal generator Vin and resistance R1

represent the realistic voltage source, while resistance R2 represents the load. That is, both the
realistic voltage generator and the load are connected between the ground and node �1 .

Solution 4.6. Using result (4.87) and the definition for power, it follows from Fig. 4.28 that

P ≡ I1 Vout = I2
1 R2 =

[
Vin

R1 +R2

]2

R2 =
V 2

in R2

(R1 +R2)
2

=
V 2

in

R1

R2
R1(

1+ R2
R1

)2 =
V 2

in

R1

x

(1+ x)2 (4.89)

after substitution of R2/R1 = x. The function f (x)

f (x) =
x

(1+ x)2 (4.90)

has a maximum for x = 1, leading to max( f (x)) = 1/4, hence

Pmax =
V 2

in

4R1
. (4.91)

The conclusion is that the maximum power (4.91) that can be generated by a voltage generator Vin

whose internal resistance is R1 is achieved for R1 = R2. This conclusion is used a number of times
throughout the book.

4.1.9.2 RC Voltage Divider

A second and more elegant voltage divider structure consists of a serial RC network. Of the two
possible serial RC networks, the one where resistor R2 of Fig. 4.28 is replaced with a capacitor C
is analyzed in this section and illustrated in Fig. 4.29 (left). Unlike the pure resistive voltage divider
in Sect. 4.1.9.1, which was frequency independent because impedance of ideal resistors does not
have any frequency-dependent term, the RC voltage divider includes a capacitive element C whose
impedance (4.17) is frequency dependent. Therefore, this voltage divider structure is capable of
altering the frequency spectrum of the output signal.

Steady-state analysis of an RC voltage divider routinely uses complex numbers. By doing so, all
three variables (the amplitude, the phase, and the frequency of the output signal) are calculated using
the same equation. Moreover, (4.88) still holds after resistance R2 is replaced with the expression for
impedance ZC given by (4.17). Using complex algebra, and by inspection of the schematic diagram in
Fig. 4.29 (left), it is straightforward to derive an expression for the impedance ZRC that is connected
to the voltage source Vin and its phase φ as
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Fig. 4.29 RC voltage divider at AC (left), at DC (middle), and at ω = ∞ (right)

ZRC = ZR +ZC = R− j
ωC

, (4.92)

∴

|ZRC|=
√

R2 +
1

ω2C2 = R

√
1+

1
(ωRC)2 , (4.93)

∴
φ = arctan(−ωRC). (4.94)

With the help of simple algebra, (4.88) becomes

AV =

∣∣∣∣Vout

Vin

∣∣∣∣=
∣∣∣∣∣

1
jωC

R+ 1
jωC

∣∣∣∣∣=
∣∣∣∣ 1
1+ jωRC

∣∣∣∣= 1√
1+(ωRC)2

. (4.95)

Equation (4.95) includes the frequency dependence through the ω = 2π f term associated with the
capacitor’s impedance. A quick evaluation of (4.95) reveals that, for DC (i.e. ω = 0), the capacitor has
an infinite impedance, i.e. it becomes an open connection, as shown in Fig. 4.29 (middle), therefore
AV = 1 or, to put it differently,Vout =Vin. At the opposite end of the spectrum, for ω =∞, the capacitor
has zero impedance, i.e. it is a short connection, as shown in Fig. 4.29 (right), therefore AV = 0 or
Vout = 0. The output amplitude in the frequency domain between these two extremes is, therefore,
described in accordance with (4.95). By definition, the frequency point where the power of the output
signal equals half the input signal power is referred to as the “−3 dB” point, Fig. 4.30 (left); it is the
frequency at which the real and imaginary parts of the voltage gain are equal, ℜ(AV) = ℑ(AV), which
is to say that the ratio of the output voltage and the input voltage equals 1/

√
2, i.e.3

1√
1+(ω0RC)2

=
1√
2

∴ ω0 =
1

RC
. (4.96)

The RC voltage divider is commonly referred to as a “low-pass filter” because it attenuates high-
frequency components of the multi-tone signal while the DC tone passes unaffected. Frequency ω0

that corresponds to the −3 dB amplitude point is the frequency parameter that determines its pass-
band frequency and 45◦ phase shift, as in Fig. 4.30 (right). It should be noted that, for RC filters, the
phase of the output voltage signal always lags the input voltage.

3Keep in mind Pythagoras’ theorem in the complex domain.
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Fig. 4.30 Frequency domain plots of an LP RC filter: amplitude (left) and phase response (right)

Fig. 4.31 Serial RL voltage divider at AC (left), at DC (middle), and at ω = ∞ (right)

4.1.9.3 RL Voltage Divider

The third equally interesting and important type of voltage divider structure consists of a serial RL
network. It is similar to the RC network of Sect. 4.1.9.2, with the capacitor being replaced by an
inductor as shown in Fig. 4.31 (left). Due to the inductor’s frequency dependence, this network also
alters the frequency spectrum profile of the output signal. We find the frequency dependence of serial
RL network as

ZRL = ZR +ZL = R+ jωL, (4.97)

∴

|ZRL|=
√

R2 +(ωL)2 = R

√
1+

(
ωL
R

)2

, (4.98)

∴

φ = arctan

(
R

ωL

)
. (4.99)

With the help of simple algebra, (4.88) then becomes

AV =

∣∣∣∣Vout

Vin

∣∣∣∣=
∣∣∣∣ jωL
R+ jωL

∣∣∣∣=
∣∣∣∣∣

1

1− j R
ωL

∣∣∣∣∣=
1√

1+
(

R
ωL

)2
. (4.100)
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Fig. 4.32 Frequency domain plots of an RL HP filter: amplitude (left) and phase response (right)

This time, however, the inductor’s reactance becomes zero at DC causing the output voltage to
drop to zero as well, Fig. 4.31 (middle). At the other end of the spectrum, the inductor becomes
an open connection when (because of infinite frequency) its reactance also becomes infinite, which
effectively stops AC through its branch; stated differently, the output voltage becomes equal to the
input voltage, Fig. 4.31 (right). The frequency domain amplitude plot in Fig. 4.32 (left) shows that
the serial RL voltage divider behaves as a “high-pass filter”. We find the −3 dB point by definition,
as the frequency point where the power of the output signal equals half the input signal power,
Fig. 4.32 (left); equivalently, it is the frequency amplitude where the real and imaginary parts of the
voltage gain equation are equal, ℜ(AV) = ℑ(AV), which is to say that the ratio of the output voltage
and the input voltage equals 1/

√
2, i.e.4

1√
1+

(
R

ω0L

)2
=

1√
2

∴ ω0 =
R
L

(4.101)

and we note that the output voltage phase is “leading” the input phase by 90◦ at low frequencies,
the phase lead reduces to 45◦ at the −3 dB point and, naturally, aligns its phase at high frequencies
simply because the output signal becomes equal to the input signal.

4.2 Basic Network Laws

In addition to Ohm’s law, the analysis of linear networks is based on writing a closed system of
algebraic equations with the intent, for a given network, to solve for currents and voltages associated
with all network branches. Kirchhoff’s law and Thévenin’s theorem are the two main procedures that
have been developed specifically for the analysis of linear networks at low and medium frequencies.

4Keep in mind Pythagoras’ theorem in the complex domain.
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4.2.1 Ohm’s Law

In Sect. 2.5, we introduced the two basic electrical variables: voltage and current. It was shown that
electrical current I is defined by the number of electrons passing through a given cross-sectional
area in a given amount of time. In the international system (SI) of units, electrical current, which
is one of the seven basic units, is measured in amperes [A]. One ampere is defined as one coulomb
(6.241× 1018) of electrons passing a given point per second. Further, we also stated that the number
of the passing electrons in a closed circuit also depends on the value of the electromotive force V
(measured in volts, V), which is not a basic SI unit; V is derived from energy and charge, J/C. Lastly,
we also learned that the current depends on the type of material used to build the circuit, whether it
was made of a good conductor or a good insulator, i.e. the material’s resistance, R.

The relationship among these three variables, i.e. current, voltage, and the material’s resistance,
are summarized by Ohm in his elegant basic linear law

R =
V
I
. (4.102)

Relationship (4.102) (and its variants in (4.11) and (4.12)) is considered fundamental engineering
knowledge. A broader variant of (4.102), based on the connection with power P being delivered to a
resistor, is

P =V I ∴ R =
P
I2 . (4.103)

This variant is more often used in radio electronics, because it covers all sorts of resistance that are
used in wireless electronic systems, not only linear materials. The resistance associated with a general
nonlinear material is measured directly by measuring the electric current flowing through the material
and the total power in the system.

4.2.2 Kirchhoff’s Laws

The most important method for solving a circuit network is a consequence of the conservation of
charge and energy in electrical circuits and, therefore, can be derived using Maxwell’s equations. The
first of the two laws is most often referred to as KCL and it states that, at any instant, the total current
entering any point in a network is equal to the total current leaving the same point. The second of
the two laws is most often referred to as KVL and it states that, at any instant, the algebraic sum of
all electromotive forces and potential differences around a closed loop is zero. These two rules are
sufficient to generate a closed set of algebraic equations that are needed to solve any given network.

To illustrate the methodology, we consider the circuit in Fig. 4.33 (left) where all component values
are given. The goal is to find all the voltages and currents associated with each network branch.

There are total of six currents in the network, therefore there must be six independent equations in
the algebraic system:

I1 = I2 + I4, (4.104)

I4 = I5 + I6, (4.105)

I3 = I2 + I6, (4.106)

V1 = R4I4 +R5I5, (4.107)
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Fig. 4.33 Kirchhoff’s laws

0 = R6I6 −R2I2 +R4I4, (4.108)

0 = R6I6 +R3I3 −R5I5. (4.109)

The first three equations are derived using KCL at nodes A, B, and C, while the second three equations
are derived using KVL around loops L1, L2, and L3. It is important to note that it is possible to derive
additional equations from the circuit, for example I1 = I5 + I3 and V1 = R2I2 +R3I3. However, they
are not independent: they can be derived from (4.104) to (4.109).

The same circuit can be viewed as in Fig. 4.33 (right) where the concept of Maxwell’s circulating
currents is used, i.e. each loop is assigned its own independent “circulating current”. The current from
voltage source V1 is labelled I1, the current in branch AC is IAC = I2, in branch CD is ICD = I3, in
branch AB is IAB = (I1 − I2), in branch BD is IBD = (I1 − I3), and in branch BC is IBC = (I3 − I2),
leading to the following three voltage equations

V1 = R4(I1 − I2)+R5(I1 − I3), (4.110)

0 = R2I2 +R6(I2 − I3)+R4(I2 − I1), (4.111)

0 = R3I3 +R5(I3 − I− 1)+R6(I3 − I2), (4.112)

which, after relatively simple algebra, are solved for I1, I2 and I3. Knowing these three circulating
currents, it is straightforward to resolve the branch currents and voltages. In this particular example,
the calculation may be simplified if one node, for example node D is declared the local ground, i.e.
VD = 0 and potentials at nodes B and C are labelled as independent voltages VB and VC. Because the
voltage at node A is set by the voltage source, i.e. VA = V1, there are only two independent equations
for the two independent voltages. Once the potentials at the four nodes are known, it is trivial to
resolve the branch currents and voltages.

As a last note regarding methodologies for solving circuit networks, be reminded that if multiple
voltage or current sources are present in the network, each of the sources is considered to drive its
independent current through the network. Hence, the superposition principle may be used to simplify
the process.

4.2.3 Thévenin and Norton’s Transformations

A very elegant, and intuitively very useful, approach to network analysis is to introduce concept
of the Thévenin generator (first discovered by H. Helmholtz), which consists of VTh and RTh (see
Fig. 4.34). It is used to replace any linear electrical network with its two-terminal “black box” model.
One way of looking at the Thévenin generator is that it represents a non-ideal voltage source, where
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Fig. 4.34 Thévenin (left)
and Norton (right)
generator models

its internal resistance is equal to RTh and electromotive force to VTh assuming there is no external
load. Consequently, as soon as some other resistance is connected to a Thévenin generator, then
the resulting circuit diagram becomes identical to the one for the simple voltage divider shown in
Fig. 4.28 (keep in mind, however, the Thévenin component values). Using Thévenin’s theorem also
leads to the concept of “input” and “output” impedances, i.e. the “looking into” approach is used
extensively in circuit analysis. For example, looking into the two terminals of the Thévenin generator
in Fig. 4.34 (left), it is straightforward to conclude that its output impedance is only RTh because the
ideal voltage source has zero resistance.

Thévenin’s dual black-box model consists of an ideal current source INo in parallel with a resistor
RNo, as shown in Fig. 4.34 (right). It is also known as “Norton’s generator”. The two models are
equivalent and it is only matter of convenience which one is used. Looking into the two terminals of
Norton’s generator, it is straightforward to conclude that its output impedance is only RNo because
the ideal current source has infinite resistance.

4.3 Semiconductor Devices

The basic devices described in Sect. 4.1 by themselves are not capable of amplifying an electrical
signal introduced at the input terminals of a network. Being passive devices, they can only provide
a series of voltage dividers along the path, which can only progressively reduce the amplitude of the
input signal. In order to enable an increase in the signal amplitude, i.e. to have the gain larger than one,
the network must include active devices, namely diodes and transistors. It is important to clarify that
the increased signal power showing at the output terminals of a transistor is provided by the external
energy source, i.e. a battery, and is not magically created inside the transistor (the law of energy
conservation still holds). That is, a transistor merely serves as a valve that controls the flow of a large
current through the transistor’s output terminals, where the current is drawn from the energy source,
by means of low power signal at the input terminals. Simply put, we use the flow of a small amount of
energy (the control signal) to control the flow of a large amount of energy (the external energy source,
e.g. the battery), hence, the “amplification” effect. At the same time, we keep in mind that a trans-
former can increase the amplitude of either voltage or current at its output terminals but not both at the
same time, which is the definition of power. Hence, a transformer is not a power-amplifying device.

In the rest of this section, the basic properties of p–n junctions, diodes and transistors are reviewed
in order to consider their application to the amplification of weak RF signals.

4.3.1 Doped Semiconductor Material

In Sect. 2.4, we briefly introduced the basic terminology related to semiconductor materials. It is now
time to take a closer look at the mechanism that enables the functionality of all semiconductor devices.
As already implied, pure (intrinsic) semiconductor material, such as silicon, is electrically neutral and
its atoms are arranged in a regular three-dimensional crystalline structure, the crystal lattice shown in
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Fig. 4.35 Types of silicon: doped n type with added arsenic (As) that donated an electron (left); intrinsic (centre); and
doped p type with added boron (B) that donated an “electron hole” (right)

Fig. 4.35 (centre). Using a special manufacturing process (known as “doping”), it is possible to replace
some of the silicon atoms in the crystal lattice with either arsenic or boron atoms. These two elements
are used because their atomic sizes are close to the size of a silicon atom and, hence, replacing the sili-
con atoms with either of the two “dopants” does not disrupt the silicon lattice too much. Because atoms
of any element are electrically neutral, the overall “doped” slab of silicon is still electrically neutral.

Silicon belongs to the semiconductor group, IV in the periodic table, which is to say that its
atoms have four electrons in the outermost shell (valence electrons) available for establishing bonding
connections with other atoms, Fig. 4.35 (centre). Arsenic comes from group V (i.e. it has five valence
electrons), while boron comes from the group III (i.e. it has three valence electrons). An interesting
situation occurs when a relatively small number of dopants is added to intrinsic silicon. For example,
for every boron atom added there are three bonding connections with the surrounding silicon atoms
plus one “missing electron” (i.e. positive hole) connection, Fig. 4.35 (right), with the fourth silicon
atom. Any electron generated elsewhere, due to thermal movement for example, is attracted to fill in
the hole (i.e. “to recombine”) and complete the bonding connection. However, that electron leaves
behind an empty spot, which is equivalent to saying the positive hole moved into that spot. From a
macro perspective, this manifests as a random movement of positive charge carriers. Keep in mind
though that, overall, the boron-doped silicon is still electrically neutral, i.e. there is still an equal
number of protons and electrons in the given volume. However, because a number of “holes” are
created in the process, this kind of silicon is referred to as “p-type” silicon (a lack of electrons is
equivalent to an excess of positive charges).

An equivalent situation arises if arsenic is added to intrinsic silicon as in Fig. 4.35 (left). In that
case however, for each added arsenic atom, four valence electrons complete the four connections with
the surrounding silicon atoms and the fifth arsenic atom is free to go. Therefore, silicon with added
arsenic is referred to as “n-type” silicon, because a number of free negatively charged electrons are
created in the process.

In both cases, the free charge carriers are referred to as “minority charge carriers”. A side but very
important observation for the operation of semiconductor devices is that it turns out that the average
mobility of holes in p-type silicon is approximately half of the electron mobility in n-type silicon.
That is, for a given cross-sectional area and timeframe, the p-type electric current is half of the n-type
electric current. Remember, electric current is defined as the number of charges passing through a
cross-sectional area in a given unit of time, thus “half mobility” means half the current for the given
time.
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4.3.2 P–N Junction

In order to understand what happens when pieces of p-type and n-type silicon material are brought
into contact with each other, i.e. when a p–n junction is created, let us go through the following mental
experiment.

To a first approximation, soon after the p–n junction is created inside a slab of silicon by the
doping process, both p-type and n-type charge carriers, i.e. holes and electrons, are attracted by the
opposite type of charge. Thus, electrons diffuse into the p-type region and fill in the electron holes,
while at the same time (effectively) holes diffuse into the n-type region and recombine with the
electrons, Fig. 4.36 (top). The primary effect of this diffusion process is that electrons leave positive
ions5 behind in the n-type silicon and create negative ions in the p-type region, Fig. 4.36 (bottom). In
other words, it is equivalent to saying that holes moved from the p-type region into the n-type region,
because the electrons that “crossed the border” recombined with the holes and completed the missing
bonding connections. Consequently, by accepting the incoming electrons to recombine with the holes,
the immobile hosting atoms are not electrically neutral any more; they are now negative ions fixed
inside a p-type lattice. This process of charge carrier recombination and ion creation starts first in the
region closest to the p–n junction boundary and expands deeper in both directions.

The region of space with ions only, i.e. without mobile carriers, expands on both sides of the
original p–n junction plane and is referred to as a “depletion zone”, Fig. 4.36 (bottom). The secondary
effect of this forced diffusion is that the two types of fixed ion left in the depletion zone form the
internal fixed electrical field E in the direction that opposes the free carrier diffusion. In other words,
the newly created internal electrical field forms the electrical barrier that, as it increases, opposes the
flow of the diffusion current. Eventually, the force of the built-in potential becomes high enough to
stop the diffusion current and brings the p–n junction into its equilibrium state, Fig. 4.36 (bottom).
The p-type–depletion region–n-type structure behaves as a charged capacitor: the p-type and n-type
regions by themselves are not electrically neutral (they each have surplus of charges). For all practical
purposes, the depletion region behaves as a non-conductive dielectric of thickness d (there are no free
charge carriers inside). Typically, the built-in potential is controlled by the process and is designed to
less than one volt.

5Ions are atoms with an imbalance of charge. Being part of the lattice, they are not mobile.
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Fig. 4.37 Electrical
symbol of a diode (top) and
its equivalent mechanical
function of a unidirectional
water valve (bottom)

However, once established, the equilibrium state is easily affected by the external electric field
caused by a properly connected external voltage source, e.g. a battery. In technical terms, the
equilibrium is affected by the “external biasing”. If the externally created electric field is in the
same direction as the built-in field, it helps some of the charges to pass through and the depletion
zone widens. Equally well, if the external electric field is in the opposite direction to the internal field,
some of the charges are “pushed back” and the depletion zone becomes narrower and it may even
disappear altogether. Hence, depending on the strength of the external field, the depletion region may
be completely cancelled (which happens when Eexternal ≥ Einternal) which enables free carrier current
flow again (i.e. the p–n junction enters the forward-biased mode). Otherwise, the external bias may
further reinforce opposition to the current flow, i.e. the p–n junction enters the reverse-biased mode.
In other words, from the functional point of view, a p–n junction may be described as:

• A unidirectional, bias-dependent valve for electric current.
• A simple voltage-controlled capacitor whose capacitance is roughly calculated, using (4.14) for

plate capacitance. The main difference is that the p–n junction capacitance is very nonlinear
and dependent upon its biasing voltage. Nevertheless, it has important RF applications that are
described in more detail in Sect. 8.7.

These two properties of a p–n junction are very important for the analysis of networks that include
active components, as well as for analysis of the active components themselves. What is more,
existence of the capacitive behaviour makes the p–n junction inherently sensitive to the frequency
of externally induced electrical fields, which in return influences the behaviour of high-frequency
electronic circuits.

4.3.3 Diode

The simplest electronic component that employs a single p–n junction is a diode. Its symbol, shown
in Fig. 4.37 (top), implies that the forward-biasing mode of operation, i.e. “turning on” the diode,
is achieved if the potential difference between the anode and cathode terminals is at least equal to
or greater than the built-in p–n junction potential. Under that condition, looking into the cathode,
one perceives an easy flow of current, hence it can be stated that the impedance Zout of a forward-
biased diode is very low (in the ideal case, zero). In contrast, when potential at the cathode node is
greater than the anode potential, the diode is in reverse-biasing mode and, therefore, does not conduct
appreciable current; in other words, the output impedance Zout is very high (in the ideal case, infinite).
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The voltage–current characteristics of this two-terminal device obey the “exponential law”, hence
a diode mathematical model illustrates its “exponential nature” as

ID = IS

[
exp

(
VD

nVT

)
− 1

]
= IS

[
exp

(
qVD

nk T

)
− 1

]
, (4.113)

where,

ID is current flowing through the diode,
IS is the diode leakage current,

VD is voltage across the diode, i.e. biasing voltage,
VT is the thermal voltage (VT = kT/q),

k is the Boltzmann constant (k = 1.380650× 10−23 J/K),
T is the temperature in degrees Kelvin (K =◦ C+ 273.15),
q is the elementary charge, (q = 1.602176487×10−19 C),
n is the emission coefficient, usually between 1 and 2.

Equation (4.113) shows that the amplitude of the current flowing through the diode is controlled, in
a fashion somewhat similar to a resistor (4.11), by voltage across its terminals. The main difference
is that the relationship between ID and VD (4.113) is very nonlinear (the solid lines in Fig. 4.38).
Instead of focusing on the absolute value of the diode voltage VD, we note that actually it is the ratio
of the biasing voltage VD and the thermal voltage VT that matters. A direct consequence is that a diode
current is very temperature dependent. Therefore, calculation of the diode current ID is valid only at
one specific temperature and biasing point (VD, ID) in the V–I plane.

Realistic values of the diode leakage current IS vary over a wide range of values even for the same
diode type, sometimes as much as ±50%. In addition, because of the exponential function (which is
considered a “strong” function from a mathematical perspective), it is common practice to work with
approximated V–I expressions after recognizing that there are two distinct regions of diode operation
leading to the following important and useful approximations:

• VD �VT: when the diode biasing voltage is much larger (ten times or more, for example) than the
thermal voltage VT, the exponential term in (4.113) becomes much larger than the −1 term. In that



112 4 Electronic Devices

case, (4.113) degenerates into a plain exponential function that is much easier to handle from the
mathematical perspective (think about the first, second, . . . derivatives of an exponential function
exp(x)), i.e.

ID =

[
exp

(
VD

nVT

)
− 1

]
≈ IS exp

(
VD

nVT

)
, (VD �VT). (4.114)

For this extreme case, the diode is said to be fully “forward biased”, i.e. it fully conducts current
and its behaviour is similar to a plain wire or a closed switch in series with an ideal voltage source
with VD volts at its terminals, which is to say that its internal impedance is very low. It is easy to
see how this conclusion is reached by looking at the first derivative of (4.113) in Fig. 4.38. At a
given point the current–voltage characteristics are usually approximated with the first derivative at
that point (the straight line in Fig. 4.38), which is very close to the V–I characteristics of an ideal
voltage source and illustrates very low impedance of a forward-biased diode. The voltage across
the diode is almost constant, hence, it is clear that the overall behavioural model of a forward-
biased diode is very similar to an ideal DC voltage source when the built-in voltage is taken into
account. For the example in Fig. 4.38, the forward-biased diode can be approximated as a voltage
source of V = 0.5 V.

Moreover, in the first, very crude approximation, even the built-in voltage may be assumed
equal to zero, and just state that the diode is “shorted”, which is sometimes useful to quickly reach
conclusions about the circuit operation. One needs to be comfortable using all of these levels of
approximations appropriately while analyzing circuits that contain diodes.

• Constant voltage source: Once a diode is forward biased, for all practical purposes it could be
replaced with an ideal voltage source. Direct application of (4.114) leads to the conclusion that
the voltage across diode terminals VD is set by current ID forced through the diode by the external
current source, and vice versa. In other words, from (4.114) it follows that setting the biasing
voltage across the diode terminals (VD = 0.5 V, for example) dictates that its current is set in
accordance with (4.114), (ID =12.5 mA, for example; see Fig. 4.38).

• VD � VT: when the biasing voltage VD is much smaller (ten times or more, for example) than the
thermal voltage VT, the exponential term in (4.113) becomes very close to one. In that case, (4.113)
degenerates into the following expression:

ID = IS

[
exp

(
VD

nVT

)
− 1

]
≈ 0, (VD �VT). (4.115)

The diode is said to be “reverse biased”, i.e. it is fully turned off and its behaviour is similar to that
of an open switch – only a small portion of the leakage current ID flows thtrouh the p–n junction
boundary. It is important to note that if the anode and cathode terminals are shorted (or at the
same potentials), in other words VD = 0, then from (4.113) it follows that ID = 0. That method is
commonly used in circuits when there is a need to guarantee that a diode is turned off.

All three approximations are very useful and practical for a quick estimate of the behaviour of
circuits that contain diodes. In practice, there are number of ways to design diodes optimized for a
particular behaviour. For example, a Schottky diode is designed to have very fast switching times;
a Zener diode (i.e. an avalanche diode) is designed for a specific reverse-bias breakdown voltage
that is useful as a reference in voltage-stabilizing circuits; a varactor diode is designed specifically
for its voltage-controlled capacitance (we meet it again in Sect. 8.7); a PiN diode is designed with
a region of intrinsic silicon between p-type and n-type regions (hence the PiN name) to enable its
linear voltage-controlled resistance behaviour, which is especially useful in microwave systems;



4.3 Semiconductor Devices 113

Fig. 4.39 Electrical
symbol of a BJT (left) and
its functional valve analogy
(right) showing the relative
potential levels of the three
terminals in the case of an
“open” valve

and a light-emitting diode (LED) is designed so that the recombination process results in the release
of photons of light – by controlling the free carrier’s energy levels, we control the frequency of the
released photons, i.e. the emitted light colour.

4.3.4 Bipolar Junction Transistor

While a single p–n junction behaves as a unidirectional valve, the addition of a third semiconductor
layer creates a second p–n junction and introduces a completely new dimension into the operation of
this three-layer sandwich structure (a bipolar junction transistor). There are two possible ways to align
the three layers, either as an NPN or a PNP structure, where the three layers are commonly referred to
as collector (C), base (B), and emitter (E). It is important to know that the middle layer (the base) must
be much thinner than the other two layers and that it is not possible to make a bipolar junction tran-
sistor (BJT) by mechanically placing in contact three layers that have been manufactured separately.
Instead, the starting point is a single slab of either p-type or n-type semiconductor material (for
example, silicon) whose side regions are then changed into the opposite type during the manufacturing
process.

In its basic function, a transistor can be described as a simple valve that controls the flow in the
CE branch. If the analogy for a diode was one of a unidirectional water pipe that is either fully open
or fully closed, a BJT transistor is a unidirectional pipe with a third terminal (base) that controls the
amount of current flow through the CE “pipe”, from fully closed to fully open (see Fig. 4.39). The
amount the transistor is open is controlled by the potential of the gate terminal relative to the other two
terminals. If the gate potential VB is below the emitter potential VE, we see it as the transistor being
“closed”—like the reverse-biased diode, it is fully turned off. When the gate potential VB is equal to
the collector potential VC, the transistor is maximally open. Further increase of the gate voltage above
the collector level does not change much—the transistor “pipe” has already reached its maximum
diameter and the transistor is equivalent to a forward-biased diode, fully turned on. If you have ever
used a slide potentiometer to control the volume of your audio equipment, you should not have a
problem visualizing how the gate voltage moves up and down between the fixed emitter and collector
“end points”. It is important to keep in mind that it is the base–emitter diode (which is forward biased)
that controls the transistor current, not the base–collector diode (which is reverse biased).

Of course, once the valve position is set, water flow through a pipe is controlled by pressure at its
ends, where the pressure is generated by a water pump used to push the water through the pipe. In the
case of a transistor, the “pressure” is provided by the external voltage source between the collector
and the emitter terminals. In this analogy, a water pump is equivalent to a battery that forces electrons
(i.e. charge carriers) to flow through wires and the flow of water drops is equivalent to the flow of
electrons, i.e. electric current. However, a water valve is controlled manually, which obviously has a
limitation in the number of open–close mechanical cycles that a human hand can achieve per second.
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An equally obvious limitation is that the controlling hand must be accompanied by the human owner.
All in all, this is not a terribly efficient way of controlling the water flow. The open–close cycles of a
transistor are controlled electronically, which enables a much higher number of switchings per second.

Indeed, current flow through transistor’s CE branch is controlled by a small current injected into
the base terminal, which is equivalent to saying that the transistor is controlled by a voltage difference
VBE between the base and emitter terminals across the input resistance between these two terminals
Rin, Fig. 4.40. As a consequence, the small control current provided by the signal source connected to
the gate terminal causes a large current variation in the CE branch, where the CE current is provided
by the power supply source. Hence, it is said that a BJT enables power amplification—it is important
to understand that the amplified power is generated not within the transistor itself, but by the external
power supply source (e.g. a battery); the power is merely controlled by the transistor in a similar
manner to the way in which a valve controls water flow through a pipe.

The electrical functionality of a BJT may also be described using a back-to-back diode analogy,
Fig. 4.40 (left). If the BE diode is forward biased (i.e. VB >VE) and and the BC diode is reverse biased
(i.e. VC ≥ VB), the transistor is said to be in “active” or “constant current source” mode. This mode
is of particular interest because the constant current at the collector node is set by the biasing point
(VBE, IC) and therefore determines gm, which subsequently controls the voltage gain AV of a single
stage amplifier. In addition, the two-diode model helps visualize how impedance looking into the
collector node has to be “high” (keep in mind the reverse-biased diode BC) and impedance looking
into the emitter node has to be “low” (keep in mind the forward-biased diode BE).

A detailed description of BJT operation, as presented in solid-state physics, is based on the
mechanism known as the “injection of the minority carriers”. It is a “bipolar” junction transistor
because both minority and majority carriers are involved in the operation. In contrast, unipolar devices
(e.g. field-effect transistors) rely on only one type of carrier for their operation (see Sect. 4.3.5). For the
purposes of our discussion, we focus only on the descriptive explanation of BJT operation; interested
readers are advised to take an introductory course in solid-state physics and semiconductor devices.
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A mathematical description of the relationship between collector current IC and base–emitter
voltage VBE in a BJT is similar to the voltage–current relationship of a diode, (4.113).6 In addition,
a transistor may be looked at as a three-terminal node, where the three currents must obey KCL.
Finally, the collector current amplification factor β is introduced. Therefore, for a given VBE voltage,
it follows that

IC = β IB, (4.116)

IE = IC + IB, (4.117)

IC = IS

[
exp

(
VBE

nVT

)
− 1

]
, (4.118)

where

IC is the collector current,
IB is the base current,
IE is the emitter current,
IS is the BJT leakage current,

VBE is the base–emitter voltage,
β is the current gain factor,
n is the emission coefficient, usually between 1 and 2.

Equation (4.116) illustrates the basic current-amplifying property of a BJT—the collector current is
β times larger than the base current. The current amplification factor β is usually of the order of 100
and it is controlled by the manufacturing process. However, β is not constant, indeed it is a strong
function of the temperature, the transistor type, collector current, and the collector–emitter voltage
VCE. All in all, circuit designers try hard to design circuits with gains that are independent of β .

The relationship between the emitter and collector currents is derived by substituting (4.116) into
(4.117) as follows

IE = IC +
IC

β
∴ IC =

β
β + 1

IE = α IE ≈ IE, (4.119)

where α is the ratio of the collector and emitter currents and the last approximation is valid when
β � 1 (which is valid for virtually all transistors).

Equation (4.117) illustrates that a BJT obeys KCL, while (4.118) emphasizes the fact that a BJT
device is fundamentally a “transconductance” amplifier. The collector current IC (the output variable)
is controlled by the base–emitter voltage VBE (the input variable). Similar to diode approximations
(4.114) and (4.115), the BJT’s base–emitter diode expression can be approximated (assuming n= 1) as

IC ≈ IS exp

(
VBE

VT

)
(4.120)

under the condition that exp(VBE/VT) � 1, i.e. when VBE voltage is 2 to 3 times greater than the VT

voltage. By definition,

VT ≡ kT
q

≈ 25mV at room temperature T = 290.22 K, (4.121)

6Remember the forward-biased diode BE.
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which means that, at room temperature, as soon as VBE voltage is greater than 50–75 mV or so, approx-
imation (4.120) is valid. Just keep in mind that this base–emitter voltage VBE is the one that controls
the collector current. It is useful to note that, at room temperature (T = 290.22 K), (4.120) becomes

IC ≈ IS e40VBE (4.122)

and we need to find an expression for the transconductance gain gm of a BJT. By definition,7 gm is
the derivative of the output current IC against the input voltage VBE, that is

gm ≡ ∂ IC

∂VBE
=

∂
∂VBE

[
IS exp

(
VBE

VT

)]
=

IS exp
(

VBE
VT

)
VT

=
IC

VT
, (4.123)

which is a very important result. By inspection of (4.123), we conclude that the transconductance gain
of a BJT is set, at the given temperature, strictly by its biasing point. This is a far-reaching conclusion
that, basically, means as soon as the biasing point is provided to the BJT device by the external biasing
circuitry, the details of the biasing can be completely ignored in the subsequent signal analysis, as
long as the gm value is used. Or, equivalently, an amplifying circuit is usually designed by specifying
the required gm value of the BJT device, which immediately translates into the collector current IC

((4.123)) that is required to provide that particular gm value. The external biasing circuit is designed
to set the collector current by using (4.118).

Example 4.7. Estimate by how much the base–emitter voltage VBE must be increased at room
temperature so that the collector current is increased ten times.

Solution 4.7. A direct implementation of (4.120) for the two currents is written as

IC = IS exp

(
VBE1

VT

)
,

10× IC = IS exp

(
VBE2

VT

)
,

∴

10× IC

IC
=

IS exp
(

VBE2
VT

)

IS exp
(

VBE1
VT

) = exp

(
VBE2 −VBE1

VT

)
= exp

(
ΔVBE

VT

)
,

∴
ΔVBE =VT ln10 = 25mV× 2.3026= 57.567mV ≈ 60mV,

that is, if the gate voltage is increased by about 60 mV, the collector current is increased ten times.
An important BJT parameter is the small-signal impedance re looking into the emitter. Assuming

that the collector and emitter currents are approximately the same, i.e. IC ≈ IE, which is close enough
if β � 1, or equivalently the base current is negligible relative to the collector current, the impedance
is calculated by definition as

7See Sect. 7.1.4.
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re ≡ ∂VBE

∂ IE
≈ ∂VBE

∂ IC
∴ 1

re
=

∂ IC

∂VBE
= gm,

re =
1

gm
≈ 25mV

IC
at room temperature T = 290.22 K

=
25

IC [mA]
, (4.124)

which is a very useful rule of thumb for estimating the emitter’s output impedance of a BJT in the
active mode of operation. For example, a typical biasing current IC = 1 mA results in emitter output
resistance of re = 25Ω; IC = 0.5 mA leads to re = 50Ω, etc. This is an intrinsic emitter resistance that
acts as if in series with the emitter node. It should be noted that this resistance is parasitic and caused
by the silicon material that is used to manufacture the transistor. The small emitter resistance re is
important because it limits the maximum possible transistor gain by preventing the emitter resistance
becoming zero. In more detailed analysis, we find that the base–emitter voltage has a positive TC,
contrary to what (4.118) would suggest, because of the very strong temperature dependence of the
BJT leakage current IS. It is useful to remember that the base–emitter voltage VBE increases by
approximately 2 mV/◦C, which is an important data point for the design of temperature-independent
voltage references, known as “bandgap references”.

Example 4.8. To illustrate the point of BJT voltage gain AV at the output terminal, let us assume that
a 1 mV signal is applied across the input impedance of a BJT, Fig. 4.40 (left), and that the output load
impedance connected between the collector and the external power supply is RL = 10kΩ. Calculate
the voltage gain AV and the power gain delivered to the loading resistor at room temperature if
β = 100 is assumed.

Solution 4.8. The input current into the emitter is IE = VBE/re = 1mV/25Ω = 40μA. Assuming
the same current at the collector output, IC ≈ IE, the voltage generated across the load resistance is
Vout = IC RL = 40μA×10kΩ= 400mV. Thus the voltage gain is AV = 400mV/1mV= 400= 52dB,
which illustrates the high voltage gains achievable at a BJT output terminal. Note that the output
current is converted into voltage by means of the loading resistance, otherwise there is no internal
mechanism that would provide the voltage gain.

In addition, we find that power delivered into the load is

Pin = IBVBE =
IC

β
×VBE =

40μA
100

× 1mV = 400pW,

Pout = ICVout = 40μA× 400mV= 16μW,

∴

AP =
16μW
400pW

= 40,000 = 46dB,

which illustrates the point that a BJT device is capable of power gains, of course with the help of the
external power supply from which the 40μA current is drawn.

4.3.4.1 BJT Equivalent Circuits

Linear circuit analysis employs the traditional small-signal BJT AC model. In our discussion, however,
we are going to use simplified models that are more appropriate for large-signal analysis, which
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Fig. 4.41 Common large-signal model functional diagrams of NPN BJT in active mode

reflects the nature of many RF circuits and facilitates the approximate analysis approach that is used
throughout of this book. In addition, all models presented in this section assume an active mode of
operation, at room temperature, and large β values.

A forward-biased base–emitter diode controls the overall current in accordance with its exponential
function (4.118); the β factor controls the ratio between the collector current and the base
current, hence the straightforward circuit implementation of this model is shown in Fig. 4.41 (left).
Equivalently, we define the base resistance rπ as

vbe = rπ iB, (4.125)

therefore,

iC = gm (rπ iB) = gm

(
β iB
gm

)
= β iB, (4.126)

which is illustrated in Fig. 4.41 (centre). Another useful variant of the BJT large-signal model
emphasizes the small emitter resistance re, Fig. 4.41 (right), as

vbe = re ie, (4.127)

therefore,

vbe = rπ iB = rπ
iC
β

= rπ
α iE
β

=
rπ

β + 1
ie ∴ re =

rπ
β + 1

, (4.128)

where the last expression shows the relationship between the base and emitter resistances. It is very
handy to interpret (4.128) as the “magnifying effect” between the two resistances: the resistance
associated with the emitter node is perceived at the base node as being multiplied β + 1 times and
the resistance associated with the base is perceived at the emitter node as being divided β + 1 times.
In order to visualize this effect, just imagine that you are located at the base node and you are using
binoculars to look at the emitter resistance. If the binocular has magnification of β + 1, than the size
of the emitter resistor is enlarged by the same factor. Now, move to the emitter node and take a look at
the base resistor. However, this time look through the binoculars from the wrong side (i.e. the picture
is reduced in size instead of enlarged). That is, the size of base resistance is seen as being β +1 times
smaller than its true value. We use this trick very often to evaluate the input and output resistances
associated with the base and emitter nodes of active BJT devices.

Example 4.9. If a BJT with current gain factor β = 99 has RE = 1kΩ connected between its emitter
node and the ground, estimate the input impedance perceived at the input node. For simplicity, ignore
values of re and rπ resistances.
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Fig. 4.42 Electrical
symbol of an NMOS and
its physical geometry

Solution 4.9. By using the magnification effect reasoning, the resistance associated with the emitter
node, RE = 1kΩ, is seen from the base node as Rin = (β + 1)RE = 100kΩ, which illustrates how the
emitter resistance influences the base resistance and makes it relatively high.

4.3.5 MOS Field-Effect Transistor

From the functional perspective, a field-effect transistor (FET) is equivalent to a BJT. It is a three-
terminal device (see Fig. 4.42), the three terminals being drain (D), gate (G), and source (S), whose
roles are equivalent to the collector, base, and emitter of a BJT.8 Similarly to a BJT, its main role is to
serve as a valve that controls the flow of current through its drain–source branch. Over time, several
FET varieties have been developed and used. In this textbook, we review only the most common one,
the enhanced NMOS and its symmetrical counterpart the PMOS.

Although they are made to serve essentially the same function, there are number of fundamental
differences between MOS Field-Effect Transistor (MOSFET) and BJT devices in terms of how the
current flow control function is implemented:

• Current flow in a BJT device is caused by the movement of electrons and holes at the same time
(hence, it is “bipolar”). In a FET device, only one type of carrier makes the current, i.e. either
electrons or holes, hence a FET device is “unipolar”.

• A BJT device is asymmetrical by design, hence the current always flows from the collector to the
emitter. FET devices are symmetrical and the roles of drain and source are determined only by
their potentials within the specific circuit for each device separately.

• A FET device is constructed by placing a thin isolation layer of SiO2 underneath the conducting
gate layer and above the substrate, as shown in Fig. 4.42 (right). That is, for all practical purposes
a FET gate represents one plate of a capacitor (the substrate itself being the second). In contrast to
the base current of a BJT, under normal operational conditions there is no DC flow into the gate9

and it is always assumed that the gate current is zero. Therefore, while a BJT is considered mostly
as a current-amplifying device (i.e. base current in becomes collector current out), a FET device is
a true transconductance device (i.e. voltage input controls current output).

• The current conduction mechanism in a BJT device is based on the principle of injection of
minority carriers. The current conduction mechanism in a FET device is based on the “inversion
channel” principle. In short, gate voltage creates a vertical electric field that attracts free carriers

8Strictly speaking, it is a four-terminal device, the fourth terminal being the body, i.e. the substrate.
9Modern FET devices have a very thin gate layer and, therefore, there is visible “current leakage” which is ignored in
the first approximation.
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Fig. 4.43 Electrical
symbol of a JFET and its
physical geometry

from the substrate to amass underneath the SiO2 isolation layer until, eventually, the gate voltage
creates a strong enough field that the concentration of free carriers underneath the gate increases
so much that the thin layer of semiconductor substrate turns into a conductive layer that is called
the “inversion layer”. As soon as the gate voltage is removed, the free electrons repel and return
to the substrate. The minimum gate voltage that is needed to create the inversion layer is called
the “threshold voltage” VT. Once the inversion layer is established, even a small horizontal electric
field caused by a voltage difference between the drain and source potentials causes current flow.
Hence, a FET device relies on two electric fields for its operation.

• A BJT device has one forward-biased diode (the base–emitter diode). Inside a FET device, all
internal diodes are reverse biased under normal working conditions. Note that each p–n junction
inside a transistor is a diode in its own right.

• A BJT is a “vertical device”—it is manufactured so that the NPN (or PNP) sandwich is vertical
relative to the substrate surface. A FET is considered to be a “lateral device”—its NPN (or PNP)
sandwich is parallel to the substrate surface. The orientation of the sandwich determines the
direction of the CE current: vertical in a BJT and lateral in a FET, as shown in Fig. 4.42 (left).

• We have already established that the collector current in a BJT is controlled by the exponential
function (4.118). A FET device is controlled by the square function between its drain current ID and
its gate voltage VGS, i.e. in saturation mode (which is equivalent to active mode in BJT), we have

ID ≈ K (VGS −VT)
2, (4.129)

where K is a constant and VT is the threshold voltage.

Once the above differences are accounted for, analysis of circuits using FET devices is, in the
first approximation, almost identical to that of BJT circuits. For our purposes, we ignore the other
differences that are normally important to the FET circuit designer.

4.3.6 Junction Field-Effect Transistor

Although the junction field-effect transistor (JFET) structure was conceived before the structures
presented in the previous sections, technology limitations delayed its realization until years after the
other structures. In principle, a JFET is the simplest structure and could be considered as a hybrid
between BJT and FET devices. However, unlike the other two types of device, there is no p–n junction
on the drain–source path (see Fig. 4.43). Instead, a JFET is built from a slab of, for example, n-type
doped material with metallic contacts as shown in Fig. 4.43 (right). It is very similar to a resistor with
the drain and source as its terminals, where the applied voltage VDS causes the current flow. On two
sides of this conductive slab, there are two gate p-type doped gates controlled by the same voltage VG.
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Fig. 4.44 Characteristics
of the linear (left) and
pinched-off (right) regions
of a JFET

This gate voltage causes the depletion layer to extend deeper into the n-type slab, which effectively
“squeezes” the current path and reduces the available cross-section, i.e. it increases the resistance of
the current path. When the gate voltage is removed, the depletion layer is removed and the original
resistance is restored.

The main difference between JFET and other FET devices is that, when the gate voltage VGS = 0, it
is said that JFET operates in the “ohmic region” and the depletion layer is very narrow, which means
that the JFET behaves as a voltage-controlled resistor. In order to increase the depletion region, the
gate potential must be negative relative to the source potential.

Let us take a closer look at the linear and pinched-off regions of a JFET. In the linear region, shown
in Fig. 4.44 (left), JFET behaves as a voltage-controlled resistor, which is controlled by gate voltage
VGS as

ID =
2 IDSS

|VP|
(

1− VGS

VP

)
VDS, (4.130)

where VP is the pinch-off voltage, i.e. the VDS voltage when drain current ID = 0, and IDSS is the drain
voltage when VGS = 0. It is straightforward to find the transconductance of a JFET by finding the
derivative of (4.130) as

gm ≡ ∂ ID

∂VDS
=

2 IDSS

|VP|
(

1− VGS

VP

)
, (4.131)

which is the linear function for reverse-biasing values of VGS. This linearity is useful in, for example,
JFET-based multiplying circuits.

When a JFET operates in constant current mode, which is the most often used mode of operation,
it is said to operate in the “pinch-off region”, which is set when the drain–source voltage VDS is above
the linear region. In that mode, a JFET behaves as a VCCS. In pinch-off mode, the relationship of the
gate voltage VGS to the drain current ID is given by

ID = IDSS

[
1− VGS

VP

]2

. (4.132)

This parabolic relationship is shown in Fig. 4.44 (right). We note that the characteristic curves do not
extend in positive direction much beyond VP = 0. This is because a JFET must be operated with a
reverse-biased gate, otherwise the gate diode is turned on and the pinch-off transfer function is not
valid any more. For a specific JFET device, its values of IDSS and VP are determined by experimental
measurement. It is then easy to apply the parabolic function (4.132) and calculate the drain current.
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4.4 Summary

In this chapter, we have reviewed the basic devices that are used in RF circuit design. This review is by
no means complete and thorough; it merely serves the purpose of being a reminder to the reader about
the very basic and approximate facts describing the functionality of devices. Detailed treatment of
each of the devices mentioned would cover a book similar to this one. The reader is advised to follow
the literature and expand on the concepts learned in this chapter; without knowledge of fundamental
device behaviour, any attempt to design an RF circuit is futile.

Problems

4.1. By definition, voltage across an inductor is related to current flow as

L ≡ di
dt
. (4.133)

If the current plot in time is shown in Fig. 4.45, sketch the voltage graph across the inductor.

4.2. A capacitor C = 1μF and a resistor R = 1kΩ are connected in parallel. At time t0 = 0 s, the
capacitor was charged up to voltage V0 = 10 V. Sketch a graph of the voltage vC across the capacitor
over the next 5 ms. (Hint: the timing constant is τ = RC = 1 ms.)

4.3. Starting from (4.5) and using mathematical software of your choice, recreate the plot in Fig. 4.3.

4.4. Using the model in Fig. 4.8, derive an expression for impedance amplitude |Z| and, using
mathematical software of your choice, pick component values and generate plots for (a) a through-
hole resistor and (b) a surface-mounted resistor. Make recommendations for the useful frequency
range of operation for these two resistors.

4.5. Assuming a 3.3 V power supply, design a 1 V voltage reference using a resistive divider. Assume
that there is no branching current and that Thévenin resistance is Rth < 100Ω.

4.6. Using the model in Fig. 4.13, derive an expression for impedance amplitude |Z| and, using
mathematical software of your choice, generate plots for (a) a through-hole capacitor and (b) a
surface-mounted capacitor. Make recommendations for the useful frequency range of operation for
these two capacitors.

4.7. Using (4.28) and the plot of current waveform i(t) shown in Fig. 4.45, for an inductor L= 3 H,
sketch v(t).

Fig. 4.45 Schematic
diagram for Problem 4.1
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a b c d

Fig. 4.46 Resistive
networks for Problem 4.13

a b

Fig. 4.47 Networks for
Problem 4.14

4.8. A typical 1N4004/1A diode has the following parameters: IS = 76.9 nA and n = 1.45. At a
junction temperature of T = 28◦C, calculate the diode current ID if the forward-biasing voltage is
(a) VD = 616.17 mV and (b) VD = 50 mV. Find the calculation error (for each ID) as a percentage, if
(4.114) is used instead of (4.113)

4.9. The typical 1N4004/1A diode from Problem 4.8 is connected in series with an ideal current
source I = 1 A. At junction temperature T = 28◦C, calculate the voltage VD across the diode terminals
as well as the voltage range if the current source varies by ±10%.

4.10. For a JFET whose VP = 4.5 V and IDSS = 7 A, plot the curve of ID against VGS.

4.11. For a BJT whose IS = 5× 10−15 A and, at room temperature, VT = 25 mV, the biasing current
is IC = 1 mA. Calculate the base emitter voltage VBE. Now, for VBE = 0.50 V, 0.55 V, 0.60 V, 0.65 V,
0.70 V, 0.75 V, 0.80 V, calculate the collector current IC.

4.12. For the BJT from Problem 4.11, calculate gm gain.

4.13. Calculate the equivalent resistance RAB for the four resistive networks in Fig. 4.46. Find the
equivalent resistances at the following frequencies: 1 Hz, 1 kHz, 100 kHz, 1 MHz, 100 MHz, ∞. Round
the final result using reasonable engineering approximations.

4.14. For the networks given in Fig. 4.47, find the output voltage gain VAB/Vout,B, assuming
the frequencies from Problem 4.13 and for impedance ratios of Z1/Z2 = R1/R2 = 10 : 1, and
Z1/Z2 = R1/R2 = 1 : 10. Assume C = 15.915 pF.

4.15. Sketch approximate time domain plots of a signal that consists of:

(a) DC = 0 V and AC= 1 V
(b) DC =5 V and AC= 1 V
(c) DC =5 V and AC= 10 mV

4.16. For the network shown in Fig. 4.48 (left):



124 4 Electronic Devices

Fig. 4.48 Schematic of a
network for Problem 4.16
(left) and for Problem 4.17
(right)

a b c

Fig. 4.49 Schematic of a
network for Problem 4.18

(a) Assuming an ideal BE diode (i.e. the base–emitter diode threshold voltage is Vth(BE) = 0 V), find
values of R2 so that the transistor Q1 is turned on. What potential VC is required at collector node
C to maintain the saturation mode of operation?

(b) Assuming a realistic BE diode (i.e. the base–emitter diode threshold voltage is Vth(BE) = 1 V),
find values of R2 so that the transistor Q1 is turned on. What potential is required at collector
node VC to maintain the saturation mode of operation?

4.17. What is the required resistor ratio R1/R2 for the network in Fig. 4.48 (right), so that the
transistor Q1 is operating in saturation mode, if VCC = 10 V and RE = 1kΩ:

(a) Assuming an ideal BE diode (i.e. the base–emitter diode threshold voltage is Vth(BE) = 0V ), find
values of R2 so that the transistor Q1 is turned on. What potential is required at collector node VC

to maintain the saturation mode of operation?
(b) Assuming a realistic BE diode (i.e. the base–emitter diode threshold voltage is Vth(BE) = 1V ),

find values of R2 so that the transistor Q1 is turned on. What potential is required at collector
node VC to maintain the saturation mode of operation?

4.18. Estimate the impedances looking into each of the networks in Fig. 4.49.

4.19. Calculate thermal voltage VT under the following conditions: (a) T =−55◦C, (b) T = 25◦C, and
(c) T = 125◦C. Note that these three temperatures are commonly used to characterize military-grade
electronic equipment.

4.20. For a typical 1N4004 diode, the specification sheet lists its saturation current as IS = 18.8 nA.
Calculate the diode current ID at the three temperatures listed in Problem 4.19, under the following
conditions for the diode voltage VD: (a) VD = 0.1VT, (b) VD =VT, and (c) VD = 10VT.
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Fig. 4.50 Voltage
reference networks for
Problem 4.21 (left) and
Problems 4.22–4.26 (right)

4.21. A simple voltage reference is built using a resistor and a 1N4004 diode as in Fig. 4.50 (left).
Calculate the voltage across the diode at all three temperatures listed in Problem 4.19, under the
following conditions: VCC = 9 V, R = 1kΩ, IS = 18.8 nA. Express the result using scientific notation
to three decimal places.

4.22. For the network in Fig. 4.50 (right), find the biasing voltage VBE at all three temperatures listed
in Problem 4.19 if BJT collector current is set to IC = 1 mA and IS = 100 fA. Repeat the calculations
for IS = 200 fA.

4.23. For the network in Fig. 4.50 (right), estimate the unknown collector current IC that is required to
force the biasing voltage VBE = 768.78 mV if: (a) IS = 100 fA and (b) IS = 200 fA. Do the calculations
for all three temperatures listed in Problem 4.19.

4.24. For the BJT in Fig. 4.50 (right), estimate the biasing voltage VB required at the base node so
that the collector biasing current is set to IC = 1mA ≈ IE. Data: IS = 100 fA, RE = 100Ω, T = 25◦C.

4.25. For the network in Fig. 4.50 (right), estimate the input impedance Zin looking into the base
node, if the emitter resistor is RE = 100Ω and the forward gain βF is assumed to be: (a) βF = 99 and
(b) βF → ∞.

4.26. For the circuit in Fig. 4.50 (right), design a preliminary resistive voltage divider to set the
base biasing voltage. Use your engineering judgement for the design. Assume power supply voltage
VCC = 9 V, emitter resistor RE = 100Ω, and: (a) βF = 99; (b) βF → ∞. What is the percentage error
between the solutions for the two values of βF?

4.27. For a BJT with IS = 100 fA, VBE = 768.78 mV at temperature T = 25◦C, calculate
transconductance gm. How large is the intrinsic emitter resistance rE? How large is the collector
current IC? What happens to rE if IC = 2 mA, 3 mA, . . . ? What if the temperature changes to, for
example, T = 30◦C? Can you make any useful observations?



Chapter 5
Electrical Resonance

Abstract In the most familiar form of mechanical oscillations, the pendulum, the total system energy
constantly bounces back and forth between the kinetic and potential forms. In the absence of friction
(i.e., energy dissipation), a pendulum would oscillate forever. Similarly, after two ideal electrical
elements capable of storing energy (a capacitor (which is initially charged) and an inductor) are
connected in parallel then the total initial energy of the system bounces back and forth between the
electric and magnetic energy forms. This process is perceived by the observer as electrical oscillations
and the parallel LC circuit is said to be “in resonance”. The phenomenon of electrical resonance is
essential to wireless radio communications technology because without it, simply put, there would be
no modern communications. In this chapter, we study behaviour and derive the main parameters of
electrical resonant circuits.

5.1 The LC Circuit

The simplest electrical circuit that exhibits oscillatory behaviour consists of an inductor L and
capacitor C connected in parallel (see Fig. 5.1). Let us assume the initial condition where the capacitor
contains q amount of charge, hence the initial voltage V across the LC parallel network is related to
the charges as q =CVC =C v(max).

At time t = 0, the voltage across the capacitor is at its maximum v(max), its associated electric
field and stored energy are also at maximum, and the network current is still at zero value. That is, at
time t = 0, the inductor is still “seen” by the capacitor charge as an ideal wire. Naturally, due to the
electric field, the capacitive charge is forced to move through the only available path, the inductive
wire. However, as soon as the first electron leaves the capacitor plate, this movement qualifies as a
change of current in time and, according to (4.28), this “ideal wire” starts to show strong inductive
properties accompanied by an appropriate magnetic field. Hence, while this current in creation flows
through the inductor, it must obey Lenz’s law and create the magnetic field that opposes the change
that produced it. Eventually, the current reaches its maximum value i(max) (at t = T/4) when the
capacitor is fully discharged; the whole energy of the LC system is now stored in the inductor’s
magnetic field. It is now up to the inductor to serve as the energy source in the circuit and to push
charges inside the wire while gradually passing the magnetic energy into the capacitive electrostatic
energy. The uninterrupted flow of the current continues to cause the charges to keep accumulating at
the other capacitor plate and along the way to create an electric field in the opposite direction relative
to the initial state. This process continues until the capacitor is fully charged again (at t = T/2) (see
Fig. 5.1), this time the voltage across the capacitor is at its minimum υ(min) = −υ(max). Keep in
mind that the system is assumed to be ideal, i.e., there is no thermal dissipation in wires, capacitor and
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Fig. 5.1 Ideal LC resonance, the first cycle

inductor. Consequently, the energy conservation law must be maintained, which is the condition for a
sustained repetitive exchange of energy between the inductor and capacitor.

It is straightforward to show that, in the time domain, the ideal LC circuit in Fig. 5.1 indeed creates
electrical current that follows a sinusoidal waveform. We write the KVL equation around the loop as

vC − vL = 0 ∴ q
C
+L

di
dt

= 0, (5.1)

(by definition) i =
dq
dt

, (5.2)

therefore, after differentiating (5.2) we have

i
C
+L

d2i
dt2 = 0 ∴ d2i

dt2 +
1

LC
i = 0, (5.3)

hence,1

i = I0 cos(ω0t +φ) or i = I0 sin(ω0t +θ ), (5.4)

where (5.4) is the standard solution of the second-order differential equation (5.3) and

ω0 =
1√
LC

⇒ f0 =
1

2π
√

LC
, (5.5)

where ω0 is the frequency of oscillation of a pure LC resonating circuit (i.e., with no thermal losses).
We duly note that (5.4) is indeed a sinusoidal form that applies both to the resonating current and to
the voltage (Fig. 5.1). Angular frequency ω0, defined in (5.5), is the most important variable in RF
design, so much so that it was given its own name, the resonant frequency. The resonant frequency is
calculated either as ω0 in rad/s or as f0 in Hz, where ω0 = 2π f0. The physical definition of resonance
is the tendency of a system to oscillate at maximum amplitude at a certain frequency. This frequency
is known as the system’s resonant frequency. It is very important to distinguish the resonant frequency

1This is the second-order differential equation with a standard form of the solution.
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from other modes of oscillations. While a system can oscillate at many frequencies, only the frequency
associated with the maximal amplitude of oscillation is named the resonant, or natural, frequency.

For the sake of completeness, we repeat again the expression for the total energy W =WC +WL

contained in the LC resonator network, which is the sum of energies stored in the capacitor WC and
the inductor WL, i.e.

WC =
1
2

q2

C
=

1
2

vC q =
1
2

C v2
C, (5.6)

WL =
1
2

Li2, (5.7)

where, at time t = 0 there is no initial energy stored in the inductor WL(t = 0)= 0; that is, the complete
initial energy of the LC network is stored in the capacitor.

5.1.1 Damping and Maintaining Oscillations

The ideal resonating system introduced above demonstrated that, once started, the sinusoidal
oscillations would maintain forever the amplitude of its waveform. Of course, that would have been a
kind of perpetual motion machine, because we ignored the internal energy losses due to the system’s
internal resistance. The analogical mechanical system would be, for example, a swing that once
pushed keeps swinging forever. In reality, this situation does not happen because of energy losses
caused by internal friction in the swing’s joints and air resistance to the body movement. As a result,
the amplitude of oscillations becomes smaller with every passing cycle until, eventually, the movement
completely stops.

It is in our interest to determine under what conditions oscillations of a realistic oscillator are
maintained and at what rate energy is lost from the oscillator due to the internal and external
imperfections in the system. A harmonic oscillator of which the oscillations lose amplitude over
time is referred to as a “damped harmonic oscillator”, which is a very general and common mode
of behaviour in nature, exhibited by many seemingly unrelated systems: an imperfect LC resonator, a
pendulum, a guitar string, or a bridge, to name a few.

The general mathematical treatment of a damped harmonic oscillator is found in many textbooks on
mathematics and physics; for completeness of our topic, we repeat the basic definitions. The second-
order linear differential equation is

a2
d2x
dt2 + a1

dx
dt

+ a0 x = 0, (5.8)

where a2,a1,a0 are constants and x is the variable. It is more convenient to rewrite (5.8) in a form
where the constant a2 associated with the second derivative is normalized to one, hence we have

d2x
dt2 +

a1

a2

dx
dt

+
a0

a2
x = 0 ∴ d2x

dt2 + γ
dx
dt

+ω2
0 x = 0, (5.9)

where constant γ is the ratio a1/a2 and ω0 is the natural frequency of the damped harmonic oscillator,
defined as the ratio a0/a2. In general, (5.9) has three possible solutions depending on how much
dampling is applied to the oscillator (see Fig. 5.2):

• Lightly damped oscillators have minimal energy loss (i.e., they are very close to the case of a non-
damped oscillator). This class of oscillators, if left on its own, is able to sustain oscillations for an
appreciable amount of time.
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• Critically damped oscillators are on the verge of being able to start and sustain oscillations.
• Over-damped oscillators cannot start the oscillation process because of large energy losses.

Let us focus on a lightly damped oscillator because it is the only one of the three cases that can start
oscillations. Intuitively, we conclude that the solution of (5.9) must include a term that reduces the
initial amplitude over time; hence, we multiply the solution from (5.4) with an exponentially decaying
function and adopt the solution of (5.9) in the following form

x = exp
(
− t

τ

)
A0 cosωt, (5.10)

where t is the time variable, ω is the oscillation frequency, and τ is the timing constant that controls
the rate of amplitude decay. For example, if τ =∞ than there is no reduction in the amplitude A0

because the exponential term becomes equal to one at all times. At the other extreme, if τ = 0 than the
exponential term becomes zero, that is, the cosine function is completely suppressed. For any other
value of τ , there will be natural decay in the initial amplitude A0.

The first and second derivatives of (5.10) are

dx
dt

=−A0 exp
(
− t

τ

) (
ω sinωt +

1
τ

cosωt

)
, (5.11)

d2x
dt2 = A0 exp

(
− t

τ

) [
2ω
τ

sinωt +

(
1
τ2 −ω2

)
cosωt

]
. (5.12)

After substituting (5.10)–(5.12) into (5.9), we have

A0 exp
(
− t

τ

) [(
2ω
τ

− γω
)

sinωt +

(
1
τ2 −ω2 − γ

τ
+ω2

0

)
cosωt

]
= 0. (5.13)

Equation (5.13) is possible at all times if the two multiplying constants of both sine and cosine terms
are zero, i.e.

(
2ω
τ

− γω
)
= 0 ∴ τ =

2
γ
, (5.14)

∴

1
τ2 −ω2 − γ

τ
+ω2

0 = 0 ⇒ ω =

√
ω2

0 −
(γ

2

)2
(5.15)
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after eliminating τ from the cosine coefficient. Now, we can rewrite solution (5.10) for the case of a
lightly damped oscillator with zero initial phase as

x = A0 exp
(
− γ

2
t
)

cosωt. (5.16)

The solution (5.16) is valid for ω as found in (5.15) and represents oscillatory motion if ω is real,
i.e., if

ω2
0 >

γ2

4
, (5.17)

which is the condition for lightly damped harmonic oscillations. In addition, the frequency of a lightly
damped oscillator is close to its natural resonant frequency if

ω2
0 �

γ2

4
∴ ω =

√
ω2

0 −
(γ

2

)2
≈ ω0. (5.18)

It is important to note that parameters γ and ω0 are solely determined by the physical parameters
of the circuit. An example of lightly damped harmonic oscillation is shown in Fig. 5.3. Let us now
determine how the amplitude of a decaying cosine function changes along the envelope function by
finding the ratio of the two maxima of the cosine function.

We write (5.16) at time t = t0 and at t = t0 + nT , where T is the cosine period, and n represents
the index of the n-th maxima away from the one at t0. Hence, we have expressions for the two
amplitudes as

Ak = x(t0) = A0 exp
(
− γ

2
t0
)

cosωt0, (5.19)

Ak+n = x(t0 + nT) = A0 exp
(
− γ

2
(t0 + nT)

)
cosω(t0 + nT) (5.20)

= A0 exp
(
− γ

2
t0
)

exp
(
− γ

2
nT

)
cosωt0, (5.21)

∴

ln

(
Ak

Ak+n

)
=

γ nT
2

=
γ n2π

2ω
=

γ nπ
ω

≈ γ nπ
ω0

=
nπ
Q

(5.22)
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because cosω(t0 +T )= cosωt0. In (5.22), we introduced the ratio of the natural resonant frequency
and γ as the figure of merit for the quality of oscillations, the Q factor,

Q =
ω0

γ
. (5.23)

Obviously, for finite frequencies, Q →∞ implies that γ → 0, which causes term A0 exp (−γ t/2)→A0,
in other words, there is no damping.

Example 5.1. It was determined by measurement that the amplitude of a decaying cosine function at
approximately 6.5 periods from t = 0 is e times smaller than the initial amplitude value A0. Estimate
the Q factor of this resonator.

Solution 5.1. From (5.22), we write

ln(e) =
6.5π

Q
∴ Q = 6.5π ≈ 20, (5.24)

which is shown in Fig. 5.3.
Now that we have determined the behaviour of a lightly damped harmonic oscillator, we conclude

that condition (5.17) sets boundaries for the other two damping conditions as

ω2
0 >

γ2

4
lightly damped, (5.25)

ω2
0 =

γ2

4
critically damped, (5.26)

ω2
0 <

γ2

4
over-damped. (5.27)

The critically damped oscillator has the fastest time to equilibrium and still does not start oscillations.
The over-damped system is dominated by the exponential decay function and slowly follows the
envelope path (see Fig. 5.2).

Example 5.2. The amplitude of a decaying oscillation obeys E(t)=E0 exp(−t/τ), where E0 is the
initial amplitude and τ is the decay time (Figs. 5.2 and 5.3). For a guitar string that produces a tone at
334 Hz, the sound decayed by factor 2 after 4 s. Estimate the decaying time τ and the quality factor Q.

Solution 5.2. We write

E(t) = E0 exp(−t/τ) ∴ τ =
t

ln

(
E0

E(t)

) ,

τ =
4s

ln(2)
= 5.77s

and, from (5.14) and (5.23) we write

Q =
ω0

γ
=

ω0 τ
2

=
2π × 334Hz× 5.77s

2
≈ 6× 103.
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A realistic electrical resonator consists of a serial RLC loop, similar to that shown in Fig. 5.6 (left)
except that nodes a and b are connected. Under those conditions, we write KVL around the loop, as

L
di
dt

+ iR+
q
C

= 0, (5.28)

∴

d2q
dt2 +

R
L

dq
dt

+
1

LC
q = 0, (5.29)

where (5.29) has an identical form to (5.9). Hence, we write by inspection that

ω2
0 =

1
LC

; γ =
R
L
, (5.30)

∴

q(t) = q0 exp

(
− R

2L
t

)
cos

(√
1

LC
− R2

4L2 t

)
, (5.31)

therefore, the Q factor is found from (5.23) and (5.30) as

Q =
1
R

√
L
C
. (5.32)

We observe that the presence of resistive element R is the cause of damping factor γ and a finite value
of Q factor. In the case of R= 0, we have again the ideal resonator, i.e. Q → ∞, with no damping and
ω =ω0.

5.1.2 Forced Oscillations

Understanding (5.16) for a free running resonator is important in order to be able to control conditions
that are favourable for maintaining oscillations in a real system. Going back to the swing analogy, in
order to maintain the oscillations, at the end of every cycle the swing needs to receive just the right
amount of push in the right direction. This action causes just the right amount of energy to be regularly
injected into the system so that the energy loss due to friction is compensated. The key points are that
the compensating energy must be injected at the right moment in time and with the right phase, i.e.,
synchronized with the oscillations in the right direction.

As opposed to a simple mechanical system, such as a swing, it is not as practical to manually
compensate for thermal losses in electronic systems, at least if we are to achieve any decent speed
of operation. The good news, however, is that it is not difficult to synchronize electronic systems
so that the losses are correctly compensated for and to maintain the oscillations. For example, a
realistic LC resonator with internal losses, Fig. 5.4 (left), is connected to a transistor Q1 that serves
as a current source (the biasing details are omitted for simplicity). If at the end of each cycle we
manually press the switch for a short period of time, just enough to inject the right amount of energy
that is needed to compensate for the thermal losses per cycle, and if the phase of signal generator verr

is synchronized with the output oscillations vout, the compensation signal is of the right amplitude, and
the finger presses the switch fast enough, then the amplitude and frequency of the output voltage vout

is maintained. Although theoretically possible, it is not a terribly practical solution. Instead, we can
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Fig. 5.4 LC resonating
circuits with (left) a manual
compensation mechanism
for the internal thermal
losses and (right) an
automatic compensation
mechanism

tap into the output oscillations vout through inductive coupling with inductor L, Fig. 5.4 (right), and
create a scaled copy of vout in the coupled inductor Lf bk through a transformer effect with the phase
controlled by the relative direction of the coil turns in the two inductors. The scaled, in phase signal
is made equal to the required correction signal verr, which controls the collector current of transistor
Q2 and closes the loop while always being in synchronicity with the output oscillations. With proper
engineering, this mechanism provides the right amount of “push” at the right moment and in the right
direction so that the injected energy precisely compensates for the thermal losses per cycle. We note
that this is another example of intentional addition of two signals. Indeed, this principle is used in
realistic oscillating circuits to maintain the amplitude of the sinusoidal signal. The main role of an
LC resonator is to provide a physical realization of a sinusoidal function, which is fundamental for
wireless radio communications, and therefore for radio transceiver circuit design.

The case of a forced RLC resonator is essential to RF communication systems and we are going to
take a closer look by rewriting (5.29) as

d2q
dt2 +

R
L

dq
dt

+
1

LC
q =V0 cosωt, (5.33)

where V0 cosωt represents a signal source that is connected, for example, between nodes a and b in
Fig. 5.6. The mathematical procedure of a non-homogeneous, linear differential equation is a bit more
involved, however it is easily found in calculus textbooks, hence we only write the solution for voltage
across the capacitor vC(t) in the RLC forced resonator as

vC(t) =VC(ω) cos(ωt − δ ), (5.34)

VC(ω) =
V0
LC√

(ω2
0 −ω2)2 +

(ω R
L

)2
, (5.35)

where δ is the phase difference between the voltage source and the oscillator’s frequency. At
resonance, when ω = ω0, then (5.35) becomes

VC(ω0) =
V0

ω0 RC
= QV0. (5.36)

We observe the very important fact, that when the local RLC resonator is designed for the resonant
frequency ω0 and the frequency of the external driving voltage source V (ω) coincides, i.e., ω =ω0,
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Fig. 5.5 RLC resonating
circuit driven by RF
voltage source V0 cosωt

there is significant amplification of the incoming tone (Q is usually very large). The simplified RLC
circuit is driven by the incoming radio signal provided by the antenna shown in Fig. 5.5.

5.2 The RLC Circuit

In real systems, there is always a small resistance R associated with the connection wires and the
inductor, as well as a small leakage current in the capacitor (due to the less than infinite resistance of
the capacitor’s dielectric material) which, all combined, cause a small amount of energy to be lost each
cycle in the form of heat. As a result, if generated by a real RLC circuit with no external compensation,
the waveform amplitude exponentially decays (Fig. 5.3). That is the main reason for having an
external energy source that compensates for the internal thermal losses in real oscillating RLC circuits
(Fig. 5.4). This statement is confirmed experimentally by LC resonators made of superconductive
materials; once the internal current is induced, the superconductive resonator oscillates for a very
long time (measured in days and months) without any external energy source (strictly speaking this is
not correct—a large amount of external energy is spent on keeping the resonator cool, however that is
not the point).

5.2.1 Serial RLC Network

In Sects. 4.1.5 and 4.1.6, we already learned that, in a capacitive network, the capacitive voltage VC

lags the current by 90◦ and that, in an inductive network, the inductive voltage leads the current by 90◦.
Intuitively, we conclude that if the two elements are put in the same network the two voltages must,
therefore, have the phase difference of 180◦, which leads to an interesting question: what happens
if the two voltages are equal in amplitude? Obviously, one voltage must be subtracted (remember
differential signals?) from the other, which leads to interesting conclusions. To illustrate the point, let
us take a look at the following example.

Example 5.3. An AC voltage source V is connected across a serial LC connection. The data is:
V = 5 V, f = 10 MHz, C = 1 nF, and L= 1μH. Find the capacitive XC and inductive XL reactances and
voltages VC and VL across their respective terminals.

Solution 5.3. The two reactances are calculated as XL = 2π f L=+62.832Ω and XC = 1/2π f
C =−15.915Ω.2 Therefore, the total reactance must be XLC =XL+XC =+46.916Ω. That is, the total

2Remember, this is a relative comparison, thus it is agreed convention that the negative reactance is associated with a
capacitance because XC = 1

jωC =− j 1
ωC .
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Fig. 5.6 Serial RLC
circuit network with
normalized resonant
frequency ω0 = 1 (left) and
its total impedance plot
versus frequency (right)

reactance at this frequency is equivalent to the reactance of an inductor L = XLC/2π f = 746.697nH,
which further implies that, from the perspective of the voltage generator, at this particular frequency
the serial LC connection could be replaced with a single 746.697 nH inductor without disturbing the
rest of the circuit. The total branch current is, therefore, I = V/XLC=106.573 mA with −90◦ phase
relative to the voltage.

While keeping in mind the phase relationships, the voltage across the inductor is calculated
as VL = I × XL = 106.573mA × 62.832Ω = 6.696V, while the voltage across the capacitor is
VC = I × XC = 106.573mA× 15.915Ω = 1.696V. Note that the inductor voltage is much higher
than the one provided by the voltage source. However, the difference between the voltages is
VL −VC = 6.696V− 1.696V = 5V, as it should be in order to agree with the applied voltage. The
conclusion is that we must be careful about the operational range of components used to build RLC
resonators. If you try some other L and C values, then you find that it is also possible to set up larger
voltages across the capacitor.

The addition of resistance R into a serial LC network, turning it into an RLC network (see
Fig. 5.6), changes the overall circuit behaviour. The resistive component becomes responsible for
thermal dissipation of the energy that was originally stored in the electrostatic and magnetic fields.
As a consequence, the sinusoidal resonating current calculated in (5.4) cannot sustain its maximum
value indefinitely. With each cycle, some of the electrical energy dissipates into heat, while the output
voltage decays (Fig. 5.2). The absolute value of the total impedance is calculated as

Z = R+ jωL+
1

jωC
, (5.37)

|Z|=
√

R2 +(XL −XC)
2 =

√
R2 +

(
ωL− 1

ωC

)2

, (5.38)

where the two reactances, XL and XC, determine the equivalent total reactance XRLC of the RLC
network, which becomes zero if the two reactances are equal in their absolute values. The equality
XL = XC ∴ XRLC = 0 is considered the required condition for resonance.

Under the condition of resonance, the absolute value of serial impedance is at its minimum, i.e.,
it is equal to R (Fig. 5.6), and it is therefore real, which means that the total phase angle equals zero
(Fig. 5.7). By forcing the total reactance term in (5.38) to zero, we have

ωL− 1
ωC

= 0 ⇒ ωL =
1

ωC
⇒ ω0 =

1√
LC

, (5.39)
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where ω0 indicates the resonant frequency of the LC network under the XL = XC condition, which
is the same conclusion as the result (5.5) from the differential equation. At other frequencies, the
total reactance is greater than zero, (5.38), which implies that R is the minimum value of the absolute
impedance Z. The phase plot is easily obtained, after using definitions (2.12) and (2.13) and (5.38) as

φ = tan−1

(
ωL− 1

ωC

)
R

, (5.40)

which is given in Fig. 5.7 after normalizing to the ω0 resonant frequency.

Example 5.4. For the circuit in Fig. 5.6 and f = 10MHz, C = 1nF, L = 1μH, R = 1mΩ, source
resistance ri = 50Ω and input voltage source Vab is connected between terminals a and b, i.e.
Vab = Vin = 1mV, find: (a) output voltage Vout = VR as measured across the resistor R, at resonant
frequency f0; (b) output voltage Vout =VC as measured across the resistor C at 1 kHz.

Solution 5.4. After applying the voltage-divider rule, it follows:
(a) For resonant frequency f0, ZL = ZC ⇒ Z = R, therefore

Vout

Vin
=

R
R+ ri

=
1mΩ

1mΩ+ 50Ω
≈ 20× 10−6 ∴ Vout = 20× 10−6× 1mV = 20nV.

(b) For frequency f = 1 kHz, total impedance seen by the voltage source is

Zin =
√
(ri +R)2 +(XL −XC)2

=

√
(50Ω+ 1mΩ)2 +(29.581μΩ− 1.592kΩ)2

= 1.593kΩ

and output impedance (as “seen” by Vout) is Zout = 1.592kΩ, hence

Vout

Vin
=

Zout

Zin
=

1.593kΩ
1.592kΩ

≈ 1 ∴ Vout = 1× 1mV = 1mV.

Example 5.5. Find the resonant frequency f0 for the circuit in Fig. 5.6 with the following data: ri = 0,
R = 1mΩ, L= 4.708 nH and C = 100 nF. Calculate impedance Z at: (a) 1 kHz; (b) 7.335 MHz; and
(c) 1 GHz.
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Solution 5.5. The resonant frequency is

f0 =
1

2π
√

LC
=

1

2π
√

4.708nH100nF
≈ 7.335MHz.

(a) At 1 kHz:

XL = 2π f L = 2π 1kHz4.708nH = 29.581μΩ,

XC =
1

2π fC
=

1
2π 1kHz100nF

= 1.592kΩ,

therefore,

Z =
√

R2 +(XL −XC)2 =

√
1mΩ2 +(29.581μΩ− 1.592kΩ)2 = 1.592kΩ.

(b) At 7.335 MHz: this is the resonant frequency, hence Z = R = 1mΩ.
(c) At 1 GHz: Z ≈ XL = 29.581Ω.

5.2.2 Parallel RLC Network

A parallel RLC network has a few subtle differences from the serial version which was discussed
in the previous paragraphs. It also represents a frequency controlled impedance which has the same
expression for the resonant frequency. However, the impedance behaves slightly differently.

In a parallel RLC circuit (see Fig. 5.8), the voltage is equal across all three components, where
each component defines the branch whose current is described by the Ohm’s law and each component
keeps its own voltage, current, and phase relationship. For a parallel RLC network, the total current
Itot is written as

Itot =
√

I2
R +(IL − IC)2. (5.41)

By inspection of Fig. 5.8 (left) and examining the two extreme cases, at DC and very high
frequency, we easily conclude the following. At DC, the inductor has zero impedance (i.e., it becomes
a short connection), the resistor holds the R value, and the capacitor has infinite impedance (i.e., it
becomes an open connection). The three components are in parallel, hence the equivalent impedance
is zero. At very high frequencies (i.e., ω → ∞), the inductor has infinite impedance (i.e., it becomes
an open connection), the resistor still holds R, and the capacitor has zero impedance (i.e., it becomes
a short connection). Again, the equivalent impedance is zero. This behaviour implies the existence
of at least one maxima between the two extreme points (Fig. 5.8). For the time being, let us stay
with this conclusion and only roughly plot the frequency dependence of the impedance, as shown in
Fig. 5.8 (right).

The following example illustrates how the three components in parallel share the current branches.

Example 5.6. For the circuit in Fig. 5.8 (left) and component values of ri = 0, Vin = 12 V, R = 400Ω,
XL = 500Ω and XC = 200Ω, estimate the total current Itot supplied by the source and the circuit
impedance Ztot.
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Fig. 5.8 Parallel RLC circuit network, G = 1/R, (left) and the plot of impedance |Zab| against frequency, normalized at
ω0 = 1Hz, (right). The maximum impedance value is Zω0 = Q2 R

Solution 5.6. The three branch currents are:

IR =
Vin

R
=

12V
100Ω

= 30mA; IL =
Vin

XL
=

12V
500Ω

= 24mA,

IC =
Vin

XC
=

12V
200Ω

= 60mA.

Then, from (5.83) it follows that

Itot =
√

I2
R +(IL − IC)2 =

√
(30mA)2 +(24mA− 60mA)2 = 46.862mA,

∴

Ztot =
Vin

Itot
=

12V
46.862mA

= 256.07412Ω.

We note that the current through the capacitive branch is larger than the total current Itot provided by
the signal generator. In the following sections, we explore this phenomenon in more detail.

5.3 Q Factor

It is now logical to ask questions about the behaviour of LC oscillating circuits. What can they be used
for? When is the voltage amplitude of the sinusoidal waveform at the maximum? When is it at the
minimum? To answer these questions and gain more understanding of the phenomenon, we study two
simple networks: serial and parallel RLC circuits. Both of them exhibit the same oscillatory behaviour
with slight differences, and it is important to study these two types of circuits in order to understand
how can we use them efficiently. Before we proceed, let us first introduce one of the most important
parameters in RF circuit design, the Q factor, through a more general definition than the one used in
Sect. 5.1.1.
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The Q factor is the ratio of the energy stored in the resonator and the energy supplied by a generator,
i.e., it is evaluated each cycle as

Q = 2π × Energy Stored
Energy dissipated per cycle

= ω0 × Energy Stored
Power Loss

, (5.42)

where, in electrical systems, the stored energy is the sum of energies initially stored in lossless
inductors and capacitors and the lost energy is the sum of the energies dissipated in resistors per
cycle.

In the ideal case, energy stored in the magnetic field of the inductor is eventually converted without
loss into energy of the electrostatic field of the capacitor. At the resonant frequency, the maximum
energy stored in the network keeps bouncing back and forth between the inductor and the capacitor
without loss and, therefore, is calculated either at the moment when the capacitor is fully discharged
(and therefore the inductor holds the full amount of energy WL) or when the capacitor is fully charged
(and therefore temporarily holds the full amount of the energy WC), i.e.

WL =
∫ T

0
v(t)i(t)dt =

∫ T

0
i(t)L

di(t)
dt

dt = L
∫ Ip

0
idi =

1
2

LI2
p = LI2

RMS, (5.43)

or, similarly,

WC =
∫ T

0
v(t)i(t)dt =

∫ T

0
v(t)C

dv(t)
dt

dt =C
∫ Vp

0
vdv =

1
2

CV 2
p =CV 2

RMS, (5.44)

where Ip =
√

2Imax is the peak current through the inductor, and Vp =
√

2Vmax is the peak voltage
across the capacitor.

The energy dissipated in the resistor WR during one full resonant cycle

T0 =
1
f0

=
2π
ω0

(5.45)

is simply, by definition, power multiplied by the time, i.e.

WR = PR ×T0 = RI2
RMS ×T0 =

2π
ω0

RI2
RMS, (5.46)

which means that (5.42) becomes (using either WL or WC) for serial RLC

Qs = 2π
WL

WR
= 2π

LI2
RMS

2π/ω0 RI2
RMS

=
ω0L

R
. (5.47)

At resonance, the resonant frequency ω0, inductance L, and capacitance C are related as in (5.39),
therefore the three equivalent formulations of Qs are

ω0 =
1√
LC

∴ Qs =
ω0L

R
=

1
ω0RC

=
1
R

√
L
C
, (5.48)

where (5.48) shows all three variants of the expression for the Q factor of an RLC network in series.
Expressions (5.47) and (5.48) for the quality factor Q are very important and are used to quantify a
number of specifications in radio design.
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It is important to note that for the ideal inductor, i.e., R = 0, the Q factor becomes Q = ∞. It is
desirable to keep control over the Q factor for many reasons that are mentioned throughout this book.
In addition, it should be noted that in serial configurations, the Q factor is inversely proportional to
the resistance R.

Example 5.7. For a typical serial RLC network, L= 1 mH, C = 25.33 pF, and the total resistance at
the resonant frequency in the loop is R = 15Ω. Estimate the resonant frequency and the Q factor.

Solution 5.7. The resonant frequency is

f0 =
1

2π
√
(LC)

≈ 1MHz

and the Q factor is

Q =
1
R

√
L
C

=
1

15Ω

√
1mH

25.33pF
≈ 420,

which are typical numbers in the current state of the art.

5.3.1 Q Factor of a Serial RLC Network

In a serial RLC circuit (see Example 5.3), we found that voltage across the inductor was magnified a
number of times relative to the voltage provided by the source (i.e., the total voltage at the network
terminals). It should be noted that this effect is similar to what happens in a transformer, i.e., only the
voltage is amplified, but not the current at the same time. That is, passive networks are not capable of
power amplification.

This phenomenon of amplification of either the voltage or the current is very important for the
resonant behaviour, so we should take a closer look and try to quantify it. Let us take, for instance, the
serial RLC network in Fig. 5.6. Under the condition of resonance, the circuit reactance equals zero,
which means that the input voltage vab must be equal to the voltage vR across the resistor. The voltage
amplification is then calculated as the “output” voltage, in this case vL, divided by the “input” voltage,
in this case vab. Voltage is calculated as a product of current and impedance; in a serial circuit there is
only one branch current, therefore the voltage gain Qs is

Qs =
vL

vin
=

vL

vR
=

iXL

iR
=

ωL
R

=
1

ωRC
=

1
R

√
L
C
. (5.49)

The variable Qs is commonly used as a symbol for the kind of amplification that happens inside
a resonating serial RLC network. The last two terms in (5.49) are derived after substituting XL =
XC (which is true at resonance, see (5.5)). In (5.49), it is assumed that the Q factor is larger than
approximately ten. In the following sections, we justify this assumption.

A couple of observations are in order. First, in an ideal network where the serial resistance R = 0
the implication is that Q → ∞. In other words, in order to increase the Qs factor of a serial RLC
network, we need to reduce the total internal resistance or increase inductive reactance. Second, real
resistance R causes thermal dissipation (i.e., loss) of energy, while the total energy contained in the
circuit initially was stored in the inductor (or the capacitor, for that matter). Thus, we also say that the
Q factor represents the ratio of the total energy and the dissipated (i.e., lost) energy in the circuit.
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Fig. 5.9 Realistic parallel
LC network

5.3.2 Q Factor of a Parallel RLC Network

We now find the resonant frequency ωp0 of a realistic parallel LC network, Fig. 5.9, where the
resistance R accounts for all thermal losses, i.e., the combined resistance of the inductor and wires
and the effective series resistance (ESR) of the capacitor.

Y (ω) =
1

R+ jωL
+ jωC =

R− jωL
R2 +(ωL)2 + jωC

=
R

R2 +(ωL)2 + j

(
ωC− ωL

R2 +(ωL)2

)
. (5.50)

At resonance (i.e., ω = ωp0), the two reactances are equal |ZL|= |ZC|, therefore the imaginary part is
ℑ(Y ) = 0, hence we write

ωp0C =
ωp0L

R2 +(ωp0L)2 ∴ R2 +(ωp0L)2 =
L
C
, (5.51)

which leads to the conclusion,

ωp0 =

√
1

LC
− R2

L2 . (5.52)

We conclude that the resonant frequency ωp0 of a parallel LC network that includes realistic
inductance has the additional term (R/L)2 due to the finite wire resistance, which slightly reduces
the resonant frequency relative to the case of ideal LC resonator. When R → 0, (5.52) becomes the
same as (5.39) for the ideal LC resonator, i.e., ωp0 → ω0.

Example 5.8. For typical RLC components, L= 1 mH, C = 25.33 pF, and R = 15Ω, find by how
much the resonant frequency of the realistic resonator is off relative to the ideal resonator.

Solution 5.8. The ideal resonant frequency is simply

ω0 =
1√
LC

=
1√

1mH× 25.33pF
= 1.00000584MHz,

while the realistic resonant frequency is calculated as

ω0 =

√
1

LC
− R2

L2 =

√
1

1mH× 25pF
− (15Ω)2

(1mH)2 = 1.00000299MHz, (5.53)

therefore, the difference of 2.85 Hz relative to 1×106 Hz is negligible for most practical purposes.
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For parallel RLC configuration, as shown in Fig. 5.8 (left), however, it is desirable to have R as high
as possible in order to reduce the power dissipation (i.e., to reduce the current through the R branch
of the RLC network), which is to say that, using the principle of duality, the three equivalent quality
factor Qp formulations for a parallel RLC network are

Qp =
R

ω0L
= ω0RC = R

√
C
L
. (5.54)

To elaborate the point, it is useful to evaluate the size of the difference between resonant frequencies
of series and parallel RLC networks. We already derived expression (5.52) for the resonant frequency
ωp0 of a parallel RLC network, which can be reformulated as

ωp0 =

√
1

LC
− R2

L2 =

√
ω2

s0 −
R2

L2 = ωs0

√
1− R2

ω2
s0L2

= ωs0

√
1− 1

Q2
s
, (5.55)

∴
ωp0 ≈ ωs0 for (Qs > 10), (5.56)

where we appropriately introduced series resonant frequency ωs0 through the serial Qs factor.
Equation (5.55) shows that for ideal or high Q networks (i.e., Q > 10) there is a very small error
in calculating resonating frequencies ωs0 and ωp0 of the series and parallel circuits. Hence, they can
be used interchangeably, as long as the Q factor is high.

To simplify the calculation, for high Q values, we assume that (ωL)2 � R2 (this is justified because
an inductor’s wire resistance is relatively small) or, equivalently, the same condition is written as R2+
(ωL)2 ∼= (ωL)2. Therefore, at resonance the admittance is resistive, which after applying condition
(5.56) to the real part of (5.50) yields

Y0 =
R

R2 +(ω0L)2 ≈ R
(ω0L)2 =

CR
L

∴ RD =
1
Y0

=
L

CR
, (5.57)

where RD now represents the dynamic resistance of the LC tank at resonance.
After having delivered expressions for both non-resonant admittance Y and admittance at resonance

Y0, it becomes straightforward to find out how LC tank admittance changes with frequency, relative to
its resonant value. Then, from (5.50) and (5.57) we write

Y
Y0

∼= L
RC

[
R

(ωL)2 + j

(
ωC− 1

ωL

)]
(5.58)

=
1

ω2LC
+ j

(
ωL
R

− 1
ωCR

)
(5.59)

=
ω2

0

ω2 + jδ Q, where, δ =
ω
ω0

− ω0

ω
(5.60)

after substituting (5.49) and rearranging (for high Q factor, the serial resonance ωs0 and parallel
resonance ωp0 are equal). Therefore,3

|Y |= Y0

√(ω0

ω

)4
+(δ Q)2. (5.61)

3That is, |Z|=
√

ℜ(Z)2 +ℑ(Z)2.
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Result (5.61) is an important relation that is used to estimate the amplitude of a signal located not
exactly at the resonant frequency. More applications of this formula are shown in Sect. 9.6.1.

5.4 Self-resonance of an Inductor

As implied in the previous paragraphs, real inductors show characteristic properties of a complex RLC
circuit. Based on the analysis of resonance, and knowledge that non-ideal inductors have parasitic
capacitances related to the wire, it should be intuitively obvious that the circuit diagram shown in
Fig. 5.9, could also be used to represent a real inductor by itself. Of course, it is only one of the possible
ways to create a model of real inductor; it is also one of the most often used models. Following the
same procedure as in the previous sections, and after applying the low wire resistance approximation,
an expression for the admittance of a non-ideal inductor by itself (see Fig. 5.9) is found as

YL =
1

RL + jωL
+ jωCL

∼= RL

(ωL)2 + j

(
ωCL − 1

ωL

)

=
RL

(ωL)2 − j

(
1−ω2LCL

ωL

)
= ℜ(YL)+ j ℑ(YL). (5.62)

Development of the non-ideal inductor model makes the concept of a self-resonant frequency easier to
accept. Because of the RLCLL component values associated with physical realization of the inductor,
it becomes obvious that, based on the knowledge of resonance, the non-ideal inductor does have
resonant frequency ω0L of its own. It is very important for a designer to have at least some estimate of
where this self-resonant frequency might be. Typically, the wire resistance is RL ≤ 1Ω and associated
parasitic capacitance CL is in the order of pF, which means that the self-resonant frequency is,
typically, in the order of megahertz to a few hundreds of megahertz. That is, if a non-ideal inductor is
to be used in an LC tank, the designer is forced to limit the intended signal frequency to no more than
one decade (i.e., ten times) below the inductor’s self-resonant frequency. This rule of thumb is most
often used as a measure of how good an inductor is needed for the intended design.

A natural question one could ask would be why an external capacitor C is needed in parallel with a
non-ideal inductor to set the resonant frequency. Why not just use the non-ideal inductor alone? This
approach would simplify things, at least in terms of the component count. Indeed, that approach is used
for the design of circuits working at very high frequencies, for example in satellite communication
systems. However, detailed analysis of such components and circuits is beyond the scope of this book.
For purposes of designing circuits with discrete components working at frequencies in the order of up
to a few 100 MHz, one should keep in mind that controlling the inductor’s parasitic capacitance is not
practical. Therefore, a more practical LC model is used (Fig. 5.9).

The first point to note is that all wire resistances rW associated with the practical LC model are
now merged with inductive resistance RL. The effective parallel resistance Rp is represented by the
real part of (5.62), i.e.

1
Rp

=
RL

(ωL)2 ∴ Rp =
(ωL)2

RL
, (5.63)

while the effective parallel inductance of the coil Leff is represented by the imaginary part of (5.62), i.e.

1
ωLeff

=
1−ω2LCL

ωL
,

∴
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Leff =
L

1−ω2LCL
=

L
1− (ω/ω0L)2 . (5.64)

Next, we estimate the deviation from the ideal LC tank model at resonance ω0 (which has to be at
least one decade below the self-resonance ω0L of the coil). Another way of stating this condition is
that the resonator’s external capacitor CT has to be much larger than the parasitic capacitance CL,
i.e., CT � CL, (remember, the ideal inductance L is always the same). At circuit resonance ω0, the
dynamic resistance RD of the LC tank in Fig. 5.9, as defined in (5.81) and (5.82), is

RD = Qω0L. (5.65)

At the same time, the dynamic resistance RD of the equivalent circuit is described using effective
values

RD = Qeff ω0Leff. (5.66)

Because of the equivalence of these two circuits and from (5.65) and (5.66) it follows that

Qω0L = Qeff ω0Leff, (5.67)

∴

Qeff = Q
(
1−ω2LCL

)
= Q

[
1−

(
ω

ω0L

)2
]
, (ω � ω0L) (5.68)

where it is assumed (ω � ω0L), and Q = ω0L/R, as defined in (5.49). This result shows that the
effective Q factor Qeff of a realistic LC tank decreases as the operating frequency ω approaches the
self–resonating frequency ω0L.

How do we use the above results? Well, it depends. For the parallel circuit case in Fig. 5.9, the
dynamic resistance can be calculated using either (5.65) or (5.66). The general definitions from (5.81)
and (5.82) can be used as well, as long as either C is replaced with (C+CL) or Q is replaced with Qeff.
The bandwidth Δ f from (5.69), however, must be calculated using Q and not Qeff because, for a given
resonant frequency, capacitance C is adjusted to absorb CL, because they are in parallel connection.

Note that a serial tuned circuit is different, i.e., capacitor C is in serial connection with the inductive
capacitance CL. Effectively, C resonates with Leff which means that instead of using Q, Qeff is used,
so that

Qeff =
f0

Δ f
. (5.69)

Those little differences should be accounted for when analyzing serial and parallel RLC resonant
circuits.

5.5 Serial to Parallel Impedance Transformations

Often, it is useful to transform a serial RLC network into its equivalent parallel configuration or vice
versa. This transformation must be done only at a single frequency, which does not affect the serial
and parallel Q factor of the networks,

Qs =
Xs

Rs
, (5.70)

Qp =
Rp

Xp
, (5.71)
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so that, assuming Qs = Qp = Q at the given frequency

Zs = Rs + jXs = Rs + jQsRs = Rs(1+ jQs), (5.72)

Yp =
1
Zs

=
1

Rs(1+ jQ)
=

1
Rs(1+ jQ)

1− jQ
1− jQ

(5.73)

=
1

Rs(1+Q2)
− j

Q
Rs(1+Q2)

(5.74)

=
1

Rs(1+Q2)
− j

Q
Xs
Q (1+Q2)

(5.75)

=
1

Rp
− j

1
Xp

, (5.76)

∴

Rp = Rs(1+Q2), (5.77)

Xp = Xs

(
1+

1
Q2

)
, (5.78)

after replacing (5.70) and (5.71) in (5.72)–(5.75). Again, for large Q, i.e., Q > 10,

Rp ≈ Q2 Rs, (5.79)

Xp ≈ Xs. (5.80)

The last two expressions are often-used approximations in resonant circuit network analysis.

5.6 Dynamic Resistance

The imaginary part ℑ(Y ) determined the resonant frequency, while the real part ℜ(Y ), from (5.50),
determines the dynamic resistance RD, i.e., real resistance of the LC resonator at the resonant
frequency, as,

ℜ(Y (ωp0)) =
R

R2 +(ωp0L)2

=
R

R2 +

[√
1

LC − R2

L2

]2

L2

=
R

R2 +
(

L
C −R2

)

=
RC
L

,

∴

RD =
1

ℜ(Y (ωp0))
=

L
RC

. (5.81)
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In the ideal case, i.e., R = 0, the dynamic resistance of the LC resonator (see Fig. 5.9) becomes
RD = ∞. It should be noted that, from the perspective of the resonant current, which circulates inside
the RLC loop, the three elements are in series. Hence, reducing the resistance associated with the
inductive branch is desirable in order to increase the dynamic impedance perceived by the network
external to the RLC resonator.

Finally, the expression for dynamic resistance (5.81) can also be reformulated in terms of the Q
factor (Q > 10), after using (5.48), as:

RD =
L

RC
= ω0LQ =

Q
ω0C

= Q2R, (5.82)

which is, again, the resistance of a realistic RLC tank in resonance, as perceived by the external
network. An important distinction to make is that the resistance R is a physical entity: in a serial
RLC network, it needs to be as small as possible; in a parallel configuration, it needs to be as large
as possible. However, at resonance, this small resistance is perceived by the external network as if
magnified by the Q2 factor. In the ideal case, i.e., when serial the resistance R = 0, value of the Q
factor becomes infinity. Hence, expression (5.82) is only a mathematical approximation, see Fig. 5.8.

The maximum impedance value happens at the resonant frequency ω0, as shown in Fig. 5.8 (right),
however this time it is calculated as

Zmax = Z(ω0) = Q2 R. (5.83)

This is a very important property of parallel RLC networks, which indicates that, at resonance, an
ideal LC parallel network (i.e., R = ∞) would have infinite Q factor and, therefore, infinite voltage
output. One should note the obvious risk associated with the possible destruction of components used
in high Q resonators. An ideal parallel RLC network is used to suppress all frequencies except the
resonant frequency, Fig. 5.8 (right).

5.7 General RLC Networks

A truly realistic model of an LC resonator must include losses of both the inductor and capacitor,
modelled by effective series resistance ESR and resistor r1 (see Fig. 5.10). In this section, we derive
expressions for the resonant frequency ω0 and dynamic resistance RD of a general LC circuit as
the function of Q1 and Q2 factors of the inductor and capacitor respectively. Finally, we show how
to transform the resonator in Fig. 5.10 into its equivalent parallel RLC network, assuming that the
capacitor is lossless, i.e., ESR = 0.

By definition, Q factors of inductive and capacitive branches in the LC network (after substitution
ESR = r2) at resonant frequency ω0 are:

Q1 ≡ XL

r1
=

ω0L
r1

= tanθ1 ∴ θ1 = arctanQ1, (5.84)

Q2 ≡ XC

r2
=

1
ω0C r2

= tanθ2 ∴ θ2 = arctanQ2, (5.85)

Fig. 5.10 Realistic
parallel LC network
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Fig. 5.11 Realistic LC
resonator driven by the
external signal source Vin

where θ1 and θ2 are the respective phase angles in the inductor and capacitor due to the thermal losses
(resistances r1,2 denote the internal resistances of the coil and the ESR of the capacitor, respectively).
We also define, after including (5.48),

Z1 = r1 + jω0L =
ω0L
Q1

+ jω0L,

∴

|Z1|=
√(

ω0L
Q1

)2

+(ω0L)2 = ω0L

√
1+

1

Q2
1

, (5.86)

as well as,

Z2 = r2 +
1

jω0C
=

1
Q2ω0C

+
1

jω0C
, (5.87)

therefore,

|Z2|=
√

1
(Q2ω0C)2 +

1
(ω0C)2 =

1
ω0C

√
1+

1

Q2
2

. (5.88)

From (5.84) and (5.85), in addition to straightforward application of trigonometric identities,4,5

we write

sinθ1 =
Q1√

1+Q2
1

; cosθ1 =
1√

1+Q2
1

, (5.89)

sinθ2 =
Q2√

1+Q2
2

; cosθ2 =
1√

1+Q2
2

. (5.90)

5.7.1 Derivation for the Resonant Frequency ω0

If an AC voltage source Vin = V cosθ1 is connected to the resonator (see Fig. 5.11), the total
current needed to compensate for the thermal losses i = i1 + i2 is split between the two branches.

4cos[arctanx] = 1/
√

1+ x2.
5sin[arctanx] = x/

√
1+ x2.
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The inductive branch current i1 has two components: one that is in phase with the source voltage
Vin, i.e., (V cosθ1)/Z1, and one that is lagging by 90◦, (V sinθ1)/Z1. At the same time, the capacitive
branch current i2 also has two components: one that is in phase with the source voltage Vin, i.e.,
(V cosθ2)/Z2, and one that is leading the source voltage Vin by 90◦, i.e., (V sinθ2)/Z2.

At resonance, the two quadrature current components must be opposite and equal (so that the
vector sum is zero), which leads to the following expressions (after using results (5.86) to (5.90))

(V sinθ1)
1
Z1

= (V sinθ2)
1
Z2

, (5.91)

therefore,

Q1√
1+Q2

1

1

ω0L
√

1+ 1
Q2

1

=
Q2√

1+Q2
2

ω0C√
1+ 1

Q2
2

,

Q1√(
1+Q2

1

)(
1+ 1

Q2
1

) =
Q2√(

1+Q2
2

)(
1+ 1

Q2
2

) ω2
0LC, (5.92)

where both the left and right side of (5.92) contain algebraic terms that can be simplified as follows:

x√
(1+ x2)(1+ 1

x2 )
=

√
x2

(1+ x2)(1+ 1
x2 )

=

√
x2

x2 + 2+ 1
x2

=

√
x2(

x+ 1
x

)2 =
x

x+ 1
x

=
1

1+ 1
x2

. (5.93)

Using (5.93) it is straightforward to rewrite (5.92) as:

1

1+ 1
Q2

1

=
1

1+ 1
Q2

2

ω2
0LC,

∴

ω0 =
1√
LC

√√√√√1+ 1
Q2

2

1+ 1
Q2

1

≈ 1√
LC

(Q1,2 � 1), (5.94)

which is the solution for the resonant frequency of an LC resonator with a non-ideal inductor and a
non-ideal capacitor. Naturally, for very good L and C components the thermal losses are negligible,
in other words Q1,2 � 1, hence (5.94) can be approximated with the expression for the resonant
frequency ω0 that was defined earlier for the case of ideal LC resonator. However, note that the
assumption of high Q is not always valid. A very dramatic example is the case of the on-chip
inductors manufactured in the standard CMOS process that are used in modern wireless devices;
their Q is in the order of five. Consequently, additional design and technological techniques must be
employed to improve the performance of integrated LC resonators.
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5.7.2 Derivation for the Dynamic Resistance RD

At resonance, the sum of complex quadrature components of the two branch currents is zero, which
leaves only the two in-phase current components. Similarly to the previous derivation, we write,

i =V

(
cosθ1

Z1
+

cosθ2

Z2

)

=V

⎡
⎣ 1√

1+Q2
1

1

ω0L
√

1+ 1
Q2

1

+
1√

1+Q2
2

ω0C√
1+ 1

Q2
2

⎤
⎦

∴

=V

[
Q1

ω0L(1+Q2
1)

+
Q2 ω0C

1+Q2
2

]
. (5.95)

It is now convenient to introduce substitution for the ω0C term in (5.95) by rewriting (5.94) as follows:

ω2
0 LC =

1+ 1
Q2

2

1+ 1
Q2

1

∴ Q2
2 ω0C

1+Q2
2

=
Q2

1

(1+Q2
1)ω0L

∴ ω0C =
1+Q2

2

Q2
2

Q2
1

(1+Q2
1)ω0L

. (5.96)

After these substitutions (5.95) becomes,

i =V

[
Q1

ω0L(1+Q2
1)

+
Q2

1+Q2
2

1+Q2
2

Q2
2

Q2
1

(1+Q2
1)ω0L

]
=V

Q1

ω0L(1+Q2
1)

[
1+

Q1

Q2

]
, (5.97)

which now leads straight into the expression for dynamic resistance RD as

RD ≡ V
i
= ω0L

Q1 +
1

Q1

1+ Q1
Q2

(5.98)

for the case of a non-ideal inductor and a non-ideal capacitor. As is, (5.98) shows the dependence of
dynamic resistance versus the Q factors of L and C components. In case of very good (but still not
perfect) inductors, i.e., Q1 � 1 or in other words (1/Q1) ≈ 0, (5.98) can be written as the very close
approximation,

RD = ω0L
Q1

1+ Q1
Q2

= ω0L
Q1 Q2

Q1 +Q2
. (5.99)

Modern capacitors are made using very good dielectrics, which is to say that Q2 is not only large but
could be approximated as Q2 → ∞, in other words Q2 � Q1, in other words Q1/Q2 ≈ 0. Therefore,
in case of a lossless capacitor, (5.99) is further approximated as

RD = ω0LQ1, (5.100)

which is commonly used in practice because, in comparison with capacitors, inductors are much
harder components to build.
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Finally, in the extreme approximation that is good only for fast “back-of-an-envelope” analysis,
even the inductor is assumed to be perfectly lossless, i.e., Q1 → ∞, which means that (5.100) becomes
simply

RD → ∞, (5.101)

which is what was concluded earlier, in (5.82).
Expressions (5.98)–(5.101), in addition to (5.109), for dynamic resistance RD are useful, as long

as the applied assumptions are kept in mind.

5.8 Selectivity

The ability of a resonating circuit to select and amplify a weak voltage signal at one specific frequency
ω0 is its core quality used in RF circuits, it is referred to as “selectivity”. In the ideal case of Q → ∞,
the resonating circuit would pick one and only one frequency, ω0, while all other tones would be
completely suppressed. However, in realistic circuits there is always some finite resistance causing
the thermal loss, which is measured by the circuit’s finite Q factor. A plot of selectivity curves as a
function of Q factor is shown in Fig. 5.12. The plot indicates that, for good selectivity, we need high
Q factor resonating circuits.

An interesting question to answer is: In the case of resonators with finite Q, what is the range of
frequencies that passes through the resonator without being significantly suppressed? In the following
paragraphs, we examine the realistic case of RLC network behaviour regarding this important filtering
property.

5.9 Bandpass Filters

Let us consider a serial RLC network from the perspective of voltage source with resistance R driving
impedance Z = j(ωL− 1/ωC) (see Fig. 5.13). Maximum power transfer, therefore, happens when the
source is matched to the load, i.e., R = |Z|. Otherwise, at DC the capacitor becomes open while the
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Fig. 5.13 LC network
in series

inductor becomes a short connection; and at the other side of the frequency spectrum, at very high
frequencies, the capacitor becomes short while the inductor becomes an open connection. In both
extreme cases, there is no power transfer because the loop current must drop to zero.

Hence, the condition for maximum power transfer R = |Z|, leads to

Vout =
Vin

|R+Z| |Z|=
Vin

|R± jR| R =
Vin

|1± j| =
Vin√

2
, (5.102)

which happens at two frequency points. Let us label them (for the time being) as ωU and ωL (for the
“upper” and “lower” frequency, respectively), so that R = |Z| is written as

R = ωUL− 1
ωUC

, (5.103)

−R = ωLL− 1
ωLC

, (5.104)

which, at resonance leads to

R = ωUL− 1

ωU
1

ω2
0L

∴ R = ωUL− ω2
0L

ωU
∴ R

ω0L
=

ωU

ω0
− ω0

ωU
,

−R = ωLL− 1

ωL
1

ω2
0L

∴−R = ωLL− ω2
0L

ωL
∴− R

ω0L
=

ωL

ω0
− ω0

ωL
. (5.105)

We substitute Q = ω0L/R:

1
Q

=
ωU

ω0
− ω0

ωU
, (5.106)

− 1
Q

=
ωL

ω0
− ω0

ωL
. (5.107)

After adding (5.106) and (5.107), it follows that

ωU

ω0
+

ωL

ω0
=

ω0

ωU
+

ω0

ωL
∴ ω2

0 = ωUωL (5.108)

and now, using (5.106) and (5.108), we write

1
Q

=
ωU

ω0
− ω0

ωU
=

ω2
U −ω2

0

ωUω0
,

∴
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Fig. 5.14 Bandwidth
definition plot, where f1
corresponds to ωL, and f2
corresponds to ωU

Q =
ωUω0

ω2
U −ω2

0

=
ωUω0

ω2
U −ωUωL

=
ω0

ωU −ωL
=

ω0

Δω
. (5.109)

The last expression is very important, because the two frequencies ωU and ωL are used to define the
resonator’s bandwidth BW (see Fig. 5.14). The two frequencies are at −3 dB points relative to the
maximum amplitude of the resonator (which is at ω0). Also, (5.109) shows that a narrow band is
achieved by using high Q components.

In serial RLC configuration, high Q also means very low resistance R and high inductance L,
which implies that it is good for matching with a low impedance source, such as an antenna, for
example, which usually has impedance in the order of 50Ω. Otherwise, if the source impedance is
very high then a parallel RLC configuration must be used, where high Q means high resistance and
very low inductance.

Example 5.9. A parallel LC tank consists of: L = 2.533 nH with internal wire resistance of
RL = 1mΩ, and C = 100 nF. Calculate: (a) the resonant frequency f0; (b) the Q factor at resonance;
(c) the impedance at resonance Zmax; and (d) the bandwidth BW .

Solution 5.9.

(a) f0 =
1

2π
√

LC
=

1

2π
√

2.533nH100nF
= 10MHz.

(b) Q =
XL

RL
=

2π f0L
R

=
2π10MHz2.533nH

1mΩ
= 159.153.

(c) Zmax = Q2 RL = (159.153)2 ·1mΩ = 29.330Ω.

(d) BW =
f0

Q
=

RL

2πL
=

1mΩ
2π 2.533nH

= 62.833kHz.



154 5 Electrical Resonance

–3dB

0dB

0.50 0.75 1.00 1.25 1.50
no

rm
al

iz
ed

 v
ou

t
normalized frequency

Fig. 5.15 Normalized
output voltage across three
staggered inductors
normalized around the
resonant frequency ω0 = 1
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5.10 Coupled Tuned Circuit

Although it may seem that increasing the Q factor of a resonating circuit is always desirable, that is
not the case. In addition to improving the selectivity of a receiver, an increased Q factor helps with
amplification of weak RF signals arriving to the antenna (i.e., with the sensitivity). However, higher
Q also reduces the bandwidth, which may start cutting into the frequency content of the signal and,
therefore, start introducing distortions.

For example, if a receiver is meant to receive the complete voice frequency spectrum, i.e., 20 Hz–
20 kHz, using a 10 MHz carrier signal, then the minimum required bandwidth, calculated according
to (5.109), is Q = f0/Δ f = 100 MHz/20 kHz = 500. Using a wider bandwidth would not benefit the
quality of the received signal; instead, it would allow more noise into the system. If, for whatever
reason, a resonator with higher Q is being used, in practical systems it is always possible to widen the
overall bandwidth by staggering more than one resonator while maintaining the required sensitivity
(see Fig. 5.15). Each of the resonators is tuned to a slightly different resonant frequency and the
overall frequency response becomes equal to the sum of the individual responses.

5.11 Summary

In this section, we introduced serial and parallel resonant LC circuits. The LC resonant behaviour is
very important for generating voltage and current variables that follow the sinusoidal shape in the time
domain. We explored both ideal and realistic cases of LC resonators, and introduced the Q factor as a
commonly used measure of internal thermal losses. In the second important use of LC resonators, by
controlling the Q factor, we are able to determine the bandwidth of the bandpass LC resonating filter
and, therefore, limit the frequency range of single-tone signals that pass through the LC resonator.
These two functions are fundamental for RF circuit design and we use both of them.
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Problems

5.1. For a given coil, L = 2μH, Q= 200, f0 = 10 MHz, calculate:

(a) Its equivalent series resistance.
(b) Its parallel resistance.
(c) The value of the resonating capacitor.
(d) Parallel resistance which, when added, provides bandwidth of 200 MHz.

5.2. A single-tone signal f0 = 8 MHz is passed through a LP RC filter followed by a high-pass RC
filter.

(a) Choose R and C values such that the bandwidth around f0 is BW = 10 kHz.
(b) What would you choose for BW = 5 kHz?
(c) Design RLC filters with the same characteristics.

Note: pick component values at your will. They do not have to be the standard values.

5.3. For a given inductor L= 2.533 nH and trimming capacitor C whose range is 80 nF to 120 nF,
calculate the tuning range (Δ f = fmax − fmin) of this LC resonator.

5.4. Design an LC resonator whose resonant frequency is f0 = 10 MHz and only the following
components are available:

(a) L= 2.533 nH, C1 = 10 nF, C2 = 40 nF, and C3 = 50 nF
(b) L= 2.533 nH, C1 = 20 nF, C2 = 30 nF, and C3 = 60 nF
(c) L= 2.533 nH, C1 = 70 nF, C2 = 60 nF, and C3 = 60 nF

5.5. Calculate the Q factor of a serial RLC network if inductor L= 2.533 nH and the lumped wire
resistance r = (π)mΩ, at: (a) f1 = 10 MHz; and (b) f2 = 100 MHz.

5.6. For a serial RLC network, derive an expression for bandwidth BW at the resonant frequency ω0

as a function of Q. What is the conclusion?

5.7. A 1μH inductive coil has wire resistance of R = 5Ω and self-capacitance of 5 pF. The inductor
is used to create an LC resonator with f0 = 25 MHz. Calculate the effective inductance and effective
Q factor.

5.8. Calculate the resonant frequency of a serial RLC network with R = 30Ω, L= 3 mH, and
C = 100 nF. Calculate its impedance at f = 10 kHz and at f = 5 kHz.

5.9. A frequency response curve of an LC resonator looks as in Fig. 5.14. Assume f1 = 450 kHz,
f2 = 460 kHz, and f0 = 455 kHz. Determine the resonator bandwidth, the Q factor, the inductance L
if the capacitance is C = 100 nF, and the total internal circuit resistance R.

5.10. A parallel LC tank consists of L= 1 mH whose wire resistance is R = 1Ω, and a capacitor
C = 100 nF. Determine the resonant frequency, the Q factor, the dynamic resistance RD, and the
bandwidth of this resonator.

5.11. A serial RC branch consists of RS = 10Ω and CS = 7.95 pF. Convert it into its equivalent
parallel RC network form at f = 1 GHz.



Chapter 6
Matching Networks

Abstract The main purpose of an electronic circuit is to process an electronic signal that has arrived
at its input terminals. In other words, an abstract mathematical operation that was envisioned during
the initial phases of the design is materialized in the form of a physical electronic circuit and its
transfer function. The circuit is then expected to modify (i.e., to process) the input signal in accordance
with the intended mathematical function and to pass the result to the next stage. In addition, a real,
well-designed system should perform the signal-processing operations efficiently with minimal waste
of time and energy. Hence, a number of interesting questions arise: What is the most optimal strategy
for the energy transfer and signal processing? How should the interface between two subsequent
stages be modelled and designed? Is it more beneficial to pass the signal from one stage to another in
the form of voltage or in the form of current? Based on what criteria should the decision be made?
What happens if it is not possible to achieve the optimal goal and what kind of compromises are
appropriate to make? How should we deal with general, more complicated networks? In this chapter,
we study a simple basic methodology for interfacing two stages in the signal processing chain that
is commonly used in the design of RF electronic systems, with the main criterion being maximum
power transfer between the stages. This approach is justified by the argument that wireless RF signals
that have arrived at the system input terminals are very weak, thus subsequent power loss would have
broad consequences for the overall system performance.

6.1 System Partitioning Concept

It is not difficult to extrapolate analytical methodologies based on Ohm and Kirchhoff’s laws to large
networks and realize that manual analysis of large systems is not practical because modern electronic
systems are synthesized using billions of RLC-equivalent components. Considering that humans need
quite a bit of time to manually solve even a relatively simple system of four equations, it becomes
obvious that some levels of abstraction must be introduced into the design process. The trick being
applied is to “divide and conquer”, i.e., to partition the system along the signal flow path in order to
create a chain of system-level blocks, and then consider each of the subsystems (blocks) as a stand-
alone unit. The same methodology is then applied to each of the stand-alone units until we reach the
very end of the chain, which consists only of basic devices.

In accordance with this methodology, a complicated system is virtually always designed hierarchi-
cally; most practical systems are split into fewer than ten levels of hierarchy. Once the hierarchy chain
is established and each of the stages is replaced by its equivalent Thévenin or Norton model, at the
conceptual level each of the blocks is considered to be a “black box” with input and output terminals
(see Fig. 6.1).

R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits
and Design Techniques, DOI 10.1007/978-1-4614-1117-8 6,
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Fig. 6.1 General system partitioning based on Thévenin voltage divider and/or Norton current divider model at
interface planes between adjacent stages

We appreciate the elegance of the approach once we realize that each stage that generates a signal at
its output terminals serves as “driving stage” (or simply “the driver”) while each stage that receives the
signal at its input nodes is the “loading stage” (or simply “the load”). It is important to understand that,
by itself, each stage is both driver (relative to its neighbour down the signal path) and load (relative
to its neighbour up the signal path). From the signal transmission perspective, the internal structure of
each stage is not relevant; indeed, it is only important to know the following:

• The amplitude of voltage (or current) generated by the driver VTi.
• The output impedance of the driver RTi.
• The input impedance of the load Zin.

Conceptually, these three ideal elements (i.e., they do not really exist as such inside real circuits, they
are only symbolic representations of the circuit behaviour) are used to model the signal transfer at
each of the interface nodes. By doing so, the analysis of a complicated system is reduced to repeated
calculations of a simple voltage/current divider at each of the interface planes.

6.2 Maximum Power Transfer

Routinely, analysis of a low-frequency system focuses on calculation of the voltage and current
levels within the circuit, which results in “good enough” answers. This is true because the parasitic
elements, which inherently have small RLC values, usually do not have a significant impact on circuit
performance at low frequencies. Therefore, for low-frequency designs, approximation of parasitic
reactances with either short or open connections, and dealing only with the “real” resistors and thermal
energy losses is the generally accepted methodology.

At RF frequencies, however, voltage and current levels internal to the active circuit elements are, in
general, not equal to the ones at the circuit terminals. Consequently, there is a non-negligible amount
of wasted energy that is caused by the parasitic components associated with the circuit elements.
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Because of that hidden waste of energy, instead of evaluating the internal voltages and currents
separately, it is much more important to evaluate how the “instantaneous signal power” (p = v i) is
transferred from one stage to another, with the implication that all internal impedances need to be
accounted for. That is, the question becomes how the power is transferred between any two stages
influenced by the values of the impedance divider at the interface.

Intuitively, it should be relatively easy to reach useful conclusions about the interface structure in
the two extreme cases of the loading impedance, i.e., when the load impedance is either ZL = 0 or
ZL = ∞. In the case of ZL = 0, the voltage level at the load terminals is zero, which means that the
power delivered to the load must be PL =V I = 0× I = 0. In the case of ZL = ∞, however, the current
delivered to the load is zero, hence the delivered power must be zero again. Considering that electronic
circuits transfer signal power for all other cases that fall between these two extreme zero-power cases,
the conclusion is that there must be at least one non-zero maximum power transfer point somewhere
between them.

Although, strictly speaking, proof of the maximum power transfer condition requires calculus, it is
possible to derive the same condition using a less rigorous approach based on complex algebra.

Let us assume complex source impedance Z0 = R0 + jX0 and complex load impedance ZL = RL +
jXL driven by ideal voltage source V0. The average power PL is dissipated in the resistive part of the
load, while the current is complex, i.e.

PL = I2
RMSRL =

1
2
|I|2RL =

1
2

( |V0|
|Z0 +ZL|

)2

RL =
1
2

|V0|2
(R0 +RL)2 +(X0 +XL)2 RL. (6.1)

By inspection of (6.1), we note that the power PL increases when the reactive term of the denominator
is at a minimum. The minimum of a square function (which always has a non-negative value) is,
of course, zero. That is, the minimum value of (X0 + XL)

2 is achieved when the source and load
reactances are equal and with opposite sign, i.e., X0 =−XL.

That leaves (6.1) with the resistive terms only, hence

PL =
1
2

|V0|2
(R0 +RL)2 RL =

1
2

|V0|2
R2

0

RL
+ 2R0+RL

. (6.2)

Therefore, the problem of finding the maximum value of PL is reduced to the problem of finding the
minimum value of the denominator in (6.2) in respect to the load resistance RL, i.e.

d
dRL

(
R2

0

RL
+ 2R0+RL

)
=−R2

0

R2
L

+ 1 = 0, ∴ R0 = RL (6.3)

because resistive values are always positive. The two derived conditions for reactances, X0 = −XL,
and resistances, R0 = RL, are combined and written as

Z0 = Z∗
L, (6.4)

which is called “conjugate matching”. This condition guarantees the most efficient power transfer;
however, only at the one frequency for which source and load reactances are conjugate, i.e.,
jXL =−jX0.

By substituting RL = xR0 in (6.2), we have

PL =
1
2

xR0

(R0 + xR0)2 |V0|2 = 1
2

x
(1+ x)2

|V0|2
R0

=
1
2

x
(1+ x)2 P0, (6.5)
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therefore, for x = 1

PL(max) =
1
2
· 1

4
, (6.6)

where, PL(max) is the maximum power dissipated in the load, i.e., under the condition RL = R0

(i.e., x = 1), and after normalizing. The normalized plot in Fig. 6.2 shows the delivered power at
its maximum at the load ratio (RL/RL(max)) when RL = R0. In addition, if we define power transfer
efficiency as

η =
RL

RL +R0
=

1

1+ R0
RL

=
1

1+ 1
x

. (6.7)

Figure 6.2 shows that when the maximum power is transferred to the load, efficiency is only 50%,
which is intuitively correct for the case of matched impedance. We note that efficiency tends to 100%
while power transfer ratio tends to zero.

Alternatively, a non-conjugate matching or broadband matching condition,

Z0 = ZL (6.8)

called reflectionless match, is used. It is not as efficient as conjugate matching but it does offers
broader maxima. The matching condition used in practice depends upon the application.

6.3 Measuring Power Loss Due to Mismatch

In cases when the maximum power transfer is not achieved, it is useful to quantify the source–load
offset. For example, in the case of two arbitrary matching impedances Z1 and Z2, the amount of the
mismatch is quantified by the “reflection coefficient”, which is defined as

Γ =
Z2 −Z1

Z2 +Z1
, (6.9)

where, 0 ≤ |Γ | ≤ 1. In mathematical terms, the power transfer is represented as a sum of two power
waves: the incident power originating from the source and reflected power that was not delivered to
the load. For good power transfer, the reflection should be as small as possible. In the case of perfect
matching, the impedances Z1 and Z2 are equal, i.e., Γ = 0. In most communication systems, the
associated standards specify the maximum allowed value of the reflection coefficient. More often,
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Fig. 6.3 Complex
impedance matching
network (left) and the pipe
analogy showing the
non-matched and matched
cases (right)

the reflection coefficient, which is a unitless number, is converted to dBs and referred to as the
“return loss”

RLdB = 10 log(|Γ |2) = 20 log |Γ |, (6.10)

where, 0dB ≤ RL ≤ ∞. Loosely stated, the return loss quantifies the difference in power delivered to
the two interfacing impedances. To find out how much power is wasted at the interface, the “mismatch
loss” (ML) is defined as

ML =
1

1−|Γ |2 , (6.11)

or, after conversion to dBs

MLdB =−10 log(1−|Γ |2), (6.12)

where it is assumed that the signal source itself is ideal. In the case of arbitrary impedances at the
network ports, calculation of the mismatch loss is a bit more complicated and we leave that for another
occasion. To summarize this section, the return loss represents the difference between the reflected
and the incident powers and a good match is indicated by a low return loss value. At the same time,
mismatch loss represents the maximum possible power gain improvement relative to the case of a
perfect match. Therefore, close to unity value of mismatch loss ML indicates a good match.

In order to visually illustrate the concept of complex power matching, it helps to introduce an
analogy to the power flow in the form of a water flow through two pipes with diameters d1 and d2

(see Fig. 6.3). Pipe diameters and water flow have a relationship similar to that between resistance
and current flow. We intuitively know that the most efficient water flow (i.e., no spills) happens when
the two pipes have the same diameters, d1 = d2. To make the analogy even closer, let us note that
if the two connecting pipes are cut at a right angle ϕ = 90◦, then it does not matter how the pipes
are rotated along their axes; they always make a good connection, i.e., they “match”. However, if the
pipes are cut at some other angle ϕ 	= 90◦, the most efficient water flow is when the two angles are
complementary, i.e., ϕ +ϕ2 = π . Non-perpendicular angles are equivalent to complex impedances Z0

and ZL in the voltage divider, where the positive slope is equivalent to “inductive” and the negative
slope to “capacitive” impedance, while the right angle is the special (and simpler) resistive case.

6.4 Matching Networks

Now that we intuitively understand the consequences of impedance mismatch, it is natural to ask
what we should do in a more general (and realistic) case when the two matching impedances are
not the same. Going back to the pipe analogy, when two pipes with unequal diameters need to be
connected, we add a third pipe to serve as an adapter. Similarly, in order to enable efficient power
transfer between two stages with non-matching impedances, an additional circuit network has to be
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designed and inserted at the interface to serve as an “impedance converter”. Detailed coverage of
the art of matching network design is beyond the scope of this book; nevertheless, in the following
sections, some of the basic concepts of matching network design is introduced by means of examples.

For sake of clarifying the terminology, it is important that we distinguish between two similar,
and therefore often confused, circuit design activities: impedance transformation and impedance
matching.

Impedance transformation is used to transform one impedance to a different value. At the output
node of the transformation network, the new impedance is visible and it effectively masks the
impedance connected to the input node of the transformation network. This interface is always
unidirectional and is intended to interface only one impedance with the rest of the system.

Impedance matching is always performed between two impedances. The interface is always
bidirectional and intended to maximize power transfer between the two impedances. In this book,
unless otherwise specified, we design the inserted matching network with the goal of maximizing
signal power transfer.

6.5 Impedance Transformation

In Sect. 4.1.7.2 and (4.59), we introduced loaded transformers. For convenience, we repeat here the
important voltage–current relationship between the primary and secondary coils,

vsis = vpip, (6.13)

which implies that in a transformer coil, increase in the coil voltage is accompanied by decrease in
the coil current. Effectively, a transformer presents an impedance at its primary side that is different
from the impedance of the load.

Zp =

(
Np

Ns

)2

Zs, (6.14)

which states that ratio of the primary and secondary impedances is equal to the square of the primary
and secondary coil turns ratio. In other words, impedance ZL at the secondary coil is “seen” at
the primary coil as (Np/Ns)

2 RL. For this property alone, transformers are often used as impedance
converters in RF circuits.

6.6 The Q Matching Technique

This impedance matching technique is based on the idea that a single L-shaped (XS,XP) branch is
sufficient to provide impedance transition between two real, unequal resistances R0 and RL. When the
two resistances are already equal, i.e., R0 = RL, there is no need for additional matching. We observe
that by looking into the connecting node �1 in Fig. 6.3, towards the source we see the same impedance
as when looking at the load.

When the two matching resistances are not equal R0 	= RL, we intuitively try to equalize the two
sides at node �1 by adding serial reactance XS to the side with the lower initial resistance and, at the
same time, by adding parallel reactance XP to the side with the higher initial resistance. Of course, we
are exploiting the fact that addition of a serial resistance increases the overall branch resistance, while
addition of a parallel resistance reduces the overall branch resistance.
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Fig. 6.4 Four ways to use a single X0–XP circuit branch as a matching network between the source resistance R0 and
the load resistance RL. On the left, R0 < RL; on the right, R0 > RL

Because there are only two initial resistances to compare, R0 and RL, and two possible flavours of
reactances that can be used (jωL) and (1/jωC), there are only four possible combinations that can be
made. On the left of Fig. 6.4 either inductive or capacitive reactance XS is used in series with R0 < RL.
At the same time, either capacitive or inductive reactance XP is used in parallel with load resistance
RL > R0. The rule is that the two reactive components XS and XP must not be of the same type, i.e.,
one must be inductive and the other capacitive. Similarly, on the right of Fig. 6.4, either capacitive
or inductive reactance is used in parallel with the source resistance R0 > RL and either inductive or
capacitive reactance is used in series with RL < R0.

At this point it is valid to ask why we use reactances when the same goal is achievable with a
resistive network. It is possible to design a matching network using only resistors, however the power
loss increases drastically and wideband networks are always much noisier, which reduces SNR. For
each of the two relations between R0 ≶ RL, there two possible matching networks; we may ask if there
is any difference between the two. If there are no additional constraints, either solution is valid. For
example, either of the two matching networks on the left of Fig. 6.4 is valid when R0 < RL. In practice,
we usually have additional constraints, for example, if a DC connection needs to be maintained
between the source and load resistance then the serial reactance must be inductive, XS = jωL (the
upper two cases in Fig. 6.4); if an AC connection is desired, the serial reactance must be capacitive,
XS = 1/jωC (the lower two cases in Fig. 6.4).

6.6.1 Matching Real Impedances

A typical matching problem involves only real source and load resistances that are not equal, R0 	= RL.
For example, in Fig. 6.5, source resistance R0 = 5Ω must drive a load of RL = 50Ω. After the matching
network is designed and inserted, the source should “see” a load value of, in this case, 5 Ω and, at the
same time, the load resistor should “feel” as if it was driven by a source resistance equal to its own,
in this example 50 Ω. Let us find out how a general problem such as this one is solved using the
Q matching technique. As a side note, one of the drawbacks of this technique is its use of reactive
components, meaning that the matching is possible at only one frequency.



164 6 Matching Networks

Fig. 6.5 A typical case of
mismatched source and
load resistances, R0 < RL

Fig. 6.6 An LC section
placed between two
resistive terminations
creates a serial subnetwork
and a parallel subnetwork.
When the two subnetworks
are conjugate matched to
each other, their Q factors
are equal

If we apply knowledge about serial–parallel transformations of resonant LC networks (see
Sect. 5.5), the matching network design procedure is summarized by four simple steps1:

1. Add a series reactive element XS next to R− and increase the impedance of the serial subnetwork
branch. Add a parallel reactive element XP next to R+ and reduce the impedance of the parallel
subnetwork branch. We note that, if the serial element is an inductor, adding a parallel capacitor
creates a LP topology (see Fig. 6.6); a serial capacitor in combination with a parallel inductor forms
a high-pass section.

2. At the design frequency, the two newly created subnetworks, one in series and one in parallel
(Fig. 6.6), must represent complex conjugate impedances to each other. Thus, the Q factors of
these two subnetworks must be equal at the frequency where the match is computed. The serial Q
factor QS and the parallel Q factor QP of the two subnetworks are

QS =
XS

R−
and QP =

R+

XP
. (6.15)

3. Using (5.79) and (5.80) we calculate the serial and parallel Q factors of the two subnetworks as

QS = QP =

√
R+

R−
− 1. (6.16)

4. Once the Q factors are calculated, the next step is to calculate the series and parallel reactances
from (6.15) and to compute the inductor and capacitor values by using their respective impedance
definitions for the given design frequency.

In summary, the Q matching methodology for the case of signal source V0 with real source
resistance R0 (either R− or R+) that drives a load with real resistance RL (either R+ or R−) is a straight-
forward procedure because there are only four possible matching networks to consider. In order

1In order to better visualize the design steps, the lower of the two resistances is labelled R− while the higher of the two
is labelled R+.
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to make the solution unique, an additional constraint must be introduced to further determine the
nature of serial and parallel impedances in the matching network. For example, if the matching
network is to preserve a DC connection between the source and the load, then an inductor must be
chosen as the serial element. Similarly, if an AC connection between the source and the load is to be
preserved, a capacitor must be chosen as the serial element.

Example 6.1. Using the Q matching technique, design a single-section LC network to match a source
resistance R0 = 5Ω to a resistive load RL = 50Ω at f = 100 MHz (see Fig. 6.5). Maintain a DC
connection between the source and the load.

Solution 6.1. The source resistance is smaller than the load resistance, RS < RL, hence, RS = R− and
RL = R+ (Figs. 6.5 and 6.6). Therefore, serial reactance needs to be added to the source resistance
R− and parallel reactance to the load resistance R+. Adding a serial inductor to the 5 Ω source side
and a parallel capacitor to the 50 Ω load side keeps the DC connection and creates the LP matching
configuration.

From (6.16), the required Q factors are calculated as

QS = QP =

√
R+

R−
− 1 =

√
50
5

− 1 = 3.

From (6.15) it follows, first for the serial component,

XS = QSR− = 3 ·5Ω = 15Ω,

∴

L =
15Ω

2π 100MHz
= 23.873nH

and then for the parallel component,

XP =
R+

QP
=

50Ω
3

= 16.667Ω,

∴

C =
1

2π 100 MHz16.667Ω
= 95.491nF.

Let us verify the above result. After inserting the matching network and looking into the source side
(Fig. 6.6), there is a serial connection of the source resistance R0 and the matching network’s inductor

XS. Therefore, the total serial source side impedance is |Z0|=
√

R2
0 +X2

S =
√

52 + 152 Ω = 15.811Ω.
At the same time, looking into the load side, there is a parallel connection of RL and XP. Therefore,
the parallel impedance at the load side is |ZL|= 1/

√
1/R2

L + 1/X2
P = 1/

√
1/502 + 1/16.6672 Ω = 15.811Ω.

Thus, the source side impedance has increased and the load side impedance has decreased, with the
apparent matching of the two sides at 15.811 Ω.

Example 6.2. Match a 50 Ω resistive source at 100 MHz to a load that is a serial connection of a 50 Ω
resistor and a 95.491 nF capacitance.

Solution 6.2. This is a trivial case because the real parts of the source and load impedances are
equal. Because the load side has an additional XS = −15Ω, the required matching circuit is simply
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Fig. 6.7 Matching complex impedances by design of the lossless matching network simultaneously provides bidirec-
tional complex conjugate matching

an inductor in series with the source resistance Rs, i.e., XL = +15Ω, therefore L= 23.873 nH. At
f = 100 MHz, the serial connection of the inductor and the capacitor results in zero impedance, which
leaves the two real resistances matched.

6.6.2 Matching Complex Impedances

A general case of matching complex impedances follows the same design methodology presented
in the previous sections, i.e., properly designed matching network must provide correct complex
conjugate matching both at the input terminal plane and at the output terminal plane. When looking
into the output terminals of the matching networks we need to see the complex conjugate value of
the output impedance and when looking into the input terminals of the matching network we need to
see the complex conjugate value of the input impedance (Fig. 6.7). Under those conditions, all of the
signal power is delivered to the load without any reflection at the output port.

The reactances associated with source and load impedances are referred to as “parasitics”. If any
of the two matching impedances Z0 and ZL already contains parasitics, the matching network design
problem can be approached in two possible ways that may lead to the desired solution: we could try
to “absorb the parasitics” into the matching network or to eliminate the parasitics by resonance, i.e
to “resonate them out”. In both of these methods, the parasitic reactances may be eliminated either
completely or partially. A design procedure for matching complex impedances starts by solving the
matching network for the real parts and then proceeds by absorbing the parasitics or resonating them
out, either completely and partially.

6.6.2.1 Absorbing the Parasitics

Let us consider a case where source or load impedances include parasitic reactances. In addition, let
us assume that values of the parasitic reactances are lower than the component values of the matching
network that is required to match only the real parts of the two impedances. If that is the case, there is
an opportunity to “absorb” i.e., to combine, these source or load parasitics with the matching network
components. Let us take a look at the following example.

Example 6.3. Design a single-stage LC matching network at f = 100 MHz for the case of a source V0

whose impedance consists of a resistor R0 = 5 Ω connected in series with an LS = 13.873 nH inductor,
which has to drive an RL = 50 Ω load resistance in parallel with CL = 45.491 nF, Fig. 6.8 (left). The
matching network is expected to maintain a DC path between the source and the load.

Solution 6.3. In the case of a source or load with complex impedances, a good starting point is to
first resolve the matching network only for the real parts of the two impedances. In Example 6.1,



6.6 The Q Matching Technique 167

Fig. 6.8 Complex source with impedance Z0 = R0 + jωLS is required to drive a load with impedance ZL = RL||1/jωCL
(left). Both the source and the load reactive parasitics are absorbed by the matching network (right)

we designed a matching network for the case of real R0 = 5Ω source and RL = 50Ω load at 100 MHz,
which happen to be numerically equal to the real parts of the impedances in this example. Hence, we
reuse the results and treat those calculations as the first phase of this example.

As we already found in Example 6.1, to match R0 = 5Ω to RL = 50Ω we need an
X ′

S = 23.873 nH inductor and an X ′
P = 95.491 nF capacitor. However, the source impedance in

this example already contains LS = 13.873 nH inductance, which means that only the additional
XS = 23.873 nH−13.873 nH= 10 nH inductor in series is needed, as shown in Fig. 6.8 (right). By
doing this, we “absorb” the existing parasitic inductance into the value of the inductance required
by the matching network. At the same time, the loading impedance needs a total of X ′

P = 95.491 nF
capacitance, which means that only the additional XP = 95.491 nF−45.491= 50 nF capacitor is
needed in parallel with the existing CL = 45.491 nF parasitic capacitance. By doing this, we “absorb”
the existing parasitic capacitance into the value of the capacitance required by the matching network.
Therefore, the required matching network consists of an XS = 10 nH inductor and an XP = 50 nF
capacitor, as shown in Fig. 6.8 (right), i.e., LS +XS = 23.873 nH and CL +XP = 95.491 nF.

6.6.2.2 Resonating out Excessive Parasitics

Let us consider a case where, for example, the load impedance includes parasitic reactance. In
addition, let us assume that value of the parasitic reactance is greater than the value of the component
of the matching network designed to match only the real parts of the two impedances. If that is the
case, there is an opportunity to “resonate out”, either fully or partially, the load’s parasitic reactance
with the matching network’s components. To illustrate the point, let us reuse the results of the previous
examples.

Example 6.4. Design a single-stage LC matching network at f = 100 MHz for the case of a source
V0 with a R0 = 5Ω output resistance, which has to drive a RL = 50Ω load resistance in parallel with
CL = 105.491 nF. The matching network is expected to maintain a DC path between the source and
the load.

Solution 6.4. As we already found in Example 6.1, to match R0 = 5Ω to RL = 50Ω we need
X ′

S = 23.873 nH inductor and X ′
P = 95.491 nF capacitor. However, the source impedance already

includes the parasitic capacitance of CL = 105.491 nF, which means that somehow we need to reach
the required X ′

P = 95.491 nF. In general, there are two possible ways to approach this kind of problem.

• Total resonating out: Let us first create an LC resonator that consists of the existing parasitic
capacitance CL in parallel with an inductor LL (a new component). If we set the resonant
frequency of this LC resonator to f0 = 100 MHz, we create (in the ideal case) dynamic impedance
RD = ∞ in parallel to the load resistance RL. Consequently, the total loading impedance becomes
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Fig. 6.9 Parasitic load capacitance CL is completely “resonated out” by adding parallel inductor LL (left). Only the
excess amount of parasitic capacitance CL is “partially resonated out” (i.e. its effective size is reduced) by adding
parallel inductance LL (right)

ZL = RL||RD = RL, i.e., the parasitic capacitance is “resonated out” and, effectively, disappears. In
this case, we would need to use an LL = 24.024 pH inductor. Although it is very difficult to create
such a small inductor, for sake of argument let us keep the numbers. Once the parasitic capacitance
is fully resonated out, we are back to the problem of Example 6.1, which means that, in order to
finalize the matching network, we need to add an XS = 23.873 nH inductor and an XP = 95.491 nF
capacitor, as shown in Fig. 6.9 (left). This solution requires three new components: XS, XP, and LL.

• Partial resonating out: Let us try to resonate out only the excess part of the parasitic ca-
pacitance, i.e., C′

L =CL − X ′
P = 105.491 nF−95.491 nF= 10 nF. That is, let us create an LC

resonator that consists of the existing part of the parasitic capacitance C′
L in parallel with an

inductor LL (a new component), so that they resonate at f0 = 100 MHz. To do so, we need
LL = 1/(2π f0)

2 C′
L = 252.3 pH. By adding the new component, the LL inductor, in parallel with

the parasitic capacitance, we effectively reduce the size of the capacitor. One way to visualize
this situation is to imagine that the load capacitance CL consists of two capacitors in parallel, i.e.,
CL = 95.491 nF+10 nF. The newly created LC resonator resonates out the 10 nF part and becomes
effectively infinite dynamic impedance RD =∞. Hence, the 95.491 nF capacitance required by
the matching network is still available – all we need to do is to add the series inductance
X ′

S = 23.873 nH, as shown in Fig. 6.9 (right). Therefore this solution requires only the two new
components, LL and X0. And, as a side note, in this solution the resonating inductor is a bit larger.

6.7 Bandwidth of a Single-Stage LC Matching Network

So far in our discussion of single-stage LC matching networks, we have only focused on the main
goal of matching the source side impedance to the load side impedance. We had no freedom to control
the bandwidth of the overall network. We have learned by now that a general RLC network always
behaves as a bandpass filter centred around the resonant frequency ω0, which is determined by the LC
components. We also have learned that, as a good approximation (assuming Q factor larger than ten
or so), the serial and parallel RLC networks resonate in the same way. Therefore, it is very important
to estimate the bandwidth of matched networks, because we may reach a solution that offers too wide
a bandwidth (and allows too much noise into the system) or too narrow a bandwidth (and alters the
frequency content of the passing signals, i.e., the matching network distorts the signal).

A more detailed network analysis, which is beyond the scope of this book, would have revealed
that determining the network bandwidth using the standard definition based on the 3 dB points turns
out to be problematic, to say the least. There are at least two good reasons for this statement. One
has to do with the fact that some resonant networks may never reach the 3 dB attenuation points.
For example, a low Q resonant curve is almost flat—it may not even have 3 dB difference between
its maximum amplitude at the point of the resonant frequency and the side points. A second, and
less obvious, reason for our difficulties in determining the 3 dB bandwidth of LC matching networks
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Fig. 6.10 Converting the serial RL subnetwork portion of the matching network into its equivalent parallel RL
subnetwork, for purposes of calculating the overall bandwidth

unambiguously is that, in general, resonant curves are not symmetrical around the resonant frequency.
Nevertheless, in this book we assume high Q resonant networks (which is a reasonable assumption in
the case of wireless radio) and we assume symmetrical resonant curves (which is a valid assumption
in the narrow region around the resonant frequency point).

With these assumptions in mind, let us now determine the bandwidth for the matching network of
Example 6.1, as shown in Fig. 6.10 (left). It is important to recognize that, for a narrow bandwidth, the
LC circuit is treated as a “resistively loaded resonator”. To show how this works, we need to convert
the serial source impedance Z0 = (5+ j15)Ω subnetwork into its equivalent parallel subnetwork (at
f = 100 MHz). The serial RL branch is treated as a non-ideal inductor whose QS factor is QS = 15/5 =
3. Conversion of the serial RL branch is easily done by using (5.79) and (5.80), which results in a
parallel resistor of Rp = Rs(1+Q2

S) = 5Ω(1+32) = 50Ω and the equivalent parallel inductor is Lp =
Ls(1/Q2

S + 1) = 23.873nH(1/32 + 1) = 26.526nH, shown in Fig. 6.10 (right). Again, note that we used
the QS factor for the stand-alone RL branch by itself. After this conversion, it is easy to see a parallel
resonant circuit loaded by two 50 Ω resistors in parallel, i.e., which is effectively Rloaded = 25Ω, as in
Fig. 6.10 (right).

In order to determine the 3 dB bandwidth of the matching circuit we need to calculate the Q
factor of the “loaded” network at resonance. By using either the capacitive or inductive reactance
at resonance, we write as usual

Qloaded =
Rloaded

XP
=

25Ω
16.667Ω

= 1.5, (6.17)

∴

Δ f =
f0

Qloaded
=

100MHz
1.5

= 66.667MHz, (6.18)

which, although not completely accurate still provides a reasonable estimate of the bandwidth.
Numerical simulations show that result (6.18) underestimates the actual bandwidth by approximately
20–30%, which is what expected due to the assumptions being made.

6.7.1 Increasing Bandwidth with Multisection Impedance Matching

The single-stage matching network does not have enough steps of freedom to allow for setting the
network bandwidth. In order to gain control over that parameter, we need to expand our single-stage,
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Fig. 6.11 Two-stage
matching network with an
intermediate temporary
resistance Rtmp for the
purpose of intermediate
calculations

L-shaped matching network and add a second section. In principle, the two-section network is solved
by repeating two times the methodology that we used for single-section networks. The additional step
of freedom is achieved by introducing a temporary loading resistance Rtmp (see Fig. 6.11). This allows
us to split the two-section matching network problem into two single-section matching networks,
where Rtmp serves as the temporary load for the first section and as the source resistance for the
second section.

We set the value of the temporary resistance Rtmp to

R0

Rtmp
=

Rtmp

RL
∴ Rtmp =

√
R0RL, (6.19)

which is the geometrical mean between the source R0 and load RL resistances. The addition of the
second section using condition (6.19) provides an optimal compromise in increasing the bandwidth.

Once again, the temporary resistance Rtmp is a “ghost” value, not a real physical component; it is
merely a number that would have been seen by looking into the matching network if it were split at
the middle.

6.7.2 Decreasing Bandwidth with Multisection Impedance Matching

There are circumstances when we want to design a narrow bandwidth matching network. For example,
input stages of RF amplifiers should be limited to only the minimum necessary bandwidth. As you
already expect, bandwidth reduction also requires a two-section matching network (Fig. 6.12), except
that this time the value of the temporary resistance Rtmp is chosen outside the range set by the source
R0 and load RL resistance values. Consequently, there are two possible choices for its value, one where
Rtmp < R− and one where Rtmp > R+.2

As long as the condition Rtmp ≶ [R0,RL] is satisfied, we have almost arbitrary freedom to pick
the value of the temporary resistance. However, in practice the decision about where to place Rtmp

depends on the impedance levels of the terminations and practically realizable component values. For
example, if the existing values of [R0,RL] are already low, then it is more practical to select a temporary
resistance on the high side, Rtmp > R+, while if the existing values of [R0,RL] are high, then we pick
a low value for the temporary resistance so that Rtmp < R−. Aside from these notes, there is nothing
special about the two-stage (or even multi-stage) matching networks. It is good engineering practice
to design circuits with a minimum number of components, hence, as the last step in the design of two-
section matching networks, multiple serial inductances should be replaced by a single component and
multiple parallel capacitances should be replaced by a single capacitor.

2We use the same notation: R− = min[R0,RL] and R+ = max[R0,RL].
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Fig. 6.12 Selection of an independent Rtmp

6.8 Summary

In this chapter, we familiarized ourselves with the basic concepts of power transfer between stages of
a general multi-stage system. Having the main motivation of designing networks for use in wireless
radio systems, it became our main priority to maximize power transfer of the RF signals. In order to
achieve that goal, we introduced the concept of matching networks that serve as the gradual impedance
converter between the source impedance and the load impedance. Their first application is between
the antenna and the RF amplifier. The reader should keep in mind that Q matching is just one of
several key techniques for matching network design. The next logical step is to start using Smith
Charts, which offer a somewhat more elegant way of designing RF matching networks, especially at
higher frequencies.

Problems

6.1. Using the Q matching technique, find an equivalent parallel network to the serial connection of
RS = 5Ω and LS = 2.8 nH at f = 100 MHz.

6.2. Design a single-stage LC matching network between a source with RS = 5Ω and load RL = 50Ω
termination at f = 100 MHz. An additional condition is to maintain a DC connection between the
source and load sides.

6.3. Using the results from Problem 6.2, find reflection coefficient Γ and mismatch loss ML at the
interface between the serial and parallel parts of the matching network.

6.4. Using the results from Problem 6.2, estimate the 3 dB bandwidth, assuming a symmetrical
network.
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6.5. Using the results from Problem 6.3, if the input signal changes to f = 80 MHz, recalculate Γ and
ML. Can you comment on the results?

6.6. Using the results from Problem 6.3, If the input signal changes to 0.2 GHz, recalculate Γ and
ML. Can you comment on the results?

6.7. Design a single-stage LC matching network when parasitic inductance LS exists in series with
the source resistance RS, where: RS = 5Ω, RL = 50Ω, LS = 0.93 nH, and f = 0.85 GHz.

6.8. Design a single-stage LC matching network when parasitic capacitance CL exists in parallel with
the load resistance RL, where RS = 5Ω, RL = 50Ω, CL = 20 pF, and f = 0.1 GHz.

6.9. Match 5 Ω source resistance to 50 Ω load resistance at 200 MHz. Use a two-stage LC matching
network with low-pass–high-pass filter combination. The goal is to increase the bandwidth relative to
the single-stage LC matching network solution.

6.10. Match source resistance of 5 Ω to load resistance of 50 Ω at 200 MHz. Use a two-stage LC
matching network. The goal is to decrease the bandwidth relative to the single-stage LC matching
network solution. Make your own choice, and justify it, of temporary resistance Rtmp.

6.11. Antenna impedance is assumed to be resistive 50 Ω. An RF amplifier is tuned at 665 kHz and
has input impedance of Zin = 2kΩ. Design two possible matching networks using the Q matching
technique and comment on differences between the two solutions.

6.12. Using the parasitic absorption method, match a source impedance of ZS = (50+ j100)Ω to a
load impedance of ZL = (1,000− j750)Ω (the capacitor is in parallel with RL) at 100 MHz.

6.13. Using the parasitic resonance method, match a source resistance of RS = 50Ω to a load
impedance that consists of CL = 10 pF in parallel with RL = 500Ω at 100 MHz. The matching circuit
should maintain a DC connection from the input to the output.



Chapter 7
RF and IF Amplifiers

Abstract After a weak radio frequency (RF) signal has arrived at the antenna, it is channeled to the
input terminals of the RF amplifier through a passive matching network. As we learned in Chap. 6,
the matching network enables maximum power transfer of the receiving signal by equalizing the
antenna impedance with the RF amplifier input impedance. After that, it is job of the RF amplifier to
increase the power of the received signal and prepare it for further processing. In the first part of this
chapter, we review the basic principles of linear baseband amplifiers and common circuit topologies.
In the second part of the chapter, we introduce RF and IF amplifiers. In order to clarify the difference
between RF and IF amplifiers, we need to know that in most radio receiver topologies the incoming
high-frequency signal is not shifted down to the baseband in a single step. Instead, for reasons that we
discuss in detail in Chap. 9, frequency down-shifting inside radio receivers is usually done in one or
more intermediate steps. RF amplifiers used at those lower frequencies are referred to as intermediate
frequency (IF) amplifiers. Aside from their operating frequency, for all practical purposes, there is not
much difference between the schematic diagrams of RF and IF amplifiers. In this book, unless we
need to specifically separate the two functions, we refer to all tuned amplifiers as RF amplifiers.

7.1 General Amplifiers

The topic of linear baseband amplifiers is usually covered in introductory undergraduate courses in
electronics, thus there is a large number of excellent textbooks available with thorough treatments
of the subject, some of them listed in the reference section. Assuming that the reader is familiar
with basic concepts in electronics, in this book, we introduce the “back-of-the-envelope” approach to
circuit analysis with the intent of encouraging the reader to start developing intuition for circuits and
to start developing mental skills of circuit analysis. Indeed, even though the “back-of-the-envelope”
approach, which is often based on very rough approximations, leads to conclusions that are sometimes
an order of magnitude from the “correct” numerical solution, its usefulness is in enabling the circuit
designer to focus on the underling principles of circuit operation instead of on the fine and tedious
numerical details. As a result, the amount of time spent reaching correct conclusions is often measured
in seconds. By practicing mental analysis of circuits, designers eventually develop their intuition for
the underlying principles and an ability to immediately spot possible problems and circuit limitations,
which is the bedrock of innovation and creativity. Indeed, the machines and simulators still cannot
solve problems and improve existing solutions: they merely produce numbers that may or may not
have anything to do with the problem at hand. Until we reach the age of intelligent machines, our
brain is still the only tool we have that is capable of creative reasoning.

R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits
and Design Techniques, DOI 10.1007/978-1-4614-1117-8 7,
© Springer Science+Business Media, LLC 2012
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The other point in support of mental analysis approach is that the very notion of a “correct” answer
is often fuzzy. The point is that a circuit’s internal states keep changing in both the time and frequency
domains. That is, before the signal processing operation is finished, the circuit’s internal voltage
and current levels have changed many times. Therefore, it is valid to ask which of the states is the
“correct” one. The answer is “all of them” and that is why numerical simulators are useful. They
enable designers to observe the ever-changing internal states of the circuit, which would have been
too much numerical information for our brains to handle. Hopefully, I have succeeded in convincing
you, the reader, that in order to be practical engineers, we have to be fluent both in intuitive reasoning
and in the use of numerical methods that help us to quantify our intuitive conclusions.

7.1.1 Amplifier Classification

A simple, general classification of amplifiers is done in respect of the nature of their input and output
signals. In the world of electronic circuits, the signals are in the form of either voltage or current. Keep
in mind though that voltage and current are not two independent variables that you could separate
at your will. Instead, they are two representations of the same phenomenon, i.e., the position of
the charge carriers in time and space. At the highest level of abstraction, the relationship between
voltage and current is described by Maxwell’s equations, which also include media where the charges
are located. Kirchhoff’s and Ohm’s laws are simply the low-frequency approximations of Maxwell’s
equations derived under the assumption that wavelength λ of the signal being observed is much longer
than the distance d it needs to travel, i.e., λ � d.

Students often ask how they should decide whether to use the voltage or current signal. In fact,
deciding whether to process a signal in the form of voltage or current is a venture by itself and,
except in the purely abstract mathematical world, there is no such thing as a pure voltage amplifier
or a pure current amplifier, or any other “pure” signal-processing circuit for that matter. Instead, we
approximate a circuit function as “a voltage amplifier” or “a current amplifier” based on the circuit
characteristics, e.g. input and output impedances.

From the purely mathematical perspective, the function of an ideal linear amplifier is written as

y(x(t)) = K x(t), (7.1)

where x(t) is the time-dependent signal variable that is presented at the amplifier’s input terminals,
y(x(t)) is the time-dependent variable at the amplifier’s output terminals, and K is the multiplication
factor between the x(t) and y(t) variables, which is called gain. Strictly speaking, although the word
“gain” implies a number larger than one, gain K can take any value, i.e., −∞ ≤ K ≤ ∞. Negative gain
indicates that variables x and y have opposite phase while their amplitude relation is still controlled
by the absolute value of K. Although gain less than one, i.e., y < x, is sometimes referred to as loss,
the term gain assumes both “gain” and “loss”. Additionally, in (7.1) it is assumed that K is constant,
which translates into y(x) being a linear function. We will review this particular assumption a number
of times.

In the material world, the two abstract variables (x,y) are given physical meaning. Electronic
amplifiers have two sets of terminals, i.e., the input and the output, that are capable of accepting
two forms of signal, i.e., voltage and current, hence there are only four possible amplifier variants:

• Voltage amplifier: A circuit is classified as a “voltage amplifier” if the voltage signal vin at its input
causes a proportional voltage signal vout at its output, with the circuit’s input–output (I/O) transfer
function as vout = Av vin, where the multiplication constant Av is referred to as the “voltage gain”
in units of [V/V ](or in dB).
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Fig. 7.1 An ideal voltage amplifier (left) and a realistic voltage amplifier connected with the input signal source and the
output load (right). In order to distinguish a voltage source, which is a two-terminal device, from a voltage-controlled
voltage source, which is a four-terminal device, it is a convention to use the diamond-shaped symbol instead of the
circular shape

• Current amplifier: A circuit is classified as a “current amplifier” if the current signal iin at its input
causes a proportional current signal iout at its output, with the circuit’s I/O transfer function as
iout = Ai iin, where the multiplication constant Ai is referred to as the “current gain” in units of [A/A]
(or in dB).

• Transconductance amplifier: A circuit is classified as a “transconductance (Gm) amplifier” if the
voltage signal vin at its input causes a proportional current signal iout at its output, with the circuit’s
I/O transfer function as iout = Gm vin, where the multiplication constant Gm is referred to as the
“voltage to current gain” in units of siemens (S = A/V = 1/Ω). The accepted convention is to use
Gm to indicate transconductance of a circuit, e.g. an amplifier, and gm to indicate transconductance
of a single device, e.g. a BJT.

• Transresistance amplifier: A circuit is classified as a “transresistance amplifier” if the current
signal iin at its input causes a proportional voltage signal vout at its output, with the circuit’s I/O
transfer function as vout = AR iin, where the multiplication constant AR is referred to as the “current
to voltage gain” in units of ohms (Ω = V/A). A trivial example of a transresistance amplifier is a
linear resistor, vR = RiR.

By combining these four possible ideal amplifying functions, we are able to both synthesize and
analyze any complicated multi-stage amplifying circuit that may be optimized to process either the
voltage or the current form of signals, or even to keep switching the signal form along the way. As a
first step in moving from the ideal mathematical concept of amplifiers into the real world, we need to
take a closer look at the characteristics of each of the four ideal amplifiers and the consequences of
interfacing them with the signal source and the subsequent loading stages. For the sake of simplicity, in
the following discussion we assume that amplifiers operate properly regardless of the signal frequency,
hence we use the terms “resistance” and “impedance” interchangeably.

7.1.2 Voltage Amplifier

A functional symbol of an ideal voltage amplifier, Fig. 7.1 (left), shows the literal implementation of
(7.1), which is based on an ideal voltage-controlled voltage source (VCVS) element whose voltage
gain is Av. Voltage gain Av is, by definition, measured in [V/V ] or, more often, in dB.

Important characteristics of an ideal voltage amplifier to observe are as follows: Beginning from
the left of the ideal voltage amplifier symbol, any voltage vin presented at the input terminals outside
the amplifier is immediately transferred inside the amplifier without any loss or change. The lack
of any components on the input terminals indicates that the input impedance Zi of the ideal voltage
amplifier is equivalent to an open connection. To put it in technical terms, the input impedance of the
ideal voltage amplifier is Zi =∞, which is another way of saying that the input current is iin = vin/Zi =
vin/∞ = 0.
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On the right of the ideal voltage amplifier, the output voltage vout is generated by the internal VCVS
that simply takes the input voltage value vin as seen at the internal nodes of the amplifier and multiplies
it by the multiplication constant Av = vout/vin. Thus, as we learned in Sect. 4.1.2, because the internal
impedance of an ideal voltage source is zero the output impedance of the ideal voltage amplifier in
Fig. 7.1 (left) must also be zero, i.e., Zo = 0 (looking into the output terminals of the ideal voltage
amplifier, VCVS is the only element connected).

An element or circuit aspiring to be classified as a “voltage amplifier” must be as close as possible
to the ideal model (Fig. 7.1 (left)). The criteria for quantifying the success of this aspiration are:

• The input impedance Zi has to be very high, ideally infinite.
• The output impedance Zo has to be very low, ideally zero.
• The voltage gain Av has to be uniquely defined and constant.

To develop a sense of how closely and under what conditions any circuit could reach the ideal
voltage amplifier model, let us take a look at the realistic amplifier model in Fig. 7.1 (right). The
amplifier’s input resistance is explicitly modelled by resistor Ri and the output VCVS is connected in
series with resistor Ro. A careful reader should easily recognize that, under conditions of Ri → ∞ and
Ro → 0 the real voltage amplifier model, Fig. 7.1 (right), degenerates into the ideal voltage amplifier
model, Fig. 7.1 (left). Following the same idea, the input signal source (i.e., the driver) is modelled as
an ideal voltage source vS in series with a non-zero resistance RS > 0. The loading circuit (i.e., the
load) that receives the amplifier’s output signal vout is modelled only by its input impedance, a simple
load resistor RL.

Our main concern is to quantify the relationship between the output voltage vout and the source
voltage vS, i.e., to find out how the voltage gain Av = vout/vS is influenced by the combination of
the non-ideal driver, the non-ideal amplifier, and the load. The following analysis is very general
and should be used as the foundation for establishing circuit analysis skills for any case of interface
between a voltage source and a load. Even a casual reader should immediately recognize the
application of the voltage divider concept that was introduced in Sect. 4.1.9.1.

At the input side of the amplifier, there is a voltage divider created by the voltage source vS, source
resistance RS, and the amplifier’s input resistance Ri. Therefore, the portion of the source signal level
vS that is transferred to the amplifier’s internal nodes vin (and subsequently multiplied by gain Av) is
calculated as

vin = iin Ri =
vS

RS +Ri
Ri, ∴ A′

v =
vin

vS
=

Ri

RS +Ri
=

1
RS
Ri

+ 1
, (7.2)

where A′
v is the voltage gain of the input voltage divider itself. While keeping in mind our main

goal with this circuit, i.e., to efficiently transfer the source voltage signal into the amplifier with
no attenuation, let us for a moment take a closer look at what happened at this interface. Non-zero
impedances at the source side created a resistive voltage divider (RS,Ri) that caused a proportional
reduction in the source signal vS on its way to the amplifier’s internal nodes. We need to determine
the severity of this attenuation and conclude under what conditions the voltage signal transfer is ideal,
i.e., lossless.

With passive components, the best that we can hope for is to transfer the full source signal level vS

to the inside of the amplifier, i.e., to achieve vin = vS (or equivalently, A′
v = 1). By inspection of (7.2),

we easily conclude that there are two conditions that would lead to vin = vS, the first one being

lim
RS→0

A′
v =

1
0
Ri
+ 1

= 1, (7.3)
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that is, if a real voltage amplifier (the one whose input impedance is 0< Ri <+∞) is driven by an ideal
source signal generator (the one whose source impedance is RS = 0) then the input voltage divider
degenerates into a single resistor Ri driven by the ideal voltage source vS, hence there is no voltage
attenuation. The second limiting case is,

lim
Ri→∞

A′
v =

1
RS
∞ + 1

= 1, (7.4)

which means that if an ideal voltage amplifier (the one whose input impedance is Ri = ∞) is driven by
a real voltage source (the one whose source impedance is 0 < RS < +∞), we again achieve lossless
voltage transfer across the input voltage interface.

The two conditions for perfect voltage transfer at the source side (7.3) and (7.4) can be combined
by stating that a voltage amplifier must have large input impedance relative to the signal source
impedance, i.e.,

Ri � RS. (7.5)

As a side note, while we are on this topic, note that under the condition of matched impedances
Ri = RS, the voltage gain is A′

v = 1/2, which means that only half of the input voltage is transferred
through matched networks. Remember that it means only a quarter of the signal power is transferred
due to the P = f (V 2) relationship.

We can now move our focus to the output terminals of the amplifier, Fig. 7.1 (right). The output
voltage divider consists of the amplifier’s output impedance Ro and the load impedance RL, and it is
driven by an ideal voltage source that generates vo = Av vin output signal. Note that the signal vo is
internal to the amplifier, hence our main concern is to determine what percentage of it reaches the
terminals of the load resistor RL. It is straightforward to write

vout = iout RL =
Av vin

Ro +RL
RL, ∴ A′′

v =
vout

vin
= Av

RL

Ro +RL
= Av

1
Ro
RL

+ 1
, (7.6)

where A′′
v is the voltage gain of the output voltage divider. Again, non-zero impedances at the load

side create a resistive voltage divider which causes proportional reduction of the output signal vo on
its way to the load terminals.

By inspection of (7.6), we easily conclude that there are two conditions that would lead to vout =
Av vin, the first being

lim
Ro→0

A′′
v = Av

1
0

RL
+ 1

= Av, (7.7)

that is, zero output impedance Ro is required if an amplifier is to maximize voltage transfer at its
output side. The second limiting case is,

lim
RL→∞

A′′
v = Av

1
Ro
∞ + 1

= Av, (7.8)

which means that if an infinitely large loading impedance is attached to a real amplifier, we have again
achieved lossless voltage transfer across the output voltage interface. The physical interpretation of
this condition is that the amplifier is disconnected from the load. Surprisingly, this mistake is often
made by junior designers while trying to maximize the gain of their new amplifiers—watch out for it.
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Fig. 7.2 An ideal current amplifier (left) and realistic current amplifier connected with the input signal source and the
output load (right). In order to distinguish a current source, which is a two-terminal device, from a current-controlled
current source, which is a four-terminal device, it is a convention to use the diamond-shaped symbol instead of the
circular shape

The two conditions for perfect voltage transfer at the load side (7.7) and (7.8) can be combined
by stating that a voltage amplifier must have much smaller output impedance than the load
impedance, i.e.,

RL � Ro. (7.9)

It is educational to put together conditions (7.2) and (7.6) and take a look at the total gain that can
be achieved with a real source, a real amplifier, and a real load chain. The two gains A′

v and A′′
v follow

each other, thus the total gain Av from the source to the load terminals is their product

Av =
vout

vs
= A′

v A′′
v =

Ri

RS +Ri
Av

RL

Ro +RL
, (7.10)

which clearly shows the three terms contributing to the total gain of a real amplifier. The first and third
terms show attenuation caused by the input and output voltage dividers, and each is less than one. The
second term is the only term possibly larger than one, and it represents the maximum possible voltage
gain that could be achieved under the ideal condition of zero loss at the input and output terminals. The
last statement, which in plain language summarizes (7.10), is the first key to our ability to mentally
evaluate the effectiveness of voltage amplifiers and the appropriateness of processing the signal in
voltage form. Without knowing the actual values of resistances Ri, RS, and RL, while analyzing voltage
amplifiers, we can still make the ideal voltage amplifier approximation and evaluate the best possible
case, by assuming high input impedance and low output impedance of the voltage amplifier.

In our quest to work out what types of circuit qualify as a voltage amplifier, we have concluded that
low signal source impedance, high amplifier input impedance, low amplifier output impedance, and
high load impedance together define a voltage amplifier. In short, (7.5) and (7.9) state that a voltage
amplifier must have its input impedance much larger than the source impedance and at the same time it
must have its output impedance much lower than the load impedance. Depending how closely a circuit
reaches these conditions, we quantify how good a voltage amplifier it is. As good as these conditions
are for enabling efficient voltage transfer and amplification, note that we simply ignored the fact that
power transfer, under the ideal voltage transfer conditions, is zero. Our crudest approximations help
us perform circuit analysis in our heads but we fall for the ideal voltage amplifier model; we must
keep in mind the total picture regarding power transfer.

7.1.3 Current Amplifier

A functional symbol of an ideal current amplifier, Fig. 7.2 (left), shows the literal implementation of
(7.1), which is based on an ideal current-controlled current source (CCCS) element whose current
gain is Ai, which is, by definition, measured in [A/A] or, more often, in dB.
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Ii is important to observe the following characteristics of an ideal current amplifier. Beginning at the
left of the ideal current amplifier symbol, any input current iin presented at the input terminals outside
the amplifier is immediately transferred to inside the amplifier without any loss or change. A short
connection at the input terminals indicates that the input impedance Zi of an ideal current amplifier is
equivalent to a short connection. To put it in technical terms, the input impedance of the ideal current
amplifier is Zi = 0, which is another way of saying that the input voltage is vin = iin Zi = iin × 0 = 0.

At the right of the ideal current amplifier symbol, the output current iout is generated by the CCCS,
which simply takes the value of the input current iin as seen at the internal branch of the amplifier and
multiplies it by the multiplication constant Ai = iout/iin. Thus, as we learned in Sect. 4.1.3, because
the internal resistance of an ideal current source is infinite, the output resistance of an ideal current
amplifier is also infinite, i.e., Ro = ∞ (looking into the output terminals, CCCS is the only element
connected and its impedance is infinite).

Overall, an element or circuit aspiring to be called a “current amplifier” must be as close as possible
to the ideal current amplifier model, Fig. 7.2 (left). The criteria for quantifying the success of this
aspiration are:

• The input impedance Ri has to be zero.
• The output impedance Ro has to be infinite.
• The current gain Ai has to be uniquely defined and constant.

Following the same analytical steps as in Sect. 7.1.2, we derive conditions required for the efficient
transfer of the source current signal iS to the output current iout entering the load. A realistic current
source is modelled using its equivalent Norton model, hence we include resistances RS and Ro, as
shown in Fig. 7.2 (right). Again, we easily recognize that, under conditions of Ri → 0 and Ro → ∞,
the real current amplifier model, Fig. 7.2 (right), degenerates into the ideal current amplifier model,
Fig. 7.2 (left).

Similarly to the voltage amplifier circuit network, which was analyzed by using a voltage divider
model, we recognize that there is current divider created at the input terminals of a realistic current
amplifier that is driven by a realistic current source, Fig. 7.2 (right), where a non-zero input voltage
vin develops across the input resistance Ri (which is also across RS||Ri). Therefore, by inspection we
write

is =
vin

Ri||RS
=

RS +Ri

RS

vin

Ri
=

RS +Ri

RS
iin, ∴ A′

i =
iin
iS

=
RS

RS +Ri
=

1

1+ Ri
RS

, (7.11)

where A′
i is the current gain of the input current divider. We keep in mind that our main goal

is to efficiently transfer the source current signal into the amplifier with no attenuation. Non-zero
impedances at the source side create a resistive current divider, which causes a proportional reduction
of the current signal iS on its way to the amplifier’s internal nodes. Again, we need to determine the
severity of this attenuation and conclude under what conditions the current signal transfer is ideal.

The minimum current signal loss condition translates into iin = iS (or equivalently, A′
i = 1). By

inspection of (7.11), we easily conclude that there are two conditions that lead to lossless current
transmission through the input side amplifier terminals, the first being

lim
Ri→0

A′
i =

1

1+ 0
RS

= 1, (7.12)

that is, if an ideal current amplifier (one whose input impedance is Ri = 0) is driven by a real current
source signal generator (one whose source impedance is 0 < RS < ∞) it means that there is no current
attenuation, i.e., the complete source current iS flows into the amplifier. The second limiting case is,
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lim
RS→∞

A′
i =

1

1+ Ri
∞

= 1, (7.13)

which means that if a real current amplifier (one whose input impedance is 0 < Ri < ∞) is driven by
an ideal current source (one whose source impedance is RS = ∞), we again achieve lossless current
transfer through the input current interface. The two conditions for perfect current transfer at the
source side, (7.12) and (7.13), can be combined by stating that a current amplifier must have small
input impedance relative to the signal source impedance, i.e.,

Ri � RS. (7.14)

Similarly, by inspection of the current amplifier’s output terminals, Fig. 7.2 (right), it is straightfor-
ward to write

iout =
Ro

Ro +RL
Ai iin, ∴ A′′

i =
iout

iin
= Ai

Ro

Ro +RL
= Ai

1

1+ RL
Ro

, (7.15)

where A′′
i is the current gain of the output current divider. Non-zero impedances at the load side creates

a resistive current divider that causes proportional reduction of the output current iout on its way to the
load terminals.

By inspection of (7.15), we can easily write the two conditions that would lead to iin = Ai iout,

lim
RL→0

A′′
i = Ai

1

1+ 0
Ro

= Ai, (7.16)

lim
Ro→∞

A′′
i = Ai

1

1+ RL
∞

= Ai, (7.17)

that is, either infinite output impedance Ro or zero load impedance is required if an amplifier is to
maximize the current transfer at its output side.

The two conditions for perfect current transfer at the load side, (7.16) and (7.17), can be combined
by stating that a current amplifier must drive a small load impedance relative to its own output
impedance, i.e.,

RL � Ro. (7.18)

We now put together the conditions (7.11) and (7.15) and take a look at the total current gain that
can be achieved with a real source, a real amplifier, and a real load chain. The total gain Ai from the
source to the load terminals is

Ai =
iout

is
= A′

i A′′
i =

RS

RS +Ri
Ai

Ro

Ro +RL
, (7.19)

which clearly shows how the three terms contribute to the total gain of a real amplifier. The first
and third terms show attenuation caused by the input and the output current divider, and each is less
than one. The second term is the only term possibly larger than one, and it represents the maximum
possible current gain that could be achieved under the ideal condition of zero loss at the input and
output terminals. The last statement, which in plain language summarizes (7.19), is the second key to
our ability to evaluate the effectiveness of current amplifiers and the appropriateness of processing the
signal in current form.
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Fig. 7.3 An ideal transconductance (Gm) amplifier (left) and a realistic transconductance amplifier connected with
input signal source and output load (right)

To summarize this section, we have concluded that high source impedance, low amplifier input
impedance, high amplifier output impedance, and low load impedance together define a current
amplifier. In short, (7.14) and (7.18) state that a current amplifier must have its input impedance much
smaller than the source impedance and at the same time it must have its output impedance much larger
than the load impedance. Depending how closely a circuit reaches these conditions, we quantify how
good a current amplifier it is. We should note that we simply ignored the fact that power transfer,
under the ideal current transfer conditions, is also zero. As with the ideal voltage amplifier, the crude
approximation of the ideal current source helps us to perform mental circuit analysis.

7.1.4 Transconductance Amplifier

By definition, a transconductance (Gm) amplifier converts the input voltage signal vin into the output
current signal iout, and it looks as if we took the input stage of a voltage amplifier and merged it with
the output stage of a current amplifier. A functional symbol of an ideal Gm amplifier, Fig. 7.3 (left),
shows the literal implementation of (7.1), which is based on an ideal voltage-controlled current source
(VCCS) element whose current gain is Gm, measured in siemens (S), or electrical conductance that is
derived as A/V = 1/Ω.

All the comments and conclusions that we have made about the input side of a voltage amplifier
and about the output side of a current amplifier in the previous sections of this chapter still apply,
which simplifies our analysis of this kind of amplifier.

By combining results in (7.2)–(7.19), we can write directly an expression for a real Gm amplifier
gain as

Gm =
iout

vs
=

Ri

Ri +RS
Gm

Ro

Ro +RL
(7.20)

and state that, in order to make an amplifier that would efficiently control the output current signal
by the means of the input voltage signal, we need to make its input impedance much larger than the
source impedance, i.e., Ri � RS and, at the same time, make its output impedance much larger than
the load impedance, i.e., Ro � RL. That is, an element or circuit aspiring to be called a “Gm amplifier”
must be as close as possible to the ideal model, Fig. 7.3 (left). The criteria for quantifying the success
of this aspiration are:

• The input impedance Ri has to be infinite.
• The output impedance Ro has to be infinite.
• The transconductance gain Gm has to be uniquely defined and constant.
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Fig. 7.4 An ideal transresistance (AR) amplifier (left) and a realistic transresistance amplifier connected with input
signal source and output load (right)

To illustrate how the important Gm stage is for the design of electronic circuits, let us just note
that a single MOSFET transistor device is as close to the ideal gm

1 stage as our technology allows.
We remember that FET devices have extremely high input impedance (of the order of MΩ ) and that,
in active mode, the drain current iD is controlled by the overdrive voltage at the input side vOV =
(vGS −Vth), where VGS is the gate–source voltage and Vth is the threshold voltage. That is, a FET
device is a literal implementation of the transconductance gain definition, iD = gm vOV.

7.1.5 Transresistance Amplifier

The fourth kind of amplifier is a transresistance (AR) amplifier that, by definition, converts the input
current signal iin into the output voltage signal vout. It looks as if we took the input stage of a current
amplifier and merged it with the output stage of a voltage amplifier. A functional symbol of an ideal
AR amplifier, Fig. 7.4 (left), shows the literal implementation of (7.1), which is based on an ideal
CCVS element whose current gain is AR. The transresistance gain AR is, by definition, measured in
[V/A], i.e., in Ω.

As you have already guessed, the comments and conclusions that we have made about the input
side of a current amplifier and the output side of a voltage amplifier in the previous sections of this
chapter still apply.

By combining the results in (7.2)–(7.19), we can directly write an expression for a real AR amplifier
gain as

AR =
vout

is
=

RS

Ri +RS
AR

RL

Ro +RL
(7.21)

and state that, in order to make an amplifier that efficiently controls the output voltage signal by
means of the input current signal, we need to make its input impedance much lower than the source
impedance, i.e., Ri � RS and, at the same time, to make its output impedance much smaller than the
load impedance, i.e., Ro � RL. That is, an element or circuit aspiring to be called a “transresistance
amplifier” must be as close as possible to the ideal model, Fig. 7.4 (left). The criteria for quantifying
the success of this aspiration are:

• The input impedance Ri has to be zero.
• The output impedance Ro has to be zero.
• The transresistance gain AR has to be uniquely defined and constant.

1We use the lower case “g” in gm to indicate transconductance of a single device, as opposed to Gm for the full circuit.
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The last circuit concludes our review of general amplifier types and completes the set of equations,
(7.10), (7.19), (7.20), and (7.21) that we are going to use in the rest of the book along with our
knowledge of resistive voltage dividers as a foundation for our mental circuit analysis skills.

Our first decision on how to classify a circuit as one of the four general amplifier types is based
solely on evaluation by inspection and considering an ideal case of signal transfer. In the second pass,
we use simple manual calculations. Finally, in the third pass, we use numerical simulators to quantify
and confirm our initial estimates. A note of caution is in order: models used in this section still do not
include frequency-dependent behaviour. However, if we keep in mind that in most cases resistances
could be interpreted as impedances at a single frequency point, then the usefulness of the simplified
models is preserved.

7.2 Single-Stage Amplifiers

In Sect. 7.1, we considered idealized amplifying functions from the most abstract perspective. Our
goal was to determine how the external parameters influence the overall amplifier behaviour and to
derive general rules of circuit interaction with the external world. It turns out that knowing the input
and output impedances, the source and load impedances, and the internal gain factors is sufficient
to specify conditions for four possible ways of amplifying the input signal. The exact details of the
circuit’s internal structure and the ways it may be implemented did not play any role in the analysis.

In this section, we continue to search for efficient ways of analyzing commonly used realistic
amplifying circuits at the transistor level and of establishing practical rules and procedures for the
mental analysis of amplifying circuits. Hence, we analyze the three main single-transistor amplifier
topologies, i.e., common base (or common gate), common emitter (or common source), and common
collector (or common drain), shown in Fig. 7.5, using both BJT and FET devices. In order to further
develop our intuitive understanding of circuit operation, for each of the three single-stage amplifiers,
we first derive the same sets of parameters as in Sect. 7.1, then we apply approximations and simplify
the derived results so that we can easily apply them while doing circuit analysis “by inspection”.

7.2.1 Common-Base Amplifier

We first analyze the common-base (CB) amplifier configuration, Fig. 7.6, in terms of its input
resistance Ri, output resistance Ro, and voltage or current gain. The approach is based on treating
a BJT as a “black box” and describing its properties strictly by observing the voltage and current
relationships at each of its terminals. For the sake of simplicity, we do not show details of the amplifier
biasing network: the transistor is assumed to be biased in the forward gain mode. A three terminal
T-model is assumed (see Sect. 4.3.4.1).

Fig. 7.5 Basic single-stage amplifiers: common gate (left), common emitter (centre), and common collector (right).
Details of biasing are not shown, i.e., the ground symbols are small signal grounds
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Fig. 7.6 Basic
single-stage CB amplifier:
It is driven by a voltage
source vS, whose internal
resistance is RS, and it
drives resistive load RL

Fig. 7.7 Equivalent
voltage divider schematics
for a CB amplifier, looking
into the input resistance
(left) and the output
resistance (right)

7.2.1.1 Input Resistance

By definition, the input current ie, shown in Fig. 7.7 (left) is calculated as

ie =
vS

RS +Ri
, (7.22)

where Ri is the input resistance looking into the emitter node.
Assume that by looking into the emitter terminal, we see resistance Re, by looking into the base

terminal, we see resistance Rb, and by looking into the collector terminal, we see resistance Rc, then
there are two voltage loops, on the input side and on the output side, whose KVL equations are

vS = ie(RS +Re +Rb)− icRb, (7.23)

0 = ic(RB +RC+RL)− ieRB −αie RC, (7.24)

where ie is the current entering the emitter terminal in the input branch and ic is the current leaving
the collector terminal in the output branch. Also, we use the simple relationships for BJT terminal
currents:

ie = ib + ic, (7.25)

ic = αie, (7.26)

ic = β ib. (7.27)

Calculating current ic from (7.24) and its substitution in (7.23) results in

ie =
vS

RS +Re+Rb − Rb(Rb+αRc)
Rb+Rc+RL

. (7.28)

From (7.22) and (7.28), it follows that

Ri = Re +Rb − Rb(Rb +αRc)

Rb +Rc +RL
. (7.29)
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Fig. 7.8 Input resistance
of a common-base
amplifier as a function of
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typical case of Re = 25 Ω,
Rb = 300 Ω, and β = 100

Expression (7.29) shows that the input resistance Ri, under constant DC conditions, depends on
the loading resistance RL (see Fig. 7.8). To find out how large the spread of the Ri value is, we push
(7.29) to two extremes: zero loading resistance, i.e., shorted output; and infinite loading resistance,
i.e., removed load.

For RL = 0, (7.29) becomes

Ri = Re +Rb − Rb(Rb +αRc)

Rb +Rc
, (7.30)

which can be evaluated as follows. In BJT forward-bias mode, collector resistance Rc is much higher
than the base resistance, i.e., Rc � Rb and, because α ≈ 1, also αRc � Rb, which further simplifies
(7.30) into

Ri = Re +Rb − Rb(αRc)

Rc
= Re +Rb (1−α) = Re +

Rb

β
≈ Re (7.31)

for medium values of Rb and large values of β . Result (7.31) is very useful for our mental circuit
analysis, because it is safe to say that, for low resistance loads, the input resistance of a CB amplifier is
simply the emitter resistance, which is very low, e.g. if BJT is biased at ic = 1 mA at room temperature,
then Re ≈ 25 Ω.

For the case of open load, i.e., RL → ∞, (7.29) becomes simply

Ri = Re +Rb ≈ Rb, (7.32)

that is, the input resistance is increased a bit, relative to the case of shorted output. At this stage, we can
only take typical values for Re and Rb and quantify the input resistance. For example, if BJT is biased
at ic = 1 mA at room temperature, then Re ≈ 25Ω, while for small transistors the base resistance is of
the order of a few hundred ohms, say Ri ≈ Rb = 300Ω (Fig. 7.8).
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7.2.1.2 Output Resistance

Referring to Fig. 7.7 (right), the output resistance Ro appears in the expression for the output current,
which is the collector current iC as

iC =
vo

RL +Ro
, (7.33)

where vo is the equivalent output voltage generated by the CB stage at the collector terminal. We start
again with (7.24) and write

ie =
RC +RB+RL

RB +RC
ic, (7.34)

which after substitution into (7.23) and a bit of rearranging of the terms, yields

ic =
Rb+αRc

Rs+Re+Rb
vS

RL +Rb +Rc − Rb(Rb+αRc)
RS+Re+Rb

(7.35)

then, by comparison of (7.33) and (7.35), it follows that

Ro = Rc +Rb − Rb(Rb +αRc)

RS +Re +Rb
, (7.36)

which shows that the output resistance depends on the source resistance. We find out how severe is
this dependence by pushing (7.36) to two extremes: one for the ideal voltage source, i.e., RS = 0, and
one for the ideal current source, i.e., RS = ∞. For the zero source resistance, (7.36) becomes

Ro = Rc +Rb − Rb(Rb +αRc)

Re +Rb
= Rc +Rb

(Re +Rb)− (Rb +αRc)

Re +Rb

= Rc +Rb
Re −αRc

Re +Rb
= Rc +

Rb Re

Re +Rb
− Rb αRc

Re +Rb

≈ Rc − Rb αRc

Re +Rb
= Rc

(Re +Rb)−Rbα
Re +Rb

= Rc
Re +Rb(1−α)

Re +Rb
(7.37)

because (Rb Re)/(Re +Rb) = Rb||Re < Re � Rc, and hence can be neglected relative to the collector
resistance Rc. The ratio in the last term of (7.37) depends on the small percentage of the base resistance
Rb, which is comparable with the emitter resistance Re, i.e., it stands for a relatively small number
divided by a number that is a bit larger, hence it should stay. As a quick estimate, let us use Re = 25Ω,
Rb = 300Ω, β = 100, and Rc = 1MΩ; then, from (7.37), we calculate Ro ≈ 100kΩ (Fig. 7.9).

At the other extreme, RS → ∞, expression (7.36) is simply reduced to

Ro = Rc +Rb ≈ Rc, (7.38)

which, for our numerical example gives Ro ≈ 1MΩ. That is, depending on the source resistance or
the output resistance may change by a factor of ten (Fig. 7.9).
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7.2.1.3 Voltage Gain

The voltage gain of a CB amplifier, Fig. 7.6, is written as

Av =
vout

vS
=

ic RL

vS
=

Rb+αRc
Rs+Re+Rb

RL

RL +Rb +Rc − Rb(Rb+αRc)
RS+Re+Rb

=
(Rb +αRc)RL

(Rs +Re +Rb)(RL +Rb +Rc)−Rb(Rb +αRc)
, (7.39)

where we substituted the expression for the collector current iC from (7.35); a plot of the voltage gain
is shown in Fig. 7.10.

A useful approximation is to assume large collector resistance, RC, i.e., αRC � Rb and RC � RL,
so that (7.39) becomes
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Fig. 7.11 A common-emit
-ter amplifier. For the sake
of simplicity the biasing
network is not shown,
therefore the ground
terminals are small signal
grounds

Av ≈ αRc RL

(Rs +Re +Rb)Rc −RbαRc

≈ RL

Rs +Re +
Rb

β

=
RL

RS +Ri
, (7.40)

after substituting the second-last form from (7.31). It is also very useful to note that for RS = 0, the
source voltage is VS = VBE for a BJT (Fig. 7.6), hence we have another useful expression for the
voltage gain as

Av =
vout

vBE
=

RL

Ri
, (7.41)

which indicates that, because the input resistance of a CB amplifier is typically very low, we need to
keep the source resistance high and drive the CB stage with a current signal. The loading resistance
also needs to be high.

7.2.2 Common-Emitter Amplifier

A basic common-emitter (CE) amplifier (no biasing details are shown, i.e., it is assumed to be in the
forward-gain active mode) is driven by a realistic voltage source vS with internal resistance RS (see
Fig. 7.11). Loading resistance is connected to the collector node, with the input and output branch
currents as indicated. Hence, the three current relationships are ie = ic + ib.

We will work out simplified expressions for the input resistance, output resistance, and voltage
gain.

7.2.2.1 Input Resistance

Using the same approach as in Sect. 7.2.1.1, for the input branch we can write that

ib =
vS

RS + ri
. (7.42)

For the input and output branch voltage loops (Fig. 7.11), the KVL equations are

vS = ib(RS + rb + re)+ icre, (7.43)

0 = ic(RL + rc + re)+ ibrb −αierc. (7.44)
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From (7.44), we can find an expression for the current gain β , after substituting ie = ic + ib, as

β =
ic
ib

=− re −αrc

RL + re + rc(1−α)
. (7.45)

The current gain β can be evaluated for the extreme values of the load RL. First, for RL = 0

β =− re −αrc

re + rc(1−α)
≈− α

1−α
≈− 1

1−α
, (7.46)

after assuming that αrc � re and α ≈ 1. This result shows the gain of the unloaded BJT; the negative
sign is because of the ic and ib current directions. At the other extreme, RL → ∞, the current gain, as
expected, drops to β = 0 (because infinite load means that ic = 0).

After substituting (7.46) into (7.43) and a bit of rearranging of the terms, we come to the following
expression

ib =
vS

RS + rb + re +
re(αrc−re)

RL+re+(1−α)rc

. (7.47)

After comparison with (7.42), it follows that

ri = rb + re +
re(αrc − re)

RL + re +(1−α)rc
, (7.48)

which, again, shows that the input impedance does depends on the load. We estimate how much the
input resistance changes by checking the two extreme cases of the load. In the case of shorted load,
i.e., RL = 0, (7.48) becomes

ri = rb + re +
re(αrc − re)

re +(1−α)rc
= rb + re

1
(1−α)

= rb +β re, (7.49)

which is an important result for us because it shows that the emitter branch resistance is mapped to
the input resistance after being multiplied by a factor of β . This is often known as the “emitter resistor
magnification factor” and it may easily become the dominant term (especially if there is an external
large emitter resistor RE in the emitter branch). Another important conclusion is that, for light loads,
the input resistance strongly depends on β (Fig. 7.12).

At the second extreme, RL → ∞, i.e., an unloaded CE amplifier, we have

ri = rb + re ≈ rb, (7.50)

which is constant. For a typical numerical example of re = 25Ω, rb = 300Ω, rc = 1MΩ, and β = 100,
dependence of the input resistance versus the load is shown in Fig. 7.12.

7.2.2.2 Output Resistance

The collector current of a CE amplifier (Fig. 7.11) is

ic =
vo

ro +RL
, (7.51)
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where vo is the internal BJT voltage source driving the BJT output resistance ro and the load RL.
From (7.43) and (7.44), after a bit of rearranging of the terms, we write the expression for collector
current as

ic =
αrc−re

RS+rb+re
vS

RL + re + rc(1−α)+ re(αrc−re)
RS+rb+re

, (7.52)

which, after comparing (7.51) and (7.52) yields

ro = re + rc(1−α)+
re(αrc − re)

RS + rb + re
. (7.53)

Therefore, the output resistance decreases as the source resistance RS increases. In order to estimate
the boundary values for the output resistance, we take a look at the two extremes of the source
resistance, RS = 0 and RS → ∞.

For RS = 0, (7.53) becomes

ro = re + rc(1−α)+
re(αrc − re)

rb + re

= rc(1−α)+ re
(rb + re)+ (αrc − re)

rb + re

= rc
re +(1−α)rb

rb + re
= rc

re +
rb

β
rb + re

≈ rc, (7.54)

which shows mild dependence on the β factor.
For RS = ∞, (7.53) becomes simply

ro = re + rc(1−α) = re +
rc

β
. (7.55)

For typical values of a BJT, we create the plot in Fig. 7.13, which shows that larger gain factors of β
mildly reduce the output impedance.
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7.2.2.3 Voltage Gain

The voltage gain of a CE amplifier is, by definition

Av =
vout

vS
=

icRL

vS
, (7.56)

hence, after substituting (7.52) into (7.56) we have

Av =

αrc−re
RS+rb+re

RL

RL + re + rc(1−α)+ re(αrc−re)
RS+rb+re

. (7.57)

Let us now take a look at a CE amplifier driven by an ideal voltage source RS = 0 and large loads
RL → ∞, i.e., RL � rc(1−α). That simplifies (7.52) as

Av =

αrc−re
rb+re

RL

RL + re + rc(1−α)+ re(αrc−re)
rb+re

=
(αrc − re)RL

(rb + re)(RL + re + rc(1−α))+ re(αrc − re)

≈ αrc RL

(rb + re)(RL)+ re αrc
=

αrc RL

rbRL + re(RL +αrc)

≈ αrc RL

rbRL + reRL
=

αrc

rb + re
≈ rc

rb + re
, (7.58)

where α ≈ 1 in the last approximation. Expression (7.58) is important to us because we see that,
for the ideal voltage source drive and large loads, it is safe to say that the voltage gain of the CE
amplifier is bounded by (i.e., is less than) the ratio of the collector resistance and emitter resistance
rc/re, which is a very useful result for quick estimates. For a set of typical device values, voltage gain
versus load is shown in Fig. 7.14.
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7.2.3 Common-Collector Amplifier

Using current notation in Fig. 7.15, the three terminal currents are related as:

ic = ie − ib. (7.59)

Accordingly, the KVL equations for the common-collector (CC) amplifier circuit in Fig. 7.15 are:

vS = ib(rb + rc +RS)+αierc − iere, (7.60)

0 = ie(rc + re +RL)−αierc − ibrc. (7.61)

Hence, from (7.61), we write an expression for the current gain of a CC amplifier

ie
ib

=
rc

rc + re +RL −αrc
=

rc

rc(1−α)+ re+RL
≈ 1

(1−α)
. (7.62)

For current signal transfer, the load needs to be small, that is, approximation rc(1−α) � RL,re is
appropriate for this case.

7.2.3.1 Input Resistance

Applying the same approach as in the previous sections, we write an expression for the base current as

ib =
vS

RS + ri
, (7.63)
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where ri is the circuit input resistance as seen by the source side. From (7.60) and (7.61), after
rearranging the terms, we write an expression for the base current as

ib =
vS

RS + rb + rc − r2
c (1−α)

rc(1−α)+re+RL

. (7.64)

By comparison of (7.63) and (7.64), we write the expression for the input resistance of a CC
amplifier as

ri = rb + rc − r2
c (1−α)

rc(1−α)+ re+RL
, (7.65)

which shows strong dependence on the collector resistance rc, in addition to its dependence on the
loading resistance.

Let us find out how much the input resistance changes under extreme conditions of the loading
resistance. In the case of the ideal source, RL = 0, i.e., shorted output, after applying approximation
re � rc(1−α), relation (7.65) becomes

ri = rb + rc − r2
c (1−α)

rc(1−α)+ re
= rb +

r2
c (1−α)+ rcre − r2

c(1−α)

rc(1−α)+ re

≈ rb +
re

1−α
= rb +β re, (7.66)

which is, as expected, the same result as we found for the CE amplifier (it is the same circuit from the
source side).

At the other extreme, for the case of a disconnected load, i.e., RL = ∞, the input resistance (7.65)
is simply

ri = rb + rc ≈ rc. (7.67)

For a typical BJT device, the input resistance of a CC amplifier changes as in Fig. 7.16.
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7.2.3.2 Output Resistance

The output current ie is generated by the internal device voltage vo that is driving its internal output
resistance ro and the load resistance RL, i.e.

ie =
vo

RL + ro
, (7.68)

where an expression for the emitter current is derived from (7.60) and (7.61) and arranged as

ie =
rc

rb+rc+RS
vS

RL + re + rc(1−α)− r2
c (1−α)

rb+rc+RS

. (7.69)

By comparison of (7.68) and (7.69), we conclude that the output resistance is

ro = re + rc(1−α)− r2
c (1−α)

rb + rc +RS
, (7.70)

which shows dependence on the source resistance. We will evaluate the influence of the source
resistance by considering the two extreme cases. For ideal source, RS = 0, we further write

ro = re +
rc(1−α)(rb + rc)− r2

c(1−α)

rb + rc

≈ re +
rc(1−α)rb

rc
= re +

rb

β
≈ re ≈ 1

gm
, (7.71)

which is very important approximation, because we conclude that the output resistance of a CC
amplifier is very low, i.e., it may serve as a good voltage driver.

For the case of RS = ∞, expression (7.70) becomes

ro = re + rc(1−α)≈ rc

β
. (7.72)

For typical numerical example, the variation of the output resistance with the source resistance is
shown in Fig. 7.17.

7.2.3.3 Voltage Gain

By definition, the voltage gain of a CC amplifier, Fig. 7.15, is

Av =
vout

vS
=

ieRL

vS
, (7.73)
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which can be further derived by substituting (7.69) into (7.73), hence

Av =

rc
rb+rc+RS

RL

RL + re + rc(1−α)− r2
c (1−α)

rb+rc+RS

=
rc RL

(rb + rc +RS) [RL + re + rc(1−α)]− r2
c(1−α)

≈ rc RL

(rc +RS) [RL + rc(1−α)]− r2
c(1−α)

=
RL

RL

(
1+

RS

rc

)
+RS(1−α)

≈ RL

RL +
RS

β

≈ 1. (7.74)

This approximation is also important to us. Under normal operation, a CC amplifier has a voltage gain
of one, which makes it suitable to serve as a “voltage buffer”, or impedance converter (high input
impedance and low output impedance). For our numerical example, the voltage gain plot is shown in
Fig. 7.18.
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7.3 Cascode Amplifier

The “cascode” amplifier, so important that it has its own name, is a combination of two single-stage
amplifiers, the common emitter followed by the common base (in Fig. 7.19, the single-stage amplifiers
are connected at the �1 node). Let us intuitively analyze this useful structure and conclude its main
characteristics.

• Input resistance: The first stage of a cascode amplifier is a standard CE stage. We need to notice
that the Q1 collector, i.e., the CE output, is connected to Q2 emitter, i.e., the CB input. We have
already learned that the input resistance of a CB amplifier is low for loading resistors RL � rc2.
According to Fig. 7.12, that means the input resistance of a CE amplifier is on the high side, in the
order of 3 kΩ for β = 100.

• Output resistance: The common base stage is driven by the Q1 collector, which represents high
resistance, therefore the overall output resistance is high, i.e., the Q2 collector also mimics a current
source. More detailed analysis shows that the cascode output resistance is ro2 = β ro1 = gm2ro1ro2,
which is a significant increase relative to the output resistance of either a CE or a CB amplifier
separately.

• Voltage gain: The second, CB, stage acts as a load to the first stage. The voltage gain of a CE stage
followed by a CB gain, after using an ideal voltage source with resistance RS = 0, is

Av =
vout

vS
=

vout

vo1

vo1

vS
=

RL

re1

−re2

re1
=−RL

re1
=−gmRL, (7.75)

which is the same as for the single-stage CE amplifier. If this conclusion comes as a surprise to
you, just remember that although the voltage gain of a CE amplifier with low resistance load is
low (around one or so, as shown in Fig. 7.14), its collector current is passed through the CB stage
with approximately unity gain, hence the CE voltage gain is realized after the Q2 collector current
is delivered to the load resistor RL (which serves as a current-to-voltage amplifier). Adding the CB
stage on the path between the load and the Q1 collector did not change anything in terms of the
voltage gain; remember that a CB amplifier serves as a current buffer, i.e., the input current at the
emitter shows up as the output current at the Q2 collector (i.e., iC(Q1)≈ iC(Q2)). Therefore, from
the perspective of the loading resistor RL nothing has changed, the same current is converted into
a voltage.

To summarize, although the voltage gain of a cascode amplifier is the same as for a single-stage
CE, its output resistance is increased. The increased resistance is interpreted as a current source that
is much closer to the ideal one (which has the output resistance equal to infinity). Therefore, almost
by default, realistic current sources are made out of cascode stages. Another important application of
the cascode amplifier is related to RF applications and the “Miller effect” (described in Sect. 7.6).

Fig. 7.19 A cascode
amplifier stage. For
simplicity, the biasing
network is not shown,
therefore the ground
terminals are small signal
grounds



7.4 The Biasing Problem 197

7.4 The Biasing Problem

So far in our circuit analysis, we have ignored all details related to the device biasing and simply
assumed that the device is somehow set to a stable DC operating point, and the details of how exactly
that was achieved and maintained were just left out. That approach makes perfect sense because
once the biasing point of a transistor is set, i.e., its gm is set, then only its small signal behaviour is
relevant—not the biasing details. However, we should not conclude that details of the biasing network
are simple and unimportant. If anything, we keep in mind that the design of a biasing network is a
fundamental and non-trivial issue that needs to be taken seriously. In this section, we go over the
evolutional development of a typical BJT biasing setup, and eventually reach conclusions about what
constitutes a good biasing setup and why.

Let us again take a look at a single BJT device and the external setup required to keep it operational.
As we learned in Sect. 4.3.4, a BJT device requires two independent voltage sources for its operation.
One voltage source VBE is required to set up the current through the forward-biased, base–emitter
diode and the second voltage source is required to keep the reverse-biasing voltage across the
collector–base diode by making sure that VC ≥ VB, i.e., the two voltage sources must be related
VCE ≥VBE, as shown in Fig. 7.20 (left).

The sole purpose of this arrangement is to set up a stable (VC, IC) operating point of the BJT device,
and therefore its gm gain, for a given base–emitter voltage VBE (see graph in Fig. 4.40).

This is where our biasing problems start. Fundamentally, a BJT device behaves as a “current-
controlled” current source, where the output, i.e., the collector, current is controlled by the input,
i.e., the base, current through the IC = β IB relationship, where β is the current gain of the device.
Unfortunately, our manufacturing technology is not ideal and, therefore, there are at least three main
problems relevant to electronic circuit design:

• A BJT current gain factor β depends both on device geometry and on the manufacturing
parameters. Unavoidably, the two have certain processing variations, which leads to β variations
as large as ±50% around the nominal value that it was designed for. That is, if the original design
was targeting, for example, β = 100, it is realistic to expect any value between β = 50 and β = 150
for a large number of tested devices. The final consequence is that the overall circuit gain, that was
expected to be fixed, would have its minimum value three times smaller than its maximum value,
i.e., the realistic gain variation would be in the order of 300%, which renders the device practically
useless.

• A little less obviously, gm also depends on temperature variations. Detailed device analysis
shows that the base–emitter voltage VBE changes at the rate of 2.5 mV/◦C. On the other hand,
high-reliability electronic devices must satisfy, for example, a military and airspace standard

Fig. 7.20 Evolution of the biasing network required to set up a BJT device: a literal biasing network implementation
with two voltage sources, VBE and VCE (left); a base current source (VBB ,RB) implementation (centre); and a single
voltage source VCC implementation (right)



198 7 Radio Frequency and Intermediate Frequency Amplifiers

which is specified within an environmental temperature range of T1 = −55◦C to T2 = +125◦C
(sometimes −65◦C to +175◦C). Just to find out how drastic this requirement really is, let us
take, for example, a temperature variation of ΔT = 180◦C, which causes the base–emitter VBE

voltage to change by ΔVBE = 180◦C × 2.5mV/◦C = 450mV/. We know that collector current
and the base–emitter voltage VBE are related through the exponential function. Therefore, we can
estimate using typical transistor parameters for two VBE voltages as VBE(T2) = 0.925 mV and
VBE(T1) = 0.475 mV with, for the given temperature range, VT(T2) = kT2/q = 34.31 mV and
VT(T1) = 18.8 mV (assuming constant saturation current IS because the temperature variation is
already accounted for in the ΔVBE), hence we write

IC1(T1)≈ IS exp
VBE1

VT1
and IC2(T2)≈ IS exp

VBE2

VT2
,

∴
IC2(T2)

IC1(T1)
= exp

(
VBE2

VT2
− VBE1

VT1

)
≈ 5.4, (7.76)

which directly translates into the overall circuit gain variation. Again, the device is not that useful
as an amplifier without some form of external mechanism for stabilizing the DC biasing point.

• The combination of component aging, leakage currents in active devices, and other secondary
effects of the IC technology amounts to an inconsistent and unpredictable variation of the current
gain, which must also be evaluated and compensated for by some external active mechanism.

For a given design, one could always find (at least temporarily) the right combination of voltage
source VBB and base resistor RB and adjust the base current iB to generate the desired collector current
iC, Fig. 7.20 (centre). However, this is a tedious manual procedure that would have to be repeated
for every single transistor in every single design and would not last long; this is neither efficient nor
elegant engineering. In addition, we note that there are at least two fundamental problems with the
approach: it fixes the base current instead of the collector current and it requires two independent
power supplies (which are both bulky and expensive).

The biasing problem is a typical example of a whole category of problems in nature that require
some sort of continuous monitoring and error-correcting mechanism. Using engineering terminology,
the solution requires the design of a “negative feedback control system”.

In principle, if we manage to inject a small sample of the collector current into the base in such
a way that any increase of the collector current causes the base to oppose the change and to force
reduction of the collector current, and hence to hold the collector current’s mean value constant, then
we have realized the control system. Practical realization of this principle looks like the schematic
arrangement in Fig. 7.20 (right). Let us take a closer look at how exactly it works. First, any increase
of the collector current iC causes an increase in the voltage across the RC resistor. Therefore, the
potential at node �1 is reduced because V (1)=VCC− iCRC. In other words, the base current is reduced
because iB = (v(1)−VB)/RB. Now, it becomes obvious, the reduced base current forces reduction of
the collector current because iC = β iB, opposing its initial increase. With the right combination of RC,
RB, and β the control loop maintains the collector current’s mean value permanently.

As a side benefit, the basic biasing control circuit in Fig. 7.20 (right) works with only one
power supply source (for the price of one additional resistor). A truly simple and elegant solution.
Alternatively, if the RC resistor is moved along its branch through the VCC source into the emitter
branch, it becomes the emitter resistor RE that keeps supporting the feedback mechanism. That variant
of stabilizing the DC biasing point with emitter resistor RE is known as “emitter degeneration” and is
used almost all the time.
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Let us evaluate the effectiveness of the feedback mechanism and find out how the collector current
in Fig. 7.20 (right) becomes approximately independent of the β factor. First, we state the current and
voltage relations as

IC = β IB, (7.77)

VCC = RC(IC + IB)+RBIB +VBE, (7.78)

where solving these two equations for iC leads to

IC =

β (VCC−VBE)
RB

1+(β + 1)RC
RB

. (7.79)

To find out how the ratio of the base and collector resistors RB/RC influences the feedback
mechanism, let us look at the extreme cases of (7.79): RC/RB → 0, i.e., either RC is small or RB

is large (in other words, RC � RB); and RC/RB → ∞, i.e., either RC is large or RB is small (in other
words, RC � RB).

For RC → 0, we have

lim
RC→0

IC = lim
RC→0

β (VCC−VBE)
RB

1+(β + 1)RC
RB

=
β (VCC −VBE)

RB
, (7.80)

which shows that for small values of the collector resistor, i.e., RC/RB → 0, the collector current is
directly proportional to β (see Fig. 7.21). That is, if RC � RB there is no feedback stabilization at all.

For RC � RB, we have

IC =
β (VCC −VBE)

RB +(β + 1)RC
≈ β (VCC −VBE)

(β + 1)RC
≈ β (VCC −VBE)

β RC
=

VCC −VBE

RC
, (7.81)

where the approximation (β +1)≈ β is valid for all practical values. Result (7.81) is very important to
us because we conclude that if RC � RB then the feedback control is perfect and the collector current
is not dependent upon the β factor any more (Fig. 7.21). Instead, only the external components are
used to determine the collector current IC value. We do realize, however, that this control is achieved
by sacrificing the circuit gain, which is what we need to keep the DC voltage level.
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Fig. 7.22 Emitter-degenerated version of the CE amplifier (left); decoupling of the emitter’s DC and AC currents by
adding a CE capacitor path (centre); and separation of RB from RC, which requires the use of two batteries (right)

As a side note, the base–emitter voltage still depends on temperature, i.e., VBE = f (T ). However,
temperature compensation techniques are beyond the scope of this book and we assume that the
environment temperature is constant, i.e., that the circuit operates at room temperature.

7.4.1 Emitter-Degenerated CE Amplifier

An alternative implementation of the negative feedback loop for the purpose of stabilizing the DC
operating point is known as the “degenerated emitter” variant of the CE amplifier, Fig. 7.22 (left). We
can show relatively easily how adding an emitter resistor RE helps stabilize the collector current IC.
Starting with the base terminal, we first write (assuming IC ≈ IE)

VB = IBRB +VBE + IERE ≈ IBRB +VBE + ICRE (7.82)

and then we consider two cases. In the first case, RE = 0, the base voltage becomes

VB ≈ IBRB +VBE =
IC

β
RB +VBE, (7.83)

which shows that the base voltage strongly depends on the β factor. In the second case, RE 	= 0, the
term IBRB is much smaller than the other two, hence (7.82) becomes

VB ≈VBE + ICRE, (7.84)

which is not dependent on the β factor and we have achieved the goal of fixing the collector current.
A silent feature of the bias stabilization mechanism is that it does not discriminate between the

DC biasing signal (the one that we want to keep stable) and the AC signal (the one that we want to
amplify). In other words, the gain is reduced for both DC and AC signals, which was not the intention.
Therefore, we must modify the stabilization method so that only DC signals experience a low gain
path and the gain of AC signals is only minimally affected. In other words, we have to “decouple”
the AC signals from the DC signals, which implies that we need to use reactive components in order
to provide two separate signal paths. In the case of a degenerated emitter, the emitter resistor RE may
be bypassed with a capacitor CE, Fig. 7.22 (centre), which effectively reduces AC resistance re ≈ 0 in
the emitter path. Hence, the AC signal is maximally amplified, (7.58). At the same time, the emitter
resistor RE provides the DC feedback control, (7.82). The emitter degeneration method is more often
used than the literal implementation in Fig. 7.20.
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7.4.2 Voltage Divider for Biasing Control

There are a number of different ways of implementing biasing schemes that can be reduced to the
schematic Fig. 7.20 (right), regardless of whether we use the collector or emitter resistor. A resistive
network associated with the base node can always be reduced to a single equivalent resistor RB, hence
(7.79) can be used in general to describe the relationship between the collector current and β .

It is very useful to develop a method of evaluating the effectiveness of the bias regulation method
by inspecting component values in Fig. 7.20 (right). We can develop such a method by introducing
a figure of merit called a SF, which enables us to compare the effectiveness of different biasing
stabilization structures. One way of looking at (7.79) is to realize that its numerator represents the
case of no stabilization. That is, if RB → ∞, which is equivalent to disconnecting the base from
the collector, then the denominator of (7.79) becomes one. Hence, we can generalize and say that
whatever multiplies the expression to achieve the no stabilization case is the multiplication factor and
(7.79) may be rewritten as

IC =
β (VCC −VBE)

RB

1

1+(β + 1)
RC

RB

=
β (VCC −VBE)

RB
× SF, (7.85)

where the SF is 0 ≥ SF ≤ 1 and, in general, is written in the following form

SF =
1

1+β F
, (7.86)

where F is the fraction of collector current used as the feedback. The two extremes are, of course, with
no feedback current (i.e., F = 0) and with the whole collector current used as the feedback current
(i.e., F = 1). By inspection of Fig. 7.20 (right) and by applying the current division rule at node �1 ,
where the collector current IC is split between the RC and RB branches, we write an expression for the
base current IB as

IB = IC
RC

RC +RB
, F =

RC

RC +RB
. (7.87)

In other words, we can estimate the fraction of collector current that is redirected into the feedback
path by knowing the values of the two resistors, and subsequently we can calculate the stability factor
SF of the network. This approach is very useful and, in the following pages, we demonstrate its
application.

We already concluded in (7.81) that in order to maximize the SF we need to reduce base resistance,
i.e., RB ≈ 0. However, that choice also reduces the gain of the amplifier because the total effective
collector resistance is also reduced (for small signals, RB is in parallel with RC), Fig. 7.20 (right). If
we are to keep RB, one possible solution is to connect the base terminal directly to the VBB voltage
that is provided by the VBB battery, Fig. 7.22 (right).

Let us estimate the SF of this circuit by using the following numerical example.

Example 7.1. For a given transistor, in order to set the average collector current of the circuit in
Fig. 7.22 to IC = 5 mA, the base voltage has to be set at VBB = 3 V. That collector current forces the
base–emitter voltage to VBE = 0.7 V and the emitter voltage to VE = 2.3 V. The base resistance is
Rs2 = 100Ω, and the transistor current gain is β = 100. Estimate the value of the emitter resistor RE

and the SF of this circuit.
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Fig. 7.23 Voltage divider
biasing network for a CE
amplifier: capacitive input
signal coupling (left) and
inductive input signal
coupling (right). The large
coupling capacitors are not
labelled

Solution 7.1. As β is large, we have IE ≈ IC and it is straightforward to calculate the emitter resistor as
RE =VE/IE ≈VE/IC = 2.3V/5mA = 460Ω. Keep in mind that in this configuration RE is equivalent
to RC in Fig. 7.20 (right), while RC0 in this schematic only separates the output terminal and the VCC

battery and provides the voltage gain. notation in the general formula and escape this confusion.
Therefore, from (7.86) and (7.87), we write

SF =
1

1+β RE
Rs2+RE

=
1

1+ 100 460Ω
100Ω+460Ω

= 0.012, (7.88)

which is a very good result not too far from the maximum theoretical value of 0.0099 (i.e., for β =
100 and RB = 0). However, using that low value for RB reduces the amplifier input impedance. For
example, in a more realistic case of RB = 3.3kΩ, the stability factor becomes SF = 0.076, which is
not a bad result.

The second pressing issue, the need for two batteries, may be solved by implementing a voltage
divider instead of a single resistor RB, Fig. 7.23. There are wo possible ways to inject an AC signal
into an amplifier without disturbing its DC operating point: capacitive and inductive coupling.

By inspection of the circuits in Fig. 7.23, we recognize that the voltage divider R1,R2 effectively
presents resistive load of R1,2 = R1||R2 at the base node.2 That is, in order to keep the input resistance
Rin of the amplifier high, these two resistances need to be rather large. Thus, by comparison with
Fig. 7.22 (right), we conclude that in order to estimate SF we need to substitute the R1,2 resistance in
place of RB in (7.87).

To illustrate the voltage divider biasing scheme, let us consider the following numerical example.

Example 7.2. For a CE amplifier (Fig. 7.23) intended to amplify a 50 Hz signal with RE = 1kΩ,
IC = 1 mA, β = 50, and VCC = 6 V, design a voltage divider circuit.

Solution 7.2. Voltage at the emitter node is VE ≈ ICRE = 1V . Base current is IB = IC/β = 1mA/50=
20μA. This current flows through R1 in addition to R1,R2 current because of the VCC. For steady base
voltage, it is, therefore, required that the base current is much smaller than the DC current due to VCC,
which in engineering vocabulary means at least ten times smaller. Hence, the current caused by the
battery is set to I = 200μA, which makes the total current through R1,R2 equal to 220μA.

2Keep in mind that, because the internal resistance of the voltage source is zero, the two resistors are implicitly connected
in parallel through the voltage source.
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Fig. 7.24 Voltage divider
biasing network version for
CE amplifier (left); and its
equivalent schematic
(right)

Bypass capacitance must have a small reactance at the signal frequency relative to re = 25Ω. So,
at 50 Hz we can choose C1 = 500μF, which translates to ZC1 = 6.5Ω. Voltage VBE = 0.7 V hence
VR1 = 5 V−0.7 V = 4.3 V, therefore R1 = 4.3V/220μA ≈ 20kΩ. Voltage VR2 = 1.7 V hence R2 =
1.7V/200μA = 8.5kΩ (the base current goes into the base).

Therefore, R1,2 = R1||R2 ≈ 6kΩ, which leads to

SF =
1

1+β RE
R1,2+RE

=
1

1+ 50 1kΩ
6kΩ+1kΩ

= 0.12, (7.89)

which means that the variations of the mean emitter current are about 1/8 relative to the non-stabilized
case. After carefully considering the influence of all parameters in our calculations, we can conclude
that it is possible to further improve the SF at the expense of higher emitter current, i.e., higher
power consumption, and it always helps to use better transistors with higher β . The example also
illustrates that a good engineering solution results from carefully balanced compromises. We keep in
mind that the voltage divider biasing scheme is one of the most commonly used methods of biasing
LF amplifiers.

7.4.3 Two-Stage Biasing Control

For even better values of SF, we need to review the fundamental limitations of the voltage divider
scheme. First, we need to recognize that reconnection of resistor R1 (Fig. 7.23) back to the collector
node enables RC to again contribute to the feedback mechanism, Fig. 7.24 (left). Its equivalent
schematic diagram is shown in Fig. 7.24 (right). In order to see how the improvement is achieved,
let us consider the following example.

Example 7.3. The circuit in Fig. 7.24 has the following typical component values: RE = 1kΩ,
RC = 5kΩ, R1 = 10kΩ, R2 = 5kΩ, and β = 100. Estimate the SF.

Solution 7.3. The collector current splits into two branches with RC and R1, where for the current
through R1, after applying the current divider rule, we write

I1 ≈ IC
RE +RC

RE +RC+R1
(7.90)

(neglecting the parallel R2||RE). Therefore, current through the resistor RC is

IC
R1

RE +RC +R1
, (7.91)
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Fig. 7.25 A two-stage biasing network version for a CE amplifier (left) and its equivalent small circuits schematic
diagram (right)

which splits at the junction of RE and R2. It follows that the current through R2 is

I2 = IC
R1

RE +RC +R1

RE

RE +R2
(7.92)

and the base current is then IB = I1 + I2. Hence, we calculate the feedback factor as

F =
IB

IC
=

RE +RC

RE +RC +R1
+

R1

RE +RC+R1

RE

RE +R2
. (7.93)

Substituting (7.93) into (7.86) and using the numerical values of this example, we first find F =
0.48, which is to say that SF = 0.02. This variant of the feedback control represents a significant
improvement relative to the version in Example 7.2.

In order to better evaluate the real gain achieved by the above idea, let us find out what price was
paid to achieve the last result. The first consequence of the approach is that the gain in stability factor
was achieved by placing R1||R2 across the collector resistance, effectively reducing the load resistance.
The second consequence is that the AC feedback path of the signal is again closed, which, as we
already discussed, reduces the overall signal AC gain. Neither of these consequences is a desirable
property of a good voltage amplifier.

Therefore, we realize that we need to somehow increase resistance that is added in parallel to
the collector resistor and we need to break the AC feedback path while keeping the feedback loop
working. This sounds like a classical example of an interface that needs the addition of some sort of
buffering stage. Hence, one possible way to resolve these two issues is to employ an emitter-follower
stage in the feedback path, Fig. 7.25 (left) and its equivalent schematic diagram Fig. 7.25 (right). The
large input resistance of the added CC stage does not affect the collector resistance of the first stage
too much, while the low-resistance output of the CC stage, which looks more like an ideal voltage
source, provides good voltage drive to the passive part of the feedback network R1, R2, and RB.

In order to demonstrate this idea, let us evaluate the SF using the following numerical example.

Example 7.4. The circuit diagram in Fig. 7.25 (left) assumes typical component values of RC = 5kΩ,
RE = 5kΩ, RB = 3.3kΩ, a half-voltage divider (i.e., R1 = R2), and β = 100. Estimate its SF.

Solution 7.4. Assuming high input resistance of the emitter follower at the base of Q2, Fig. 7.25 (left),
there is no current splitting at the Q1 collector node. In addition, we observe that the small signal
voltage across the Q1 collector resistor RC is vx = iCRC, which is the same as the small signal voltage
at the output of the emitter follower Q2 that appears at the top of resistive divider R1,R2, (of course,
with its common mode voltage shifted by vBE).
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After the circuit is simplified by using a BJT small signal T-model, Fig. 7.25 (right), we observe
that the voltage across resistor RB is generated by two currents, one through resistive voltage divider
R1,R2 and one through the parallel connection of RE||RB (after approximation RB +R2 ≈ RB). The
former current generates voltage V ′

RB
across resistor R2 while the latter generates voltage V ′′

RB
across

resistor RE (in parallel with RB). Hence, we write VRB = V ′
RB

+V ′′
RB

. In this estimate, we also assume
large β , i.e., β ≈ (β + 1).

With the above assumptions and approximations, current through RB is approximately,

iB =
vB

RB
=

V ′
RB

+V ′′
RB

RB
, (7.94)

where,

V ′
RB

= R2 iR2 ≈ R2
vx

R1 +R2
=

R2

R1 +R2
RC iC, (7.95)

V ′′
RB

= iC [RE||(RB +R2)]≈ iC [RE||RB] =
RE RB

RE +RB
iC. (7.96)

After substituting the above expressions into (7.94), we calculate the base current and the feedback
factor as

iB =
VRB

RB
=

V ′
RB

+V ′′
RB

RB
=

R2
R1+R2

RC iC + RE RB
RE+RB

iC

RB
,

∴

F =
iB
iC

=
R2

R1 +R2

RC

RB
+

RE

RE +RB
. (7.97)

Substituting (7.97) into (7.86), and after substituting the numerical values from this example, we
find the SF as

SF =
1

1+β
(

R2
R1+R2

RC
RB

+
RE

RE +RB

) (7.98)

=
1

1+ 100

(
0.5× 5kΩ

3.3kΩ
+

5kΩ
8.3kΩ

) = 0.0073, (7.99)

which indicates an order of magnitude improvement over the simple bias control schemes. Of
course, the complexity of the circuit has increased, which is the price paid for the high DC biasing
performance. A large number of variants of this two-stage DC control approach are commonly used
in commercial amplifier designs.

Understanding the biasing principles presented in this section, from now on we accept that the
biasing point is somehow established and we can focus on amplifier analysis while ignoring details of
the DC bias as long as the gm values of the active devices are set.
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7.5 AC Analysis of Voltage Amplifiers

In our analysis, so far, we have made an important assumption that the functionality of circuits
is completely independent of the signal frequency. In other words, we made a low-frequency
approximation and simply assumed that the circuit behaves the same regardless of whether the
frequency of the input signal is DC or infinite or anywhere in between for that matter, i.e., we assumed
a frequency-independent amplifier gain. Of course, by now we know that, as tiny as they are, even
electrons have both inertia and finite velocity associated with their movement. Consequently, even
purely resistive networks do have measurable propagation delays, which is another way of saying that
a signal applied at the input terminals of a network does not show up instantaneously at the output
terminals. Indeed, common engineering practice is to calculate the propagation delay, for the given
material properties and physical size of the network components, and confirm it by measurement. The
addition of components capable of storing energy, i.e., capacitors and inductors, further undermines
the low-frequency approximation.

A number of, often surprising, phenomena exist in our physical world because of the finite time
that is required to, for example, deliver a certain number of electrons onto one plate of a capacitor and
then to take them off the plate. To illustrate the point, let us do the following mental experiment.

Let us imagine a black box with only two wires coming out of it that are available to us. Let
us further assume that we have an instrument that measures the amount of electrical charge passing
through the wires. Initial measurement shows that there is no measurable potential difference between
the two terminals. Then, let us connect an ideal V = 1 V voltage source to the two terminals,
Fig. 7.26 (left). Eventually, the voltage at the terminals becomes steady and we see that, relative to its
initial value, the input terminal voltage changed by ΔV = 1 V (i.e., close enough). At the same time,
the flow of electrons practically stopped and we measure (again, close enough, see Sect. 4.1.5.3), the
amount of charge that moved through the instrument as Δq = 1 pC. The total amount of charge and
the associated voltage are related as described by (4.13), hence through calculation

C =
Δq
ΔV

=
1pC
1V

= 1pF, (7.100)

we rightfully conclude that the black box contains (or at least, it behaves as) a 1 pF capacitor.
Now, let us imagine that some aliens with a good sense of humour add, in series with the capacitor,

a 99 V battery whose polarity is aligned with the 1 V external source, Fig. 7.26 (right), at the exact
moment when the external 1 V voltage source is connected. Without knowing anything about the
prank, we now measure a flow of 100 pC and, being aware of only the external 1 V source, we conclude
that the black box behaves as a 100 pF capacitor

C =
Δq
ΔV

=
100pC

1V
= 100pF, (7.101)

which, of course is not what the real network in the box is. This apparent capacitive magnification
is known as the Miller effect, and it is a consequence of the internal voltages acting upon the real
capacitor.

Fig. 7.26 A black box that
contains: only a capacitor
(left); a capacitor with an
internal voltage source
(right)
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7.6 Miller Capacitance

An amplifying network configuration that satisfies the following conditions is quite common in
electronics and in nature:

• The amplifier is an inverting voltage amplifier.
• The amplifier’s voltage gain is larger than one, i.e., |Av| � 1.
• A capacitor C is connected between its input and output terminals.

The general network that illustrates the three conditions listed above (Fig. 7.27) is analyzed as
follows. Assuming an inverting voltage amplifier with infinite input impedance, the output and input
voltages are related as vout = −Av vin. Under the condition of no current flowing into the amplifier’s
input terminal, the input impedance Zin of the network is calculated as

iin =
vin − vout

ZC
=

vin +Av vin

ZC
=

vin(1+Av)

ZC
, (7.102)

∴

Zin =
vin

iin
=

ZC

1+Av
, (7.103)

which, in the case of capacitive bridging impedance ZC = 1/sC, takes the form of

Zin =
1

jω C (Av + 1)
=

1
jω CM

, (7.104)

where, the effective Miller capacitance is defined as

CM =C (Av + 1). (7.105)

Result (7.105) is very important for high-frequency circuit design. Effectively, in combination with
the source resistance, Miller capacitance creates a frequency-dependent voltage divider, which, as we
already know, behaves as a LP filter.

Example 7.5. Assume an ideal, single-stage, common-emitter amplifier (i.e., the input resistance
Rin = ∞) with voltage gain of Av = −99, as shown in Fig. 7.28 (left). The amplifier is driven by
a voltage source whose output resistance is RS = 50Ω. In addition, there is a capacitor connected
between the transistor’s collector and base CCB = 1 pF. Estimate the useful range of input signal
frequencies.

Solution 7.5. The single-stage, common-emitter amplifier satisfies all three conditions required for
the Miller effect. It is an inverting amplifier, it has gain larger than one, and it has a capacitive

Fig. 7.27 A general
inverting voltage amplifier
with Miller capacitance
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Fig. 7.28 A CE voltage
amplifier with Miller
capacitance caused by CCB
(left) and its equivalent LP
filter network (right)

component that creates an AC path between the input and output terminals. Therefore, the equivalent
schematic diagram of the signal source–amplifier network, Fig. 7.28 (right), is analyzed as a voltage
divider that consists of the source resistance RS = 50Ω and the Miller capacitance CM =CCB(|AV |+
1) = 100 pF.

The useful range of input signal frequencies, in this case, means simply the bandwidth of the
(RS,CM) LP filter, which is defined at the −6 dB voltage point. We already know that 3 dB power
point or, equivalently, the 6 dB voltage point refers to the frequency f3 dB where the output voltage is
exactly half the input voltage, i.e., the two resistances of the voltage divider are equal

RS = ZCM ∴ RS =

∣∣∣∣ 1
jω CM

∣∣∣∣=
∣∣∣∣ 1

j 2π f3 dB
CM

∣∣∣∣ ,
∴

f3 dB =

∣∣∣∣ 1
j2π RS CM

∣∣∣∣= 1
2π 50Ω 100pF

= 31.831MHz, (7.106)

which is a significant reduction in signal bandwidth, considering that we started from relatively small
component values of 50Ω and 1 pF, which by themselves would allow a bandwidth of 3.183 GHz.

Additional assumptions usually made are that the voltage gain Av is not a function of the frequency,
Av 	= f (ω), and that collector–base capacitance CCB is independent of collector–base voltage, i.e.,
CCB 	= f (VCB). Both assumptions simplify the analysis, otherwise we would have to use numerical
solvers to reach any conclusion.

The fundamental reason for a CE amplifier’s sensitivity to the Miller effect is that base–collector
capacitance CCB is real and unavoidable. The parasitic capacitance exists because of the reverse-
biased, base–collector pn junction that behaves as a voltage-controlled capacitor. There are three
main parasitic capacitances inside a BJT, Fig. 7.29 (left): collector–base CCB, base–emitter CBE, and
collector–emitter CCE. By inspection of the equivalent BJT model, Fig. 7.29 (right), for the case of a
CE amplifier, we find that capacitance CBE is connected across the input terminals while capacitance
CCE is across the output terminals. Both capacitances are safely grounded on one side, and therefore
introduce only minor frequency limitation to the overall amplifier behaviour. However, the collector–
base CCB capacitance is floating and provides a feedback path to the signal, which gives rise to the
Miller effect.

To complete the set of Miller effect requirements, the CE stage inherently inverts the signal and
has large voltage gain. Because of that weakness of CE amplifiers, a CB amplifier is often used in RF
designs in cases where its low input resistance is compatible with the previous stage. In the case of
a CB amplifier, everything else being equal, there is no significant capacitance that connects the CB
stage I/O terminals. In most textbooks, the collector–emitter capacitance CCE is labelled as Cμ ; it is
made of two pn junction capacitances CCB and CBE in series and, hence, it is very small. At the same
time, the CCB capacitance is safely connected between the output node and the small signal ground.
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Fig. 7.29 BJT parasitic capacitances (left) and the equivalent small signal model (right)

In general, the Miller effect is not desirable in RF circuits. However, in Sect. 11.3.3, we find
that even this apparent weakness of CE amplifiers has been exploited in a very interesting and
important RF application. Although we focused on a capacitive feedback path, we note that any
general impedance in the feedback path (in combination with the other two conditions) creates the
Miller effect.

7.7 Tuned Amplifiers

In our treatment of “baseband amplifiers” we assumed low-frequency operation, which is to say that all
single-tone signals from DC to “not so high” frequencies were treated as equally interesting, desirable,
and possible to amplify. As a result, aside from frequency limitations caused by LP filtering effects
at the input stage of CE amplifiers due to the Miller effect or by high-pass filtering effects on the
AC coupling between the driver stage and the load, we merrily kept spending energy to amplify all
possible tones that showed up at the amplifier’s input terminal nodes.

As the reader is already guessing, this generous approach to signal amplification, aside from strictly
technical difficulties, has at least two serious drawbacks if it is to be used for amplification of RF
signals:

• The frequency of the content of the message, for example the human voice, is limited to the range
20 Hz to 20 kHz. That is, high-fidelity (HiFi) sound reproduction does not require any of the single
tones outside of this frequency range and, in other words, it is a waste of energy to amplify them.
The amplification energy must come from somewhere and, by doing so, we unnecessarily drain
the amplifier’s batteries. To make the things worse, we may need to provide an additional cooling
mechanism to dissipate the excess heat generated by the components, not to mention the impact on
the environment of disposing of the drained batteries.

• A less obvious, but equally important, drawback of wideband amplification is that all unwanted
tones accepted into the amplifier contribute only to the increased noise level. After all, these tones
are not needed and not desirable, hence they represent noise. The amplifier cannot possibly know
what tones the user wants to hear, hence all tones are equally amplified. Because the overall noise
energy is collected over a wider band than is necessary, it means the overall SNR is lowered.

As we will find out, there are other reasons why baseband amplifiers are not used in RF sections
of radios. For the time being, the above two arguments should be enough to convince the reader that
the overall result of using a baseband amplifier for radio signal amplification results in an expensive,
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Fig. 7.30 The first three
main stages of RF radio
receiver

bulky, power-hungry, and less good quality RF amplifier. All that assumes we somehow managed to
make the amplifier’s bandwidth wide enough to start with.3

In Sect. 6.4, we learned that in order to efficiently transport EM energy collected by an antenna to
the input terminals of an amplifier, we need to design a matching network. At that time, we quietly
accepted that the maximum power transfer was possible, in theory, at only one frequency, and in
practice over a very narrow range of frequencies determined by the Q factor of the matching network.
In Sect. 5.9 we learned that any realistic RLC network behaves as a “bandpass filter”.

The first three stages of a radio receiver, the antenna, the matching network, and the RF amplifier
(see Fig. 7.30), are often referred to as the front-end of the RF radio receiver. It is now time to ask how
exactly an RF amplifier is different from a baseband amplifier. Before answering this question, let us
first state that:

• The frequency range of operation of an RF amplifier must be “aligned” (i.e., tuned) with the centre
frequency of the matching network, which, in turn, is tuned with the antenna.

• The bandwidth of the RF amplifier should be similar to the bandwidth of the incoming message,
approximately 20 kHz in the case of music. That is, the RF amplifier bandwidth should be not
too wide, causing a decrease of SNR, or too narrow, introducing signal distortions (keep in mind
Fourier).

Of the three single transistor amplifier types (i.e., CE, CB, and CC), the emitter follower is the only
one that has voltage gain slightly less than unity, therefore we focus on the other two variants.

7.7.1 Single-Stage CE RF Amplifier

In principle, a single-stage CE amplifier is easily turned into a CE RF amplifier with two modifica-
tions: the collector’s resistive load RC is replaced by an LCCC resonator; and an LBCB resonator is
connected between the input node and the ground, Fig. 7.31. Both resonators are tuned to the same
resonant frequency ω0. The input AC signal is then injected into the base through decoupling capacitor
C0, whose impedance is negligible at the resonator frequency ω0, Fig. 7.31.

7.7.1.1 Intuitive View of CE RF Amplifier Operation

At the resonant frequency, ω0 = 1/
√

LC, both LC resonators are effectively equivalent to their
respective dynamic resistances RD. We already know that in the case of theoretically ideal LC

3Keep in mind that modern RF carrier frequencies are in the order of MHz or GHz. A wideband amplifier would need
to be able to work from DC to the RF carrier frequency, which is not always possible to do with the current technology.
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Fig. 7.31 A CE amplifier
(left) and its equivalent RF
CE amplifier (right)

components, a resonator’s dynamic resistance RD is infinite, while in the case of real LC components,
the dynamic resistance RD is calculated as RD = QZL(ω0).4 Consequently, in the ideal case, the input
side of the amplifier does not “feel” any additional resistive load, i.e., there is no current splitting
at the base node and 100% of the AC signal current is injected into the base. The only ramification
of adding an ideal LBCB resonator is that out of all possible frequencies only a single tone at ω0

is able to pass through that LBCB “entrance door” and enter the transistor gate, all the other tones
with frequencies ω 	= ω0 are simply not aligned with the door and they “hit the wall”, i.e., they are
attenuated down to zero amplitude. In the case of real LBCB components, the entrance door is wider
than a single frequency; hence not only ω0 passes through but also the adjacent frequencies that are
within the “width of the door”. In technical terms, the input LBCB resonator works as a narrowband
bandpass filter, whose centre frequency is ω0 and bandwidth BW = Δω , where Δω = ω0/Q (note
that if Q = ∞ ⇒ BW = 0). This is how the amount of noise entering the amplifier through the input
terminal is controlled.

At the same time, at the output side of the CE RF amplifier, the collector is experiencing
very large resistive load RD, which translates into large voltage gain Av = gm RD. The transistor’s
transconductance gm is set by the biasing network (not shown). Therefore, in the ideal case (RD = ∞),
the amplifier would achieve an infinite voltage gain, i.e., it would be able to amplify even an infinitely
small single-tone signal at exactly ω0 frequency and would “ignore” all other tones. In the real case,
the gain is limited by finite RD within the finite bandwidth BW but it is, nevertheless, still very high.5

Although the input side LBCB resonator blocks all unwanted frequencies from entering the amplifier,
we already know that there is internally generated noise that also needs to be filtered out by the LCCC

resonator. By means of these two LC resonators (effectively a double bandpass filter) along the signal
path, the gain of the CE RF amplifier is optimized so that only the frequencies of interest within the
bandwidth are amplified.

Although the intuitive picture of CE amplifier operation painted so far ignores quite a few fine
details, it is definitely useful in terms of understanding the overall functionality of a theoretical CE RF
amplifier. With its high input resistance and high output current gain, the CE amplifier is considered
one of the most important structures for voltage signal amplification. Let us now find out about the
limitations of a simple CE RF amplifier and what needs to be done in order to make it truly practical
at frequencies of interest.

4We could have used ZC instead. Remember that, at the resonance, ZL = ZC; hence, the dynamic resistance RD is
calculated as a product of the Q factor and either of the two impedances.
5That is why it is possible to see voltages across the LC resonator that are higher than the amplifier’s power supply
voltage level.
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Fig. 7.32 A cascode BJT RF amplifier (left) and its equivalent dual-gate FET RF version (right)

7.7.1.2 Miller Effect

We already found out that the small bridging capacitance CCB creates a feedback loop from the output
terminals back to the input terminals. As it turned out, the Miller capacitance is perceived by the input
terminals as approximately AV times greater than the real collector–base CCB capacitance, with the
consequence of a LP filter effect on the input side and drastic reduction of the signal bandwidth.

It would appear from the analyses in Sect. 7.6 that a CE amplifier is hopelessly lost for all but
low- to mid-frequency range RF applications. However, we can improve the frequency-dependent
behaviour of a CE amplifier in RF applications by looking at the three conditions for the Miller effect
one by one. Obviously, we cannot do anything about its inherent inverting signal nature and we do
need to keep the high voltage gain. For all practical purposes, we cannot remove the Miller effect by
modifying these two conditions. The only option left is to find out if we can do anything about the
bridging I/O capacitance.

As a matter of fact, we learned at the end of Sect. 7.6 that not having the I/O bridging capacitance
protects a CB amplifier configuration from the Miller effect. That gives us an idea of how to modify
a simple CE stage and improve its bandwidth by turning it into a cascode amplifier, Sect. 7.3. An
additional, and not so obvious, feature of a cascode amplifier architecture is that the insertion of a CB
stage between the CE output node (the collector of Q1) and the load resistor RC effectively removes
the capacitive connection between the input and the output nodes of the cascode amplifier, Fig. 7.32.

The collector–base capacitance CCB of Q1 connects the input terminal of the cascode amplifier with
one of its internal nodes, while at the same time the cascode amplifier output terminal is taken from
the CB amplifier output node (the collector of Q2), which is safely disconnected (i.e., “buffered”) from
the input terminal. This property makes the cascode amplifier immune to the Miller effect and further
increases the importance of cascode amplifier architecture.

In practice, a very common way to implement a cascode RF amplifier is by using a dual-gate
MOSFET (often JFET) device, Fig. 7.32 (right). The two FET devices are manufactured on the same
silicon substrate and packaged in the same package. This means that the manufactured dual device
has exactly the same functionality as two cascode devices, with the advantage of reduced parasitic
capacitances and greatly improved high-frequency (HF)performance compared to a configuration with
two discrete devices.

7.7.1.3 CE RF Amplifier Stability

Careful observation of an RF CE amplifier’s operation reveals a second problem. As we already know,
with a resistive load, a CE is an inverting amplifier, i.e., the input and output signals are in “antiphase”.
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Fig. 7.33 A cascode CE RF amplifier with Miller impedance (left) and its equivalent model (right)

Equivalently, the input and output current are in phase, that is, the output current and the output voltage
are in antiphase. At resonance, an LC resonator is the dynamic resistance RD (ZL and ZC are same and
have the opposite signs), hence from the amplifier’s perspective it is the same as any other resistive
load. However, the statement is valid only at one frequency, ω0. At any other frequency than ω0, the
load becomes either capacitive or inductive. And that is where the trouble with using a CE amplifier
for amplifying HF signals starts.

At the resonant frequency ω0, the collector–base capacitor CCB provides a feedback path for part
of the collector current and adds +90◦ phase shift and, therefore, the base current and the fed-back
current are in “quadrature”.6

Below its resonant frequency ω0, the LC tank behaves as an inductor (e.g. take a look at Fig. 5.14)
and the collector voltage leads the collector current by +90◦. At the same time, the feedback capacitor
CCB provides additional 90◦ phase shifts, which makes the fed-back current in phase with the base
current, which is effectively positive feedback that further increases the output current. Depending
upon the transistor gain, within a few signal cycles the fed-back current becomes greater than the
input current and the amplifier becomes unstable.

Above its resonant frequency ω0, the LC tank behaves as a capacitor (again, take a look at Fig. 5.14)
and the collector voltage lags the collector current by −90◦. At the same time, the feedback capacitor
CCB provides additional 90◦ phase shifts, which makes the fed-back current in antiphase with the base
current, which is effectively negative feedback that reduces the gain, however, the amplifier is stable.

In conclusion, if the resonator network introduces a 90◦ phase shift (in addition to the 90◦ phase
shift created by the feedback capacitor) then the instability condition is created. Even the boundary
condition, where the amplifier constantly switches between the stable and the unstable states, is itself
an unstable condition. Keep in mind that, although we have used a capacitor as the feedback element,
in general a feedback inductor also introduces a 90◦ phase shift and it may create instability conditions.
Assuming that both the input and output LC resonators are centred at the same resonant frequency, we
can conclude that the instability point for the amplifier is when each LC resonator by itself introduces
a 45◦ phase shift, which leads to the negative feedback condition.

From the circuit designer’s perspective, it is important to quantify under what conditions the
instability of a CE tuned amplifier occurs. One way of looking at the CE RF amplifier circuit in
Fig. 7.33 (left) is to draw its equivalent impedance network, Fig. 7.33 (right). Note that the impedances
include all internal and external impedances associated with the BJT nodes and that the total collector
current iC is split between ZC and ZCCB .

6“In quadrature” is a fancy way of saying that two variables are 90◦ apart in phase, i.e., orthogonal to each other.
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The collector current iC is set by vBE voltage through the gm vBE relation, and it flows through
the parallel combination of impedances ZC||(ZB +ZCCB). Hence, the voltage vZC across the collector
resistance is

vZC = iC
[
ZC||(ZB +ZCCB)

]
= gm vBE

ZC(ZB +ZCCB)

ZC +ZB +ZCCB

, (7.107)

We note that this is the same voltage that also appears across the input voltage divider (ZB +ZCCB),
hence the feedback voltage vf generated across the input impedance ZB (i.e., at the input node) due to
the feedback current through ZCCB path is calculated as

vf =
vZC

ZB +ZCCB

ZB = gm vBE
ZC(ZB +ZCCB)

ZC +ZB +ZCCB

ZB

ZB +ZCCB

= gm vBE
ZC ZB

ZC +ZB +ZCCB

≈ gm vBE
ZC ZB

ZCCB

, (7.108)

where, the approximation (ZC +ZB +ZCCB ) ≈ ZCCB is valid because capacitance CCB is usually very
small, which means that its impedance ZCCB = 1/jω CCB is very large relative to ZC and ZB. The
amplifier is stable as long as the feedback voltage vf is less than the base voltage vBE, i.e.,

vf < vBE ; gm vBE
ZC ZB

ZCCB

< vBE ,

∴

gm <
ZCCB

ZC ZB
. (7.109)

The specific impedances in (7.109) are determined as follows. Collector impedance ZC is the collector
resistance RC in parallel with the difference between the inductor and capacitor reactance XC = |ZCC −
ZLC |. That is, the condition for 45◦ phase, dictates that RC = XC,7 i.e.

ZC = RC||XC =
jXCRC

RC + jXC
=

jRCRC

RC + jRC
=

jRC

1+ j
(7.110)

and similarly, for ZB we write

ZB =
jRB

1+ j
(7.111)

and for the collector–base capacitance impedance we have

ZCCB =
1

ω0 CCB
. (7.112)

7Imagine two vectors of equal length, RC and XC, that are 90◦ relative to each other. From the right-angle triangle rule,
the total phase must be 45◦.
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After substituting these three impedances back into (7.109), we have

gm <
(1+ j)2

ω0CCB jRC jRB
=

(
1+ j

j

)2 1
ω0CCB RC RB

=

(−j(1+ j)
−j j

)2 1
ω0CCB RC RB

= (1− j)2 1
ω0CCB RC RB

,

∴

gm <
2

ω0CCB RC RB
(7.113)

because8 |1− j|=√
2 and |j|= 1. Simplified (7.113) is the condition for stability of a double-tuned CE

amplifier around its centre frequency ω0. For example, for a transistor with RC = 1MΩ, RB = 3kΩ,
CCB = 1 pF, at f = 10 MHz, application of (7.113) suggests that gm < 10μS, which is really not useful
amplification, which further demonstrates the stability issue of a simple CE amplifier.

7.7.1.4 Cascode RF and IF Amplifiers

From the previous discussion and aside from the reasons related to Miller effect, for practical purposes
we conclude that using a cascode amplifier is also recommended from the stability perspective because
the CE feedback path is broken and the cascode amplifier is inherently stable.

We conclude that a combination of the two single transistor amplifier stages, CE and CB, is
inherently stable because the output of the CE stage drives the input of the CB stage. We already
know that the input resistance of a CB stage Rin is very low, therefore the overall gain of CE stage
gmRin is very low, making the CE stage stable. At the same time, the CB stage is inherently stable
because there is no feedback path. Hence, two stable cascaded amplifiers are unconditionally stable.

Schematic diagrams of two commonly used cascode RF amplifier structures are shown in Fig. 7.32.
The advantage of using BJT devices is the higher gm gains compared to MOSFET devices. On the
other hand, MOSFET devices have very high input resistance, which makes the FET input stage
almost an ideal load for a voltage source driver. To take advantage of both devices, in modern
BiCMOS integrated technologies, a cascode amplifier is a combination of common-source (CS) and
CB amplifiers.

7.7.1.5 Unilateralisation of CE Amplifier

For quite a while, using a cascode RF amplifier instead of a simple CE RF amplifier has been almost
an automatic choice because of all the good qualities that we have learned about so far. However, not
everything is lost for the CE amplifier. As we advance towards lower power consumption of wireless
electronics, which is achieved mostly by lowering the power supply voltage, the main drawback of a
cascode amplifier is becoming more visible. In order to keep both of the transistors in forward active
mode, a higher power supply voltage is needed because at least two CE voltages vCE must fit between
the power rails.

Fortunately, since the times of tube amplifiers (which are still used in some very high-power
RF amplifiers), at least two techniques have been known that help improve the stability of CE RF

8Again, use Pythagoras’ theorem.
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Fig. 7.34 Unilaterisation by resonating out the internal capacitance (left), by tunable capacitive feedback (centre), and
by transformer tapping of the feedback signal (right)

amplifiers. In principle, the idea is very simple and general. Once we realized that main cause of CE
amplifier instability is the fed-back signal with the right phase relative to the input signal phase and
recognized that this fed-back signal is due to parasitic reactances inside the transistor that connect the
output and input terminals of the amplifier, the solution to the problem came naturally. If another
feedback path, external to the transistor, is created with a signal that is exactly the same as the
parasitic fed-back signal, but with the opposite phase, then the sum of the parasitic feedback signal
and the external feedback signal can be made zero. In other words, the parasitic feedback signal is
“neutralized” at the input terminal node. Cancelation of the feedback signal makes the transistor a truly
unidirectional device (i.e., no feedback path); the process is sometimes referred to as “unilaterisation”.

With that idea in mind, the unilaterisation process becomes a matter of tapping the feedback
signal at the output node and using the right components in the external feedback path to establish
the right phase and amplitude of the cancelation signal. In the first variant of signal neutralization,
where the idea of “resonating out” is used, in parallel to the internal parasitic CCB , a serial inductor–
capacitor LnCn path is added so that the overall reactance of all parasitic and external components
is removed. In addition, the serial Cn capacitor removes the DC path from the output to the input
terminal, Fig. 7.34 (left).

A second variant of the same idea, shown in Fig. 7.34 (centre), applies an external capacitive
feedback Cn in which the feedback signal is tapped from node �1 at the top of LCCC tank, where
the phase is opposite compared to node �2 . The overall effect is, again, that the parasitic feedback
signal is neutralized.

As another variant, the feedback signal can be tapped using inductive coupling (i.e., a transformer),
as shown in Fig. 7.34 (right).

It should be noted that the neutralization techniques based on discrete passive components in the
feedback path are limited by the component’s self-resonant frequencies. At some point, it becomes
necessary to replace the discrete components with distributed components based on transmission lines.
Indeed, modern HF transceivers are designed mostly using HF IC technology.

7.7.2 Single-Stage CB RF Amplifier

In cases when the source RF signal is in the form of current (i.e., a very high impedance source), it
is beneficial to have an RF amplifier with low input resistance. We know that CB amplifiers satisfy
the input impedance requirement (Fig. 7.35) because Rin ≈ 1/gm input resistance in the forward active
mode. Both the input, LECE and output LCCC resonators are tuned to the same frequency. However,
in this configuration there is no feedback path from the output to the input node, hence the CB



7.8 Summary 217

Fig. 7.35 A CB RF
amplifier

amplifier is inherently stable. Use of matching transformers makes it possible to design optimal
loading impedance.9

7.7.3 Insertion Loss

Careful analysis of a parallel LC loading tank interaction with the active amplifying device in a
tuned RF amplifier uncovers another interesting and important phenomenon, which is actually the
impedance-matching problem in disguise. At low frequencies, i.e., below resonance ω0, impedance
of the inductor ZL is very low. At the same time, the voltage output is the collector current multiplied
by the overall loading impedance, which is to say that there is insertion loss of the voltage signal
compared with the signal level at resonance ω0, where the loading resistance RD is very high. At
frequencies above resonance, impedance of the capacitor ZC is low with the same voltage dividing
effect on the output voltage level. Intuitively, we conclude that in the case of the ideal LC resonator,
i.e., RD → ∞, there would be no insertion loss. However, resonating tanks are real and their dynamic
resonances are finite and they appear in parallel with the collector resistance RC (which is usually
high).

Being effectively a bandpass filter, insertion loss (IL) is an important figure of merit of an LC
resonator. In general, the overall RF amplifier output resistance ZC consists of the parallel combination
RC||RD,

ZC =
RC RD

RC +RD
= RC

RD

RC +RD
= RC × IL, (7.114)

where, insertion loss IL is defined by the resistive ratio RD/(RC + RD). It is common practice to
express the insertion loss in units of dB, as

ILdB = 20log
RD

RC +RD
dB, (7.115)

where, the ideal case of RD → 0 leads to IL → 0 dB; in any other case, the IL is a negative number of
dBs, with the other extreme of IL →−∞ indicating no power transfer through the LC tank.

7.8 Summary

In this section, we reviewed the fundamental concepts of LF amplifiers and developed intuitive views
of the internal amplifier operation. In our review, we concluded that the important parameters for
any amplifier are its input and output resistance and its gain. We also realized that two basic electrical

9For matching transformers, see Sect. 4.1.7.2.
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variables, voltage and current, determine the total of four possible amplifier transfer functions: voltage
gain Av, current gain Ai, voltage-to-current gain Gm, and current-to-voltage gain AR.

As the first step in amplifier design, gain of the active devices (either BJT or FET) is set by their
DC operating point, and the subsequent signal analysis is simplified by omitting details of the biasing
circuit, i.e., it is simply assumed that the active devices somehow had their gain set. We reviewed
basic circuit configurations for setting up stable DC operating points for the active devices. In the first
approximation, a BJT device is seen as a current amplifier, where the current gain β serves as the
multiplication factor in the relationship between the base and collector currents. After the collector
current is passed through a resistive load RC, which is effectively seen as a current-to-voltage amplifier,
the combination of the two is seen as a Gm amplifier, i.e., input base current is amplified into voltage
across the loading resistor.

Transformation of LF baseband amplifiers into RF amplifiers is done by adding bandpass filtering
stages both at the input and output sides of the LF amplifier. Frequency analysis of RF amplifiers
introduced concepts of Miller capacitance, amplifier stability, and insertion loss.

Problems

7.1. For a single NPN BJT, draw the schematic symbol and indicate potentials at the three terminals,
i.e., the VC, VB, and VE, and their relationship assuming the transistor is turned on, i.e., it is operating
in the forward active region. Repeat the exercise using a PNP BJT.

7.2. Estimate the voltage gain Av for the circuit in Fig. 7.36d if RC = 10kΩ and RE = 100Ω. Express
the result in dB.

7.3. The voltage gain of the circuit in Fig. 7.36d, for RC = 10kΩ, RE = 100Ω, IS = 100 fA, and
VBE = 768.78 mV at temperature T = 25◦C, is recalculated at an operating frequency of f = 10 MHz.
In addition, in parallel with the emitter resistor RE a capacitor C is connected. Estimate the new voltage
gain Av for: (a) C = 1μF and (b) C → ∞. How large is the gain difference for these two cases, in
percentages? How large is the gain difference in comparison with the gain calculated in Problem 7.2?
Can you draw any useful conclusions?

7.4. A signal generator is coupled with the CE amplifier in Fig. 7.36d through a serial capacitor
C = 1μF. Estimate the range of frequencies where the CE amplifier should be used, if RC = 9.9kΩ,
RE = 100Ω, CCB = (1/π)pF, R1 = 2kΩ, R2 = 2kΩ.

7.5. Estimate the range of frequencies where the CE amplifier in Fig. 7.36c should be used, if the
base side inductor L = 2.533 pF, RC = 9.9kΩ, RE = 100Ω, CCB = 1 pF.

Fig. 7.36 Schematic networks for Problems 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7
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Fig. 7.37 Schematic networks for Problems 7.8, 7.9, and 7.10

7.6. For the CE amplifying circuit in Fig. 7.36a, estimate the Miller capacitance CM if RC = 9.9kΩ,
RE = 100Ω, CCB = 1 pF.

7.7. Estimate the input side bandwidth of the CE amplifier in Fig. 7.36b if RC = 9.9kΩ, RE = 100Ω,
CCB = (1/π)pF, R1 = 2kΩ, R2 = 2kΩ.

7.8. For a network shown by the schematic diagram in Fig. 7.37a:

(a) Assuming the base–emitter diode threshold voltage is Vth(BE) = 0 V, i.e., an ideal BE diode, find
value(s) of R2 so that the transistor Q1 is turned on. What potential VC is required at the collector
node C to maintain the saturation mode of operation?

(b) Assuming the base–emitter diode threshold voltage is Vth(BE) = 1 V, i.e., a more realistic BE
diode, find value(s) of R2 so that the transistor Q1 is turned on. What potential is required at the
collector node VC to maintain the saturation mode of operation?

7.9. Estimate impedances looking into the networks in Fig. 7.37b–d.

7.10. What is the required resistor ratio R1/R2 for the network in Fig. 7.37e, so that the transistor Q1

is operating in saturation, if VCC = 10 V and RE = 1kΩ?

(a) assuming the base–emitter diode threshold voltage is Vth(BE) = 0 V, i.e., an ideal BE diode, find
value(s) of R2 so that the transistor Q1 is turned on. What potential is required at the collector
node VC to maintain the saturation mode of operation?

(b) assuming the base–emitter diode threshold voltage is Vth(BE) = 1 V, i.e., a realistic BE diode,
find value(s) of R2 so that the transistor Q1 is turned on. What potential is required at the collector
node VC to maintain the saturation mode of operation?

7.11. In the amplifier in Fig. 7.23, resistors R1 and R2 make Q1 a base voltage divider which should
be set such that their current IR1,2 ≈ 1/10 of IE (ignore the base current).

Data: Voltage gain A = −8, VCC = 9 V, IE≈2ṁA, β = 100, VB = 1/3VCC, RL = 2kΩ, VBE = 0.7 V,
Rsig = 10kΩ, and C = ∞. Estimate:

(a) The base voltage VB

(b) R1 and R2

(c) Théveninresistance at the base node
(d) RE

(e) IC

(f) gm

(g) re

(h) RC

7.12. For the amplifier in Fig. 7.23 and the data below, estimate:
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Fig. 7.38 Schematic for
Problems 7.17 (left)
and 7.13 (right)

(a) Collector resistance RC

(b) Emitter resistance RE

(c) Voltage at the base node VB

(d) Resistance looking into the base Rin

(e) Gate-biasing resistors R1 and R2

(f) Small emitter resistor re

(g) Small resistor R0 for given Av

(h) Emitter capacitor CE for given 3 dB point at the output
(i) Input capacitor C for given 3 dB point at the input
(j) For the component values found in parts (a) to (i), find the voltage gain Av when Vout = 2.5 V.

Data: VCC = 10 V, VBE = 0.6 V, Rth = R1||R2 = 0.1Rin, VT = 25 mV, f3dB = 20 Hz at the output side,
f3dB = 10 Hz at the input side, β = 99, voltage gain Av = −100 when IC = 1 mA, VE = 1 V, and
Vout = 1/2VCC.

7.13. The circuit shown in Fig. 7.38 (right) is a CB amplifier with β = ∞, RC = 7.5kΩ, I = 0.5 mA,
C = ∞, and VCC = 5 V. Estimate:

(a) DC voltage at the collector
(b) gm(Q1)
(c) AC voltage gain, A = vC/vi

7.14. The resistance seen by looking into a BJT emitter is Rout = 100Ω. The resistance looking into
the base is Rin = 100kΩ. For β = 99, find the reflected resistance at the base node and RE. (Note:
ignore re.)

7.15. For a grounded emitter amplifier powered by VCC = 10 V with collector resistor RC = 5.1kΩ,
estimate the voltage gain for: (a) Vout = 7.5 V, (b) Vout = 5 V, (c) Vout = 0.2 V.

7.16. If VBE voltage of a BJT changes by 18 mV, what is the change of IC, expressed in dB? What if
VBE changes by 60 mV? Note: Use kT/q = 25 mV.

7.17. For the amplifier in Fig. 7.38 (left) with C = 1 pF, the small signal voltage gain is A = −99.
Estimate the value of the inductor L so that the input stage resonates at f0 = 15.915 MHz. Assume
base current to be zero.



Chapter 8
Sinusoidal Oscillators

Abstract Communication transceivers require oscillators that generate pure electrical sinusoidal
signals (“tones”) for further use in modulators, mixers, and other circuits. Although oscillators may
be designed to deliver other waveforms as well, e.g. square, triangle, and sawtooth waveforms, if
intended for applications in wireless radio communications, the sinusoidal waveform is probably the
most important one. A good sinusoidal oscillator is expected to deliver either a voltage or a current
signal that is stable both in amplitude and frequency. Because a variety of oscillator structures are
available that are suitable for generation of sinusoidal waveforms, circuit designers make the choice
mostly based on their personal preference for one particular type of oscillator. In this chapter, we study
several oscillator circuits, with emphasis on understanding the underlying principles, rather than very
detailed analysis of any special oscillator type.

8.1 Criteria for Oscillations

Because the amplitude of the signal inside an oscillator circuit may (theoretically) increase infinitely,
that is, the signal amplitude becomes large, we have to accept the conclusion that small signal circuit
analysis is not an applicable method. Large signals imply nonlinear circuits, which means that we have
to apply numerical methods in order to estimate the circuit’s internal states. Consequently, oscillator
design is as much an art as it is engineering. The good news, however, is that almost all oscillator
circuits may be evaluated intuitively using a general block diagram (see Fig. 8.1), which portrays an
oscillator as a closed loop system. In the forward signal path, there is an amplifier with gain A, which
may be either non-inverting or inverting. The feedback path contains a passive network with gain of
β < 1 that controls the overall phase shift around the loop.

In order to develop intuition about the loop operation, we start with the closed loop system that is
shown as an open loop, Fig. 8.1, where the feedback signal vf is disconnected from the signal vi at the
input terminal of the amplifier. By inspection, we write equations,

vo = Avi, (8.1)

vf = β vo = β Avi, (8.2)

which show that, on its journey around the loop, the signal vi first becomes amplified by the amplifier
and then attenuated by the feedback network. From the signal’s perspective, the forward path with
gain A and the feedback path with gain β are perceived as two gain stages in series. Hence, the total
gain along the path is the product of two gains, i.e., A×β . Simply put, in the case when the feedback
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Fig. 8.1 Block diagram of
a basic oscillator feedback
loop

signal vf is in phase (i.e., there is non-destructive addition) with the signal vi and when its amplitude
has increased, i.e., vf > vi, then the initial signal vi is said to be amplified. It is easy to see that under
the given conditions and after the loop is closed, the signal’s amplitude keeps increasing indefinitely
on each cycle around the loop. Therefore, it is logical to make the conclusion that, if the total gain
around the loop is no less than one, the closed loop becomes unstable. That is, the amplifier gain A
must be large enough to compensate for the signal loss in the passive feedback network.

Although control theory offers several commonly used methods for evaluating the stability of
closed loop systems (for instance, the Bode plot, the Routh–Hurwitz stability criterion, root–locus
analysis, and the Nyquist stability criterion are applicable to linear, time-invariant (LTI) systems
and the Lyapunov stability criterion applies to nonlinear dynamic systems), none of these criteria
is universal. In practice, we usually use more than one of the criteria to reach a conclusion about the
system’s stability. For the purposes of determining under what conditions a linear electronic circuit
oscillates, we introduce the intuitive (and also non-perfect) “Barkhausen Stability Criterion”, which
states that, if a feedback circuit is to maintain oscillations, then

• The net gain around the feedback loop must be no less than one, i.e., |Aβ | ≥ 1.
• The net phase shift around the loop must be a positive integer multiple of 2π radians, or n× 360◦

(where n is an integer).

The Barkhausen Criterion is a necessary but not sufficient condition for oscillation. Both A = A(ω)
and β = β (ω) are frequency dependent, therefore the conditions listed in the Barkhausen Criterion
are satisfied at the same time only at a single frequency. There are, therefore, two necessary conditions
for sustaining the loop oscillations: one related to the loop gain and one to the phase shift. In practical
designs, of course, the initial loop gain must be greater than unity in order to increase the probability
that the circuit can actually start oscillating, i.e., in a well-designed oscillator there should be no
problem for the circuit in starting the oscillations on its own. In addition, it is necessary to build in
some kind of mechanism to keep limiting the amplitude of the oscillation, so that the output signal
does not become clipped or distorted.

From the block diagram of a general feedback amplifier, Fig. 8.2 (left), by inspection we write the
loop transfer function as:

vo = A(vin +β vo),

∴
vo

vin
=

A
1−β A

. (8.3)

Naturally, this loop transfer function reveals the instability condition (i.e., oscillation) if β A = 1 and
thus gives the same result as the previous intuitive analysis. Hence, an oscillator may be thought of as
a positive feedback amplifier that is intentionally made unstable. This means that any small voltage
internally generated, for example, by thermal noise, rapidly builds up to a large amplitude voltage at
the output node of the closed loop system.

Our simplified methodology for closed loop analysis is based on establishing the open loop
parameters first. At the end of the active forward signal path, the amplifier perceives the passive
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Fig. 8.2 A general closed loop showing injected noise (left); an oscillator closed loop (centre); and its equivalent open
loop model (right)

feedback network as the load Zeff, which is equivalent to the feedback network’s input impedance,
Fig. 8.2 (centre). This is a good time to note that a closed loop system is a one-port network, i.e.,
the only output terminal is at the oscillator circuit. We keep in mind that under the right conditions
the internal thermal noise is sufficient to serve as the initial “input signal” until the loop starts to
oscillate. To continue our simplified methodology, as we already know, in order to correctly calculate
Zeff impedance, we must take into account the amplifier’s input impedance because it does affect the
value of Zeff = f (Zin), Fig. 8.2 (centre). Using the open loop model enables us to estimate the loop gain
by applying a signal that varies (in both amplitude and frequency) to the amplifier’s input terminal and
measuring the signal vout at the output node, Fig. 8.2 (right).

8.2 Ring Oscillators

A simple example of a closed loop circuit that can generate a square pulse waveform is based on the
signal propagation delay through a chain of inverters by using the principle of an inverting amplifier
that is driving its own input terminal. If we observe the input terminal of the first inverter at an arbitrary
point in time t0 and if, for the sake of argument, we observe a positive pulse, we could “join” the pulse
on its trip around the loop, Fig. 8.3 (top). After propagating through the first inverter the pulse becomes
negative; after propagating through the second inverter the pulse is switched to positive again. It is
straightforward to generalize and conclude that after every even inverter stage the pulse has as same
polarity as the one at the first input, while after every odd inverter stage the pulse has the opposite
polarity. Therefore, we conclude that for a chain of (2n+ 1) inverters, a signal with opposite polarity
takes Δ t = (2n+ 1)td seconds to travel around the loop and change the signal polarity at the input of
the first inverter. The full period of a periodic signal is measured between two falling or two rising
edges, hence a ring oscillator produces a square signal whose period is T = 2 (2n+ 1)td seconds,
where td is the signal propagation time through each stage, Fig. 8.3 (bottom). We should note that the
“output” terminal is chosen arbitrary: it could be taken from any point around the loop.

Example 8.1. An average propagation delay through a single inverter gate is estimated as td =
0.998 ns. How many inverter gates are needed to design a ring oscillator working at f = 1 MHz?

Solution 8.1. A 1 MHz signal is equivalent to the period of T = 1μs. Therefore, we calculate the
number of required gates as

T = 2 (2n+ 1)td ∴ n =
1
2

(
T

2 td
− 1

)
=

1
2

(
1μs

2× 0.998ns
− 1

)
= 250,

where, the “average” delay is determined by characterization of a large number of manufactured
digital gates in a given process.
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Fig. 8.3 Ring oscillator
schematic diagram

Ring oscillators are often used in IC technology as sensors of process variations. The oscillator
frequency depends upon the propagation delay of each inverting stage. Further, the stage propagation
time depends upon the internal capacitances and resistances, which are very much process dependent.
Therefore, by measuring the output frequency we are able to quantify the process variation.

8.3 Phase-Shift Oscillators

The oscillator architecture that probably best illustrates the use of the Barkhausen Criterion is known
as a “phase-shift oscillator” (see Fig. 8.4). An inverting amplifier with gain A = −a that is used in
the forward signal path is assumed to have infinite input resistance, i.e., there is no current flow into
its input terminal. The feedback network with gain β consists of a classical RC ladder network of
at least three RC sections. Although, this feedback network arrangement is also occasionally found
with R and C interchanged, the arrangement shown here is more common. To satisfy the Barkhausen
Criterion, a feedback path phase shift of exactly 180◦ is required in order to align the feedback signal
with its initial phase, because the inverted amplifier gain introduces a first signal inversion of 180◦.
Therefore, the frequency of oscillation is equal to the frequency at which the phase shift introduced
by the RC network is exactly 180◦.

Systematic analysis of the ladder network starts at output node �3 of the network, which can be
treated as the output node of the passive feedback path, and progresses back to input terminal �0 of
the feedback path. Hence, by inspection of network in Fig. 8.4, we write

i3 =
v3

R
v2 = v3 +

1
jωC

i3 = v3 +
v3

jωRC
, (8.4)

i2 =
v2

R
v1 = v2 +

1
jωC

(i2 + i3) = v3 +
3v3

jωRC
− v3

(ωRC)2 , (8.5)

i1 =
v1

R
v0 = v1 +

1
jωC

(i1 + i2 + i3) = v1 +
(v1 + v2 + v3)

jωRC

= v3 +
6v3

jωRC
− 5v3

(ωRC)2 − v3

j(ωRC)3 , (8.6)

therefore,

v0 =

[
v3 − 5v3

(ωRC)2

]
+ j

[
v3

(ωRC)3 − 6v3

ωRC

]
= ℜ(v0)+ jℑ(v0). (8.7)
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Fig. 8.4 Simplified
schematic diagram
of a phase-shift oscillator

The Barkhausen Criterion requires that the total phase shift around the loop should be exactly 2π ,
which means that the imaginary term ℑ(v0) in (8.7) must equal zero, i.e.

ℑ(v0) = 0 ∴ v3

(ωRC)3 − 6v3

ωRC
= 0 ∴ ω0 =

1√
6RC

, (8.8)

which defines the oscillation frequency. Substituting (8.8) into (8.7) gives:

v0 = v3 − 5v3

(1/
√

6RC)2 (RC)2
∴ v3

v0
=− 1

29
= β . (8.9)

This is a very surprising result indeed: (8.9) states that the feedback path has a gain that is independent
of the component values, i.e., β = 1/29. Following the Barkhausen Criterion |β A| = 1, we conclude
that for this type of phase-shift oscillator, we must design the amplifier with inverting gain of at least
A =−29. If the amplifier used inside the phase-shift oscillator has less than infinite input impedance,
as would be the case for a real BJT amplifier, the derivations above would need to be modified. The
modified equations are more difficult to solve and do not provide any further insight into this oscillator,
hence they are omitted here.

Example 8.2. Estimate the minimum gain in dB of an inverting amplifier used in a phase-shift
oscillator (Fig. 8.4).

Solution 8.2. To a first approximation, the oscillator loop gain must be at least one, hence the amplifier
must compensate for the passive network attenuation of β = 1/29 =−29.25 dB, by adding its own gain
of A =+29.25 dB.

Aside from being very good educational examples, phase-shift oscillators are used mostly at audio
frequencies because the ladder network becomes impractical at higher radio frequencies.

8.4 RF Oscillators

Our introduction and treatment of RF oscillators follows a slightly different path from most textbooks.
We first analyze four general RLC types of passive feedback network and then we use them inside
some of the most common RF oscillator topologies. Although there is an infinite number of feedback
network topologies that could be used in oscillators, if we impose the constraint that a minimal number
of components is used, then only a small number of network topologies are suitable in the feedback
path of an RF oscillator.

8.4.1 Tapped L, Centre-Grounded Feedback Network

Let us consider an RLC feedback network (see Fig. 8.5), making the following assumptions:

• The network operates near its resonant frequency .
• The Q factor is high, i.e., ten or higher.
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Fig. 8.5 Tapped L,
centre-grounded network
(left), and its equivalent
representation for the
energy dissipation
calculations (right)

• Inductors L1 and L2 are not coupled.
• The network’s Q factor is the effective Q of L1 +L2.

A further assumption is that the inductors have equal values of Q factor.
In Sect. 8.1, we discussed a general model of a feedback loop (Fig. 8.2) and concluded that, in order

to characterize the feedback network, the following three parameters are required: the loop’s resonant
frequency ω0; the passive feedback path voltage gain β ; and the effective input resistance Reff of the
feedback network.

In order to evaluate the resonant frequency ω0, we need to recognize that the resonating current i
stays within the L1, L2, C loop (see Fig. 8.5). The inductance of two inductors in series equals the sum
of the two inductances, therefore we write:

ω2
0 =

1
(L1 +L2)C

. (8.10)

The fact that the LC loop is tapped at two points (at the small signal ground between the two inductors
and at the top of the loading resistor) does not influence the value of the resonant frequency—it is set
by the total LC in the loop, as we concluded in Sect. 5.2.

The voltage gain β = vout/vin of the feedback network can be evaluated as follows. At the resonant
frequency, assuming a high Q factor, most of the power just circulates around the loop between the
inductors and the capacitor (due to low thermal losses). The circulation of power around the resonant
circuit may be represented by the continuous current i shown in Fig. 8.5 (left).

By inspection, we write the network equations as:

vin = i jωL2 vout =−i jωL1 ∴ β =
vout

vin
=

−i jωL1

i jωL2
=−L1

L2
, (8.11)

that is, the voltage gain β of a tapped L, centre-grounded feedback network is set by the inductive
voltage divider.

Calculation of the effective resistance Reff is a bit more complicated, due to its dependence upon
the amplifier’s input resistance value, which is modelled as the loading resistor RL in Fig. 8.5 (left).
Keep in mind that the input node of a feedback network is the one which is connected to the output
node of the amplifier, while the output node of the feedback network is loaded by the input impedance
of the amplifier, Fig. 8.2 (left). As already found, at resonance, the effective resistance Reff of an LC
resonator is purely resistive. Moreover, the resonator is loaded by impedance RL (i.e., input impedance
of the amplifier). One way of calculating the effective input impedance Reff of the feedback network,
which is a function of the load impedance, is by power calculation.

The total RMS power that is being put into the network is,

Prms(in) =
v2

in

2 Reff
. (8.12)

Mathematically, we can imagine that the total input power is split between two effective resistances
as follows.



8.4 RF Oscillators 227

One part of the input power is delivered to the external load impedance RL at the output. After
substituting (8.11), we write

Pext =
v2

out

2 RL
=

[
vin

(
− L1

L2

)]2

2 RL
=

v2
in

(
L1
L2

)2

2 RL
=

v2
in

2 RL

(
L2
L1

)2 =
v2

in

2 Reff
,

∴

Reff 1 = RL

(
L2

L1

)2

. (8.13)

Due to the finite Q factor, some of the total input power is dissipated in the internal LC circuit.
At resonance, the LC resonator is equivalent to its dynamic resistance RD = Qω(L1 + L2) that is
effectively connected between the top and the bottom of the LC circuit, i.e., between the input and
output nodes in Fig. 8.5. Hence, the power Pint dissipated in this resistor is

Pint =
v2

RD

2 RD
=

(vin − vout)
2

2Qω(L1 +L2)
=

[
vin + vin

(
L1
L2

)]2

2Qω(L1 +L2)

=
v2

in(L1 +L2)

2QωL2
2

=
v2

in

2
QωL2

2
L1+L2

,

∴

Reff2 =
QωL2

2

L1 +L2
. (8.14)

Thus, from the input power perspective, because we referenced both powers Pint and Pext relative
to the input voltage vin, it is being dissipated into two separate, parallel effective impedances, Reff1

and Reff2. Because both of these power dissipations occur simultaneously, the input power must be the
sum of the two effective powers:

Pin = Pin1 +Pin2 =
v2

in

2Reff
=

v2
in

2(Reff1||Reff2)
=

v2
in

2
(

1
Reff1

+ 1
Reff2

) . (8.15)

Note that, from the power distribution perspective, the effective resistors are combined in parallel.
Hence, the effective input impedance is estimated as

Reff = Reff1||Reff 2 = RL

(
L2

L1

)2

|| QωL2
2

L1 +L2
. (8.16)

Equations (8.10), (8.11), and (8.16) define the three main parameters of a tapped L, centre-
grounded feedback network. The oscillator design process now can be split into two parts: the
amplifier design for the forward signal path and the passive RLC network design. In order to acquire
a complete set of commonly used feedback networks, we need to define three additional network
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Fig. 8.6 RLC network configurations: tapped C, centre-grounded (left); tapped L, bottom-grounded (middle); and
tapped C, bottom-grounded network (right)

configurations. The derivation process for the three main parameters of those network configurations
is the same as the derivation process for the tapped L, centre-grounded feedback network. Therefore,
the derivations of the formulas for ω0, β , and Reff for these RLC networks (see Fig. 8.6) are left as an
exercise to the reader. Equations (8.17)–(8.25) complete the set of design parameters for passive RLC
feedback networks that enable us to design commonly used RF oscillators.

8.4.2 Tapped C, Centre-Grounded Feedback Network

Figure 8.6 (left) shows this type of feedback network. The equations for its main parameters are:

ω2
0 =

C1 +C2

LC1C2
, (8.17)

β =−C2

C1
, (8.18)

Reff = RL

(
C1

C2

)2

|| QωL

(
C1

C1 +C2

)2

. (8.19)

8.4.3 Tapped L, Bottom-Grounded Feedback Network

Figure 8.6 (centre) shows this type of feedback network. The equations for its main parameters are:

ω2
0 =

1
C(L1 +L2)

, (8.20)

β =
L1

L1 +L2
, (8.21)

Reff = RL

(
L1 +L2

L1

)2

|| Qω(L1 +L2). (8.22)
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Fig. 8.7 A tuned primary transformer network (left) and its equivalent network (right)

8.4.4 Tapped C, Bottom-Grounded Feedback Network

Figure 8.6 (right) shows this type of feedback network. The equations for its main parameters are:

ω2
0 =

C1 +C2

LC1C2
, (8.23)

β =
C2

C1 +C2
, (8.24)

Reff = RL

(
C1 +C2

C2

)2

|| QωL. (8.25)

8.4.5 Tuned Transformer

An additional type of feedback network that is a member of the same family of RLC networks is the
“tuned transformer”, which is also very often used in RF sinusoidal oscillators. A tuned transformer is
a type of passive feedback network that uses the primary, the secondary, or both transformer coils in
parallel with their respective capacitors to create LC resonator tanks. A tuned transformer is said to be
either inverting or non-inverting depending upon the relative orientation of the primary and secondary
coils. These properties indicate that a transformer is very versatile device that allows for almost
arbitrary ratios of the primary inductance LP to the secondary inductance LS, with the additional level
of freedom to introduce a phase shift of either 0◦ or 2π between the primary and secondary sides.

In our brief analysis of non-inverting, primary tuned transformers, Fig. 8.7 (left), we make the
following assumptions:

• The coupling factor k (0 ≤ k ≤ 1) between the primary and secondary is low, i.e., k � 1. Therefore,
the loading effect of the primary on the secondary, and vice versa, may be ignored.

• The output load resistance is much greater than the secondary impedance, i.e., Rout � ωLS. If this
condition is not true, an additional phase shift is induced and the frequency of oscillation is different
from ω0.

In the equivalent circuit diagram, Fig. 8.7 (right), coupling between the primary and the secondary
is represented by the AC voltage source in the secondary branch. The dashed vertical line indicates
that the secondary and the primary are separate circuits. The three parameters of tuned transformer
feedback network are determined as follows.
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Fig. 8.8 Tuned secondary
transformer network

In order to determine the voltage gain factor β , we start by writing an expression for current in the
primary network as

iP =
vin

ZP
=

vin

jω LP
, (8.26)

which induces voltage in the secondary:

vind =±jωM iP =±jωM
vin

jω LP
=± M

LP
vin, (8.27)

where the± sign indicates the phase difference between the primary and the secondary, which depends
on the orientation of the transformer coils, and M = k

√
LPLS is the mutual inductance. If the condition

Rout � jωLs is satisfied, then it follows that

vout = vind, (8.28)

which, after substituting (8.28) into (8.27) and rearranging, yields an expression for the voltage gain
of the tuned amplifier as

β =±M
LP

. (8.29)

The effective resistance Reff of this network is approximately just the impedance of the primary,
because we assumed k � 1. Therefore, at resonance, we write

Reff ≈ QPω0 LP, (8.30)

where, QP is the Q factor of the primary transformer.
The resonant frequency ω0, we simply write as

ω2
0 =

1
LPC

. (8.31)

Let us take a brief look at the case of a tuned secondary transformer network (Fig. 8.8). The analysis
is similar to the previous case and it leads to the following expressions for the three parameters of the
network:

ω2
0 =

1
LS C

, (8.32)

β =± jMQSeff

LP
, (8.33)

Reff = jω LP. (8.34)

The assumptions made in this section are often not used in textbooks, which are usually for a
specific type of oscillator network.
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8.5 Amplitude-Limiting Methods

Let us stop for a moment here and ask the following questions:

• If noise, with its infinite frequency spectrum, is responsible for starting the oscillation process, how
is it that at the output terminal we see only a single tone?

• If the output signal is amplified with each pass through the loop, what keeps its amplitude stable
and finite in real circuits?

To answer the first question, we recall that although the internal thermal noise is responsible for
providing the initial stimulus to the input terminals of the forward path amplifier, the feedback RLC
path is designed to be a very selective bandpass network (by means of the high Q factor). Hence,
of all possible tones from the noise frequency spectrum only the one with frequency equal to ω0

is actually amplified, while all other tones are suppressed. That frequency-selection behaviour of
oscillator feedback is the key property of any oscillator circuit.

Now that we have determined intuitively how an oscillator locks on a single tone, the second
question needs to be answered. We have already concluded that, in order to start oscillations, it is
necessary to design the loop gain larger than unity. Consequently, immediately after powering up
the oscillator, the output signal amplitude increases with each passing cycle. Eventually, if the gain
stays constant, the output signal becomes a non-sinusoidal (i.e., square) waveform with amplitude
that theoretically increases indefinitely. Therefore, in order to generate a non-distorted sinusoidal
waveform, some form of amplitude-limiting mechanism is required that prevents the signal amplitude
from becoming too large. A few amplitude-limiting schemes are introduced below.

8.5.1 Automatic Gain Control

This is one of the most elaborate and complicated methods for limiting the signal amplitude and
it produces the best amplitude control overall. It consists of additional circuitry that measures the
output signal amplitude and compares it to the desired amplitude. The error signal is fed back to the
amplifier part of the oscillator causing it to either increase or decrease its gain. There are a number
of ways to implement this scheme. Indeed, many commercial IC amplifiers provide automatic gain
control (AGC) mechanism indicating that this method is very attractive for high-quality designs. We
leave details of AGC circuits for a more advanced course.

8.5.2 Clamp Biasing

This method is particularly useful in FET oscillators where, by design, it is possible to limit, i.e., to
“clamp”, the positive voltage peaks at a level of one diode voltage drop above ground. Depending
on the device and the actual implementation, the method may introduce a slight distortion of the
waveform that needs to be “cleaned up” by a tuned circuit in order to achieve a good sine wave. The
importance of this form of biasing is that it provides a form of AGC which is particularly useful in an
oscillator.
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8.5.3 Gain Reduction with Temperature-Dependent Resistors

This method is commonly used in audio oscillators and is a bit more complicated, however the output
waveform is less distorted. It is, therefore, suitable for oscillators without a tuned circuit (e.g. phase-
shift oscillators). It uses devices whose resistance is dependent on temperature, such as thermistors or
small light bulbs. As these devices become heated by the increasing amplitude of the oscillations, they
reduce the feedback signal. By careful design, schemes using these devices can produce amplitude-
stable oscillators with clean sine waveforms.

8.5.4 Device Saturation with Tuned Output

The gain transfer characteristics of many active devices is such that, for a given biasing point, the gain
is somewhat reduced as the signal amplitude becomes greater. By designing the feedback network
such that the gain is adequate only for low amplitude signals, the device may have inherent properties
that provide suitable amplitude limiting as the signal becomes larger. The most drastic type of
distortion occurs when the output signal becomes much too large and the nonlinear characteristics of
active devices lead into some degree of clipping or squaring of the waveform. However, the frequency
spectrum of a square wave whose amplitude is 1Vpp contains the fundamental tone whose amplitude
is 4/π Vpp, i.e., slightly greater than the PP amplitude of the square wave. Provided there is a tuned,
high-Q, resonant circuit after the node where the clipping occurred, a reasonably clean sine wave can
be extracted from the square wave. Thus, in many applications the device itself contains a suitable
built-in form of amplitude limiting.

8.6 Crystal-Controlled Oscillators

Piezoelectric crystalline materials, quartz being one of the best known, exhibit reciprocal properties
relative to their mechanical and electrical behaviour. That is, if an electric potential is applied across a
thin sheet of piezoelectric crystal, it physically bends. In return, if a piezoelectric crystal is physically
deformed, then the internal electrical charges are separated and a voltage is produced across its
plates. Consequently, if a sinusoidal electrical signal with frequency that is equal to the crystal’s
mechanical resonant frequency is applied across its plates, then a sheet of piezoelectric crystal
exhibits both electrical and mechanical resonance. Moreover, the mechanical resonant frequency is
very stable and can be controlled over several orders of magnitude by precisely cutting the quartz
sheet into specific shapes and dimensions. Typical values of the fundamental tone resonant frequency
are from low amounts of kHz to about 50 MHz. For higher frequencies, the physical dimensions
of the crystal become too small and higher-order resonant tones are used instead. Crystal with a
fundamental resonance at 30 MHz can also be used at 60 MHz, 90 MHz, 120 MHz, and sometimes
even at 150 MHz.

The resonant frequency stability of ordinary crystals at room temperature is in the order of about
one part in a million (1 ppm); an order of magnitude improvement in stability can be achieved if the
crystal is mounted inside a temperature-controlled oven. By using special technologies, the upper
achievable limit of frequency stability for crystals is about 0.1–1 ppb, i.e., less than one part in
a billion. To put it in perspective, 0.1 ppb is equivalent to a ratio of 1010, which is equivalent to
approximately 1 s in 300 years. Not surprisingly, the main application of piezoelectric crystals in
electronics is to serve as timing references for clock signals. Although the manufacturing process
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Fig. 8.9 The symbol for a
quartz crystal (left); a basic
electrical model (centre);
and a model for
dual-frequency overtone
operation (right)

of crystals is not difficult by modern standards, in practice it is common that the crystals are
manufactured to precisely match several “standard” reference frequencies that are commonly used
in wired and wireless communications. Of course, modern circuits operate at frequencies far higher
than the above-mentioned 150 MHz overtone. In addition, the crystal’s resonant frequency is fixed
by its physical dimensions (i.e., the resonant frequency is precise but is not tunable); by itself, crystal
produces very tiny currents meaning that it always needs some active buffering circuit that improves its
driving capability. Various frequencies are derived from the crystal reference frequency by means of a
closed loop circuit known as a “phase-locked loop” (PLL). In Chap. 10, we study this very important
circuit topology in more detail.

Accurate behavioural modelling of piezoelectric crystals requires that a set of differential equations
describing both mechanical and electrical properties is solved, which is usually done numerically
using modern multiphysics simulators. In our work, however, we are concerned only about the
electrical properties of the crystals, which may be described in terms of a passive RLC electrical
network (Fig. 8.9). A typical simple electrical model is based on a serial RLC branch in parallel
with a small capacitor, Fig. 8.9 (centre); more complex models include the overtone modes of crystal
operation. For instance, typical values used in this model for a 1.6 MHz crystal are as follows: L =
250 mH, r = 25Ω, therefore Q = ωL/r = 2,000. Note that, for the frequency of operation, this is a
very high value of the inductance, which is combined with a small internal resistance r to yield a high
Q factor. However, it is the mechanical property of the crystal, rather than the electrical property, that
gives this equivalent high inductance value. The remaining model parameters are C = 0.04 pF and
C1 = 4 pF.

Because of the two parallel branches, there are two possible resonant frequencies: a series
resonance that is determined only by the serial branch of the equivalent circuit in Fig. 8.9 and a parallel
resonance determined by both the series branch and the parallel capacitance C1 (Fig. 8.10). In order to
demonstrate these two important resonant modes of a crystal, let us evaluate our example model. The
series resonance is approximately

ωs =
1√
LC

= 1.000× 107 rad/s ∴ fs = 1.592MHz. (8.35)

In the parallel resonance mode, the capacitances are perceived as being in series around the resonant
loop, which yields resonant frequency of

ω0 =
1√

LC1C
(C1 +C)

= 1.005× 107 rad/s ∴ f0 = 1.599MHz. (8.36)

Note that these frequencies are very close to one another, about 0.5% apart in this example. This
narrow separation is widened when the crystal is used in an LC resonant tank to increase its Q factor
and that clearly determines whether the crystal is used in series or in parallel mode. Aside from
this important property of dual resonant frequency, we also need to examine how the impedance
of a piezoelectric element behaves at frequencies in proximity to these two resonant frequencies,
Fig. 8.10 (right). At frequencies below the serial resonance ωs the crystal reactance is dominated by



234 8 Oscillators

Fig. 8.10 Impedance of a
crystal showing series and
parallel resonances

Fig. 8.11 Crystal-
controlled oscillators: in
series (i.e., low impedance)
mode (left) and in parallel
(i.e., high impedance)
mode (right)

the large serial capacitance, i.e., it is negative. At the serial resonant frequency ωs the reactance is
zero (i.e., ZL = ZC) and the overall impedance is at its minimum close to zero, i.e., Z = r. Between
the two resonant frequencies, the reactance is inductive and tends to infinity (in reality, a very high
value), while the overall impedance follows the trend. At the parallel resonant frequency, ω0 the
overall impedance is at its maximum. Above the parallel resonant frequency, the reactance is again
negative and the overall impedance decreases. It is very important to recognize that serial resonance
is associated with minimum overall impedance and parallel resonance is associated with very high
impedance; this determines how crystals are used in oscillator circuits.

Many different oscillator circuit arrangements use crystals. However, the general rule is that the
low impedance mode (i.e., at series resonance) is used when the crystal is connected in series with
the other elements (the two diagrams on the left of Fig. 8.11) and the high impedance mode is used in
parallel with other circuit elements (the two diagrams on the right of Fig. 8.11). In other words, aside
from controlling the oscillator’s resonant frequency, insertion of a crystal into an oscillator should
cause minimum interference with its internal voltages and currents.

8.7 Voltage-Controlled Oscillators

The ability to generate a single-tone, sinusoidal waveform with precisely controlled frequency is
of vital importance for wireless communication systems and much engineering effort has gone
into designing various forms of oscillator. However, communication systems require more than
just one specific value of the frequency. For instance, every radio and TV receiver is capable of
receiving signals from more than one transmitting station. As we already know, in order to select
the desired station, we must tune the receiver to the particular frequency associated with the station.
Another station uses another frequency. If we were only able to design an oscillator circuit capable of
delivering a single frequency, we would either need to carry one radio receiver unit for each station to
which we would like to listen or our receivers would be very bulky and complicated indeed. Obviously,
that is not the case; we invented frequency-tunable oscillators whose output frequency depends on
a control variable, either voltage or current, i.e., ω0 = f (Vctrl, Ictrl). Tunable oscillators are a key
component of PLL circuits (Chap. 10). The resonant frequency of an LC resonator is determined by
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Fig. 8.12 Rotary air-gap variable capacitor used on radios for tuning the RF stage and the local oscillator. The
overlapping capacitor area varies with the angle of rotation. Each pair of static and rotating plates makes one capacitor—
there are five pairs in this image

component values of the inductor L and the capacitor C that are used in the resonator tank. Therefore,
frequency tunability (or simply, “tunability”) is achieved by varying the value of the inductance, the
value of the capacitance or both. In principle, there are two possible ways of implementing a variable
capacitor or inductor.

The “discrete” method simply means that a bank of serial or parallel components is connected
and each component is independently switched in or out of the network. Obviously, this method is
feasible only with a finite number of components and switches, hence it can deliver only a discrete set
of component values. If a relatively fine change of the capacitive or inductive value is achieved with
each switching step, then it is sometimes referred to as a “quasi-continuous” method.

A truly “continuous” method means that a component is capable of physically changing its value
smoothly in response to the control variable. For instance, a rotary variable capacitor (Fig. 8.12) is
created by mechanically controlling the overlapping area between two plates of a capacitor. According
to (4.14) the capacitance of a plate capacitor is a linear function of the capacitor’s surface area S, which
means the overlapping area between the two plates.

Both methods of creating variable components (discrete and continuous) are used in practice. From
a practical perspective, it is much easier to design and manufacture tunable capacitors than tunable
inductors. Indeed, for over 100 years, the rotary variable capacitor was used almost exclusively for
continuous tuning of LC resonators in commercial radio receivers. As you have already noticed, this
kind of capacitor is very bulky and long ago it became the largest component by far inside a radio
receiver. This implies that the mechanical rotary capacitor is not suitable for miniaturization and
higher frequencies. This is further limited because tunability is achieved by manual control of a knob.
Although miniature versions of fundamentally the same design, the trimmer capacitor, are still in
use for semi-permanent tuning of radio receiver sections, modern high-frequency (HF) oscillators are
based on a semiconductor device known as a “varicap diode” (varactor). At the same time, design of
miniature variable inductors is still in the research domain, with some progress being made mostly
due to advances in micro-electro-mechanical system (MEMS) technologies.

Capacitance CD of a reverse biased p–n junction is a nonlinear function of the applied junction
voltage VD as

CD =
C0(

1− VD
φ

)α ∴ CD ≈ C0√
1+ |VD|

0.5

, (8.37)

where C0 is the diode capacitance at zero bias VD = 0, φ ≈ 0.5 is the contact potential of the
p–n junction, and α is either 1/2 for idealized abrupt p–n junctions or 1/3 if the p–n junction is
approximated by a linear function. As a first approximation, α = 1/2 is assumed. Even though (8.37)
is a nonlinear function CD = f (VD), it is important to note that the capacitance is electronically



236 8 Oscillators

Fig. 8.13 Varicap diode
functional dependencies of
capacitance and its reverse
biasing voltage VD (left);
resonant frequency
dependence of an LC
resonator and varicap
capacitance (right)

Fig. 8.14 LC resonator
tuning by means of a
varicap control voltage VD

controlled by its biasing voltage, Fig. 8.13 (left), which is then used to control the resonance of an
LC resonator, Fig. 8.13 (right). Hence, electronic control of LC tank resonant frequency ω0 = f (VD)
is achieved. In addition, the p–n junction capacitance CD is relatively small and is manufactured using
IC technologies. Hence it is suitable for applications in HF integrated voltage-controlled oscillators
(VCO).

A simplified schematic diagram (Fig. 8.14) of an electronically tunable LC resonator shows a
varicap capacitor CD and its DC biasing voltage VD connected to an LC resonator tank through a
large capacitor. The role of the C∞ capacitor is to decouple the DC voltage VD that keeps varicap CD

reverse biased without interfering with the biasing of the BJT current source. From an AC perspective,
the varicap CD is connected in parallel with the resonator capacitor C, hence the resonating frequency
is calculated as

ω0 =
1√

L(C+CD(VD))
∴ ω0 = f (VD). (8.38)

Now that we understand how a varicap diode is used in an LC resonator tank to control its resonant
frequency, let us take a look at a simplified schematic diagram (Fig. 8.15) of a VCO circuit that
incorporates, for instance, a tapped C bottom-grounded passive feedback network (see Fig. 8.6 (right))
with a CB amplifier (see Fig. 7.6). In order to implement electronic control of its resonant frequency,
a varicap diode is added1 in the LC resonating loop, which is perceived by the loop as being in
series with the C1 and C2 resonator capacitors. The CB amplifier is biased through an RFC inductor
that provides DC connection and, at the same time, AC decoupling from the power supply line. In
textbooks, an oscillator configuration that uses a tapped C, bottom-grounded feedback network is
usually referred to as a “Clapp oscillator”.

In the first approximation, i.e., ignoring parasitic elements, the resonant frequency of the oscillating
current is approximately set by the passive feedback network only. Capacitors C1 and C2 are in series,
hence their equivalent capacitance CS is

1For simplicity, varicap DC biasing is not shown.
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Fig. 8.15 A VCO that
uses a CB amplifier in the
forward path and a tapped
C, bottom-grounded
network in the feedback
path

CS =
C1C2

C1 +C2
. (8.39)

It, in turn, is in series with the varicap, hence the total equivalent capacitance C in the LC loop is
written as

C =
CDCS

CD +CS
∴ ω0 =

1√
LC

. (8.40)

For all practical purposes, we can look at a VCO as a voltage-to-frequency converter. That being
the case, we need to find out how sensitive the output frequency is, relative to the change of varicap
biasing voltage VD. Indeed, this sensitivity is one of the most important parameters of a VCO; it
is known as the “frequency deviation constant”. Mathematically speaking, the frequency deviation
constant is determined by derivative of the frequency with respect to the varicap biasing voltage, i.e.

k =
dω
dVD

=
dω
dCD

dCD

dVD
, (8.41)

where, the two derivative terms are derived separately. After substituting (8.37), the second derivative
term is2

dCD

dVD
=

d
dVD

(
C0√

1+ 2VD

)

=− C0

(1+ 2VD)
√

1+ 2VD
=− CD

1+ 2VD
∴ =− CD0

1+ 2V0
(8.42)

after varicap diode capacitance CD is used at a specific biasing voltage V0. The first derivative term in
(8.41), after substituting (8.40) and rearranging the terms and setting a specific biasing voltage V0, is
written as

2We keep in mind that the absolute value of biasing voltage is |VD|=VD.
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dω
dCD

=− ω0

2CD0

(
1+ CD0

CS

) . (8.43)

It is handy to express (8.43) in terms of the ratio n of varicap capacitance relative to the series
capacitance CS, i.e., as CD0 = n CS and rewrite it as

dω
dCD

=− ω0

2 (1+ n)CD0
(8.44)

then, after substituting (8.42) and (8.44) back into (8.41), we write

k =
dω
dCD

dCD

dVD
=

[
− CD0

1+ 2V0

] [
− ω0

2 (1+ n)CD0

]

=− ω0

2(1+ n)(1+ 2V0)
. (8.45)

The last expression is very useful for estimating the voltage-to-frequency conversion factor for a Clapp
oscillator.

Example 8.3. For a given LC Clapp oscillator whose resonant frequency is set to ω0 = 2π 10 MHz
by varicap diode voltage of V0 = 6 V. The ratio of varicap capacitance to the serial capacitance in the
resonator tank is n = 0.1. Estimate the frequency deviation constant of this oscillator.

Solution 8.3. A straight implementation of (8.45) results in

k =− ω0

2(1+ n)(1+ 2V0)
=− 10MHz

2(1+ 0.1)(1+ 2×6V)
= 349.650

kHz
V

.

We conclude that, for each volt of change in varicap bias, the oscillator resonant frequency moves
about 350 kHz, which means that, for the given power supply of 6 V, we can count on no more
than approximately 2 MHz or so of total frequency change, i.e., the expected frequency range
approximately 9–11 MHz for this particular VCO design.

8.8 Time and Amplitude Jitter

A realistic periodic waveform produced by an oscillator suffers from a short-term frequency
fluctuation that is referred to as “phase noise”. At the same time, amplitude variations of the waveform
are always present to a certain extent. For instance, an oscillator’s sinusoidal output with phase
variations θ (t) and amplitude variations A(t) may be expressed as

vs(t) =Vs[1+A(t)] sin[ωct +θ (t)], (8.46)

where Vs is the average peak voltage of the output signal. The phase and amplitude variations may
be random or discrete or both. Individual spectral components at the oscillator output are referred
to as “spurious responses”; noise, in this context, refers to the random variations of both frequency
and phase. The engineering term for these random variations is “jitter”. A very useful and practical
method for estimating the amplitude and time jitter of a periodic signal with period T is to create an
“eye plot” (Fig. 8.16). Instead of plotting a waveform from time zero to the last data point, the full data
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Fig. 8.16 Eye diagram of
a long waveform showing
time and amplitude jitter.
The periodic waveform is
split in sections each half a
period long, i.e., T/2, and
overlapped

vector is split into sections so that each section contains a set of data only half a period long. Then,
all sections are overlapped (similar to a deck of playing cards). The newly created plot looks similar
to an open eye if the amount of jitter is not too excessive. Amplitude jitter becomes clearly visible
and easily measurable on the vertical axis, while timing jitter is easily measured on the horizontal
axis around the cross-over point between rising and falling edges of the waveform (see Fig. 8.16).
Commonly, timing jitter tjitter is expressed relative to the waveform period T , e.g. tjitter = T/8. Almost
all modern oscilloscopes have a built-in eye diagram function, which makes it extremely easy for the
user to create the plot in real time.

Detailed statistical analysis of phase noise is the subject of more advanced courses in communica-
tion theory, hence it is omitted in this text.

8.9 Summary

Basic techniques for the analysis of general oscillator circuits are presented in this chapter in which
we have learned about closed loop feedback networks that are used to generate sinusoidal waveforms.
Circuit conditions that lead into steady oscillations are specified in terms of the loop gain and the
phase shift. Because oscillators are, in general, large-signal systems, small-signal techniques are used
only to estimate the initial conditions that are required to establish steady oscillations. Nonlinear
numerical analysis techniques are required for detailed circuit design. Because four types of passive
RLC network are used in most typical oscillators, we accepted the open loop design methodology
where the forward active path, consisting of an amplifier, is designed to compensate for the gain of
the passive RLC feedback network. At the same time, the feedback network is responsible for setting
up the correct phase shift around the loop. VCOs were introduced as very important for practical radio
communication systems.

Problems

8.1. Derive an expression for loop gain for the general case of a loop consisting of a forward path
amplifier with gain A and a feedback circuit path with gain.
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Fig. 8.17 Simplified schematic of a phase oscillator for Problems 8.2, 8.3, and 8.7

8.2. One of several phase oscillators, Fig. 8.17 (left), is based on a CE amplifier and three RC stages in
the feedback loop. Derive an expression for the minimal transistor gain factor βmin (not to be confused
with the feedback loop parameter) and resonant frequency ω , under the following assumptions:

• The transistor’s output resistance ro is infinite.
• All capacitors have the same value.
• All resistors have the same value and the transistor’s base resistance rb is absorbed into the left-

most resistor R.
• Details of the biasing network are not shown.
• All elements are ideal (i.e., ignore the small emitter resistance re and base collector capacitance

CBC).

Then, calculate values for the resistors R and capacitors C, if RC = 10kΩ.

8.3. Estimate the resonant frequency ω0 of an oscillator whose feedback network is shown in
Fig. 8.17 (centre), if L1 = 0.5μH, L2 = 1.5μH, and C = 126.65 pF.

8.4. Using the same data as in Problem 8.3, estimate the feedback network’s gain factor β .

8.5. Using the same data as in Problem 8.3, estimate the effective resistance Reff that this feedback
network presents to the output of the oscillator’s amplifier whose input impedance is Rin = 10kΩ. The
Q factor of the effective inductor Leff is Q = 50.

8.6. Repeat Problems 8.3 to 8.5 for the other three types of feedback network shown in the textbook.

8.7. For the circuit shown Fig. 8.17 (right), derive expressions for: (a) the resonant frequency ω and
(b) gm of a BJT. Use these two formulas to calculate the resonant frequency and gm using the following
data: RC = 10kΩ, BJT output resistance rc = 10kΩ, L = 2μH, C1 = C2 = 253.30 pF, and QL → ∞.
Details of the biasing network are omitted, for simplicity.

Assuming finite QL, derive new equations for the resonant frequency ω and gm. Using, for example,
QL = 50, recalculate these two values and compare with the ideal case solutions.

8.8. For the Clapp oscillator shown in Fig. 8.15, calculate the oscillating frequency at: (a) zero bias
of the varicap diode and (b) VD =−7 V.

Data: L = 100μH, C1 =C2 =300 pF, and C0 = 20 pF.



Chapter 9
Frequency Shifting

Abstract In this chapter, we focus on the mathematical operation of “frequency shifting” that is
fundamental to wireless communication systems. Frequency shifting (or “translation”) is comple-
mentary to the frequency tuning mechanism used in VCOs. However, as will be shown, it is a much
broader concept with a much wider range of applications. As it turns out, mathematical multiplication
of two sinusoidal waveforms with given frequencies results in waveforms that contain both higher
and lower frequencies. This phenomenon is known as “frequency shifting”, where the term “up-
conversion” refers to the process of shifting a lower frequency tone to the upper frequency range
(used in RF transmitters), while “down-conversion” refers to the frequency shifting from higher to
lower frequency ranges (used in RF receivers). Hence, in a complete wireless communication system,
the information-carrying signal is shifted in both directions.

9.1 Signal-Mixing Mechanism

An electronic circuit that can multiply two AC signals is called a mixer. A mixer in RF systems
always refers to a circuit with a nonlinear component that, for two input single-tone signals ω1 and ω2,
produces single-tone output signals that are the sum (i.e., ω1+ω2) and the difference (i.e., |ω1−ω2|)1

of the input frequencies. Note that, in audio systems, operators refer to “mixing” two sound tracks,
which is not mixing in the RF sense: the sum and difference of the input frequencies are not generated
and no nonlinear component is involved in the circuit. Rather, it is a linear addition of two signals so
that the two sound tracks are heard simultaneously. Symbolic representation of these two operations
(see Fig. 9.1) illustrates the difference between linear addition and the mixing of two AC signals.

Because ideal LTI systems cannot possibly produce output signals with spectral components not
present at the input, mixers must be either nonlinear or time-varying elements in order to provide
the frequency translation. Historically, many devices (e.g. electrolytic cells, magnetic ribbons, brain
tissue, and rusty scissors, in addition to more traditional devices such as vacuum tubes and transistors)
have been used as the nonlinear elements, demonstrating that virtually any nonlinear device can be
used as a mixer. Of course, some nonlinearities work better than others, so we focus only on practical
RF mixer types.

1The absolute value is equivalent to a geometrical distance on the horizontal axis, i.e., |ω1 −ω2|= |ω2 −ω1|.

R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits
and Design Techniques, DOI 10.1007/978-1-4614-1117-8 9,
© Springer Science+Business Media, LLC 2012
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Fig. 9.1 Summing (left)
and mixing (right)
functions

Fig. 9.2 Multiplication of
ω1 and ω2 tones with
amplitudes of 1 results in
two new tones ω1 +ω2
and |ω1 −ω2| with
amplitudes of 1/2

At the core of all modern mixers is the multiplication of two sinusoidal signals in the time domain.
The fundamental usefulness of the multiplication may be understood from the basic trigonometric
identities2

sin(ω1t)× sin(ω2t) =
1
2
[cos(|ω1 −ω2|t)− cos(ω1 +ω2)t] , (9.1)

cos(ω1t)× cos(ω2t) =
1
2
[cos(|ω1 −ω2|t)+ cos(ω1 +ω2)t] , (9.2)

which shows that the multiplication of two sinusoidal functions3 results in two new sinusoids
(Fig. 9.2). Note that the linear sum of the new sinusoidal functions on the right of (9.1) and (9.2)
does not further affect arguments of the sinusoidal functions: one argument is the sum and the other
argument is the difference of the original arguments, and those are the only two tones in the output
spectrum.

It should be easy to see that, if the arguments define time-domain waveforms (ω1t) and (ω2t), a
low-frequency signal multiplied by a high-frequency signal results in one signal higher than the higher
signal, i.e., (ω1 +ω2), and one signal that is lower than the lower signal, i.e., |ω1 −ω2|. Because a
time-domain signal shape does not reveal information about its frequency content, it is much more
practical to observe signals in the frequency domain (Fig. 9.2). The signal multiplication results (9.1)
and (9.2) are a bit unfortunate because the goal was to shift one tone with the help of another and
have one and only one tone as the result. Instead the multiplication operation delivers two tones—one
up-converted and one down-converted. Hence, if this approach is to be used, one of the two new tones
must be removed by additional processing.

2In strict mathematical syntax: sin x · siny = 1/2 [cos(|x− y|)− cos(x+ y)] and cosx · cosy = 1/2 [cos(|x− y|)+
cos(x+ y)].
3Keep in mind that sin and cos functions have the same shape, they are just phase-shifted versions of each other, i.e.,
they have different starting points.
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Fig. 9.3 Ideal frequency
shifting circuit based on a
literal implementation of
(9.3)

An ideal theoretical model that delivers only one shifted tone is derived, for instance, by subtracting
(9.1) from (9.2), which after substituting the arguments for frequency results and assuming that the
product of the two amplitudes is A, we write as

Acos[(ω1 +ω2)t] = A[cos(ω1t)cos(ω2t)− sin(ω1t)sin(ω2t)], (9.3)

which could be directly synthesized by a circuit whose block diagram is shown in Fig. 9.3. However,
a practical implementation of circuit based on the block diagram in Fig. 9.3 is not trivial. It would
be relatively straightforward to build the adder and multiplier blocks as IC devices. However, the
wideband 90◦ phase shift circuit is where the problem arises. It is relatively easy to design a
narrowband 90◦ phase shift at a given fixed frequency, but over a wide range of frequencies there is no
convenient way of producing an exact phase shift over the whole range. For this reason, the scheme in
Fig. 9.3, which in theory works over any range of frequencies, is seldom attempted. Most frequency
shifting is done using a single multiplier, as already indicated, in less than perfect relationship between
(9.1) and (9.2).

The unwanted component, which could be either (ω1 +ω2) or (ω1 −ω2) is removed by filtering.
Most practical frequency translation circuits combine the processes of multiplying and filtering in
order to achieve frequency translation. Hence, this methodology performs a quasi-multiplication
because, besides the wanted product, one or more other frequency components are generated and
must be removed by some form of filtering. In the following sections we take a look at some of the
most commonly used mixer circuits.

9.2 Diode Mixers

A diode mixer is a very simple circuit (Fig. 9.4) that is useful up to very high frequencies. Because
it works at almost any frequency, it is commonly used in measuring equipment which is expected to
work over a range of frequencies. Two voltage single-tone signals

v1 =V1 cos(ω1 t), (9.4)

v2 =V2 cos(ω2 t) (9.5)

are first added and then passed through an ideal diode whose voltage–current function is given as

iD = IS

{
exp

(
vD

Vt

)
− 1

}
, (9.6)
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Fig. 9.4 Simplified
schematic diagram
of a diode mixer

which is the nonlinear element that is required for frequency shifting. In the following analysis, for
the simplicity, we assume a small diode current and ignore the voltage drop across the loading resistor
RL. That is, the diode voltage VD is approximately equal to the voltage at node �1 , i.e., VD ≈V (1).

Two equal resistors R serve as a linear voltage adder. Because of their voltage-dividing property,
the voltage at node �1 is half the sum of the two inputs, i.e.,

vD = v1 =
1
2
(v1 + v2) =

1
2
[V1 · cos(ω1t)+V2 · cos(ω2t)]. (9.7)

Following the signal path after node �1 , the diode voltage vD is converted into current iD. The diode
voltage is assumed to be small (implying that vD < Vt so that the higher-order terms in (9.9) are
approximately zero), which allows the exponential term in (9.6) to be expanded into the Taylor series
around the diode’s biasing point, where series expansion for an exponential function is well known as

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · , (9.8)

hence, after substitution of x = vD/Vt into (9.8) and application of the exponential term in (9.6), we
write

iD = IS

{[
1+

vD

Vt
+

1
2

(
vD

Vt

)2

+
1
6

(
vD

Vt

)3

+
1

24

(
vD

Vt

)4

+ · · ·
]
− 1

}
. (9.9)

We now examine each of the terms on the right of (9.9) separately and find out about the signal’s
total spectrum (note that 1 and −1 cancel). Obviously, the exact series includes an infinite number
of terms. In the first approximation, because the assumption is that the signal is small, the third and
higher-orders terms can be ignored (they are smaller and smaller numbers divided by larger and larger
numbers). After substituting (9.7) into (9.9), we focus on the first two terms:

• The linear term:

vD

Vt
=

1
2Vt

[V1 · cos(ω1t)+V2 · cos(ω2t)] = f (ω1,ω2). (9.10)

We conclude that the linear term of the series expansion has a frequency spectrum that is equal to
the original spectrum of the signal vD, i.e., ω1 and ω2. We already had that spectrum, hence this
term is not much use.

• The square term:

1
2

(
vD

Vt

)2

=
1

2V 2
t

{
1
2
[V1 · cos(ω1t)+V2 · cos(ω2t)]

}2
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=
1

8V 2
t

[
V 2

1 cos2(ω1t)+ 2V1V2 cos(ω1t)cos(ω2t)+V2
2 cos2(ω2t)

]

=
1

8V 2
t

[
V 2

1
1
2
(1+ cos(2ω1t))+V1V2(cos(|ω1 −ω2|t)+ cos((ω1 +ω2)t)

+V 2
2

1
2
(1+ cos(2ω2t))

]
, (9.11)

which states that the output frequency spectrum due to the second (nonlinear) term contains

1
2

(
vD

Vt

)2

= f [(ω1 −ω2),2ω1,2ω2,(ω1 +ω2)] . (9.12)

In other words, aside from the desired (ω1–ω2) and (ω1+ω2) terms, there are additional tones
(2ω1 and 2ω2) present that are not part of the ideal multiplication operation.

Therefore, a diode is the simplest active device that serves as a mixer and works over a wide range
of frequencies. In addition, a more specific small-signal condition should be stated as V1V2 <V 2

t . The
additional, unwanted tones are usually filtered out with an LC resonator.

In conclusion, using a diode as a nonlinear element for the purpose of multiplying two single-tone
signals does produce the desired theoretical tones the (ω1 −ω2) and (ω1 +ω2). However, it also
produces tones that are not part of the ideal solution (i.e., ω1, ω2, 2ω1, 2ω2, . . . ). In addition, if
the higher-order harmonics in (9.9) are not neglected, many more tones are observed in the output
frequency spectrum. Therefore, for good performance this mixer is restricted to quite low input signal
levels. Because all tones that are not needed must be filtered out afterwards, a diode is a simple but
very inefficient multiplying element.

9.3 Transistor Mixers

Active mixers are based on nonlinear exponential functions of BJTs and metal-oxide semiconductor
field-effect transistors (MOSFETs). If two voltage signals

v1 =V1 cos(ω1t), (9.13)

v2 =V2 cos(ω2t) (9.14)

are added and then applied to the gate of an ideal BJT Q1 (Fig. 9.5 (left)) or v1 is applied to the gate of
Q2 and v2 is applied to the emitter node by means of a 1:1 ratio transformer (Fig. 9.5 (right)), then the
two signals are mixed. Assuming ideal transistors with a current gain of β , the two variants of BJT
mixer are very similar, therefore the following two equations are written by inspection:

VBE(Q1) =
1
2
(v1 + v2), (9.15)

VBE(Q2) = v1 − v2. (9.16)
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Fig. 9.5 Simplified
schematic of two versions
of BJT mixers

The relationship between the collector current IC of a BJT versus the base-emitter voltage VBE is the
same as for a forward-biased diode,

iC = IS

{
exp

(
vBE

Vt

)
− 1

}
, (9.17)

which is to say that the expression for the square term of interest in the output frequency spectrum of
the circuit in Fig. 9.5 (left) is similar to the one for a diode, with the addition of the β factor:

ICs = β IS
V1V2

8V 2
t
[cos(|ω1 −ω2|t)+ cos((ω1 +ω2)t)] .

The corresponding expression for the circuit in Fig. 9.5 (right) is only slightly different. It is important
to note that, because of the β factor, a BJT mixer has much better efficiency than a simple diode mixer
and it is possible even to have a “conversion gain”. That means that it is possible for the output tone
(usually the low-frequency tone, |ω1 −ω2|) to have more power than the input signal. On the other
hand, a BJT mixer has the same limitation as the diode in terms of the input signal amplitude relative
to the Vt voltage. Both circuits in Fig. 9.5 use an LC resonator in the collector branch that is tuned
to either of the two tones of interest, i.e., either to |ω1 −ω2| or to ω1 +ω2, and they filter out all
unwanted tones in the frequency spectrum.

9.4 JFET Mixers

In RF amplifiers, it is common practice to replace BJTs with JFETs. JFET gate current is much less
than the base current and has higher transconductance than a MOSFET transistor. Therefore it is often
used in the front end of low-noise, high-input-impedance RF amplifiers.

Two input voltage signals

v1 =V1 cos(ω1t), (9.18)

v2 =V2 cos(ω2t) (9.19)

are applied to JFET transistors J1 and J2 (used instead of Q1 and Q2 in the topology of in Fig. 9.5).
We use a procedure similar to that in the previous sections; the main difference is that the current–
voltage characteristics between the drain current ID and the gate-source voltage vGS of a JFET obey
the following relationship

ID = IDSS

(
1− vGS

Vp

)2

, (9.20)
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where IDSS is the JFET saturation drain current, VGS is the gate-source voltage, and Vp is the pinch-off
voltage. In the JFET case, there is no exponential term, which makes the derivation a bit simpler.
Therefore, a straightforward expansion of (9.20) leads to

ID = IDSS

[
1− 2

vGS

Vp
+

v2
GS

V 2
p

]
. (9.21)

By focusing only on the nonlinear terms in (9.21), the square term is

ID ∼−IDSS
1
4
[V1 · cos(ω1t)+V2 · cos(ω2t)]2

V 2
p

∼−IDSS
V1V2

2V 2
p
[cos(|ω1 −ω2|t)+ cos((ω1 +ω2)t)] , (9.22)

where (9.22) focuses only at the cos product term from the previous step. It is interesting to note that,
because there was only a second-order term in (9.21) and no higher-order terms, there was no need to
apply power series expansion as in the cases of the diode and BJT. That is, there is no strict limitation
to the amplitudes of V1 and V2, as long as the JFET is not cut off or becomes forward biased. Again,
similar to the BJT circuits from Sect. 9.3, the LC resonator simultaneously filters out all harmonics
except the desired one. JFETs are commonly used in RF mixer applications because of their tolerance
for high signal levels and good conversion efficiency.

9.5 Dual-Gate MOSFET Mixers

We have already learned (Sect. 7.7.1.4 and Fig. 7.32) that a cascode amplifier configuration is very
useful in RF applications because of its high output impedance and its resilience to the Miller
effect. Putting the two transistors into a single package and creating a dual-gate device was a natural
development. In this section, we learn about the application of dual-gate transistors to the design of
RF mixers. The additional important property of a dual-gate transistor is that the two devices are
almost perfectly “matched”—they are “twins” in respect of their electrical properties. Consequently,
two independent input signals applied to the two gates control the drain current at the same time and
equally well.

Two input voltage signals

v1 =VDC1 +V1 sin(ω1t), (9.23)

v2 =VDC2 +V2 sin(ω2t) (9.24)

are applied to a dual-gate FET transistor that is used as a mixer (Fig. 9.6). In a standard cascode
configuration, transistor M1 is set as the CS amplifier for the v1 signal, while M2 serves as the CG
current buffer. Therefore, assuming v2 = const = VDC2, we write equations for the M1 transistor in
saturation (ignoring its nonlinear effects) as

ID = k(VGS −Vth)
2 = k(v1 −Vth)

2,

∴

gm
′ ≡ dID

dVGS
= 2k(v1 −Vth) = 2k[V1 sin(ω1t)−Vth], (9.25)
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Fig. 9.6 Simplified
schematic of a dual-gate
FET mixer and its
equivalent circuit diagram,
where M1 and M2 are
assumed to be identical

where, VDC1,2 are constant biasing DC voltages, k =(μnCoxW )/(2L), Vth is the MOS threshold voltage,
and gm

′ is the circuit’s overall gm under the condition that the gate of M2 is at its small signal ground.
Drain current ID passes through the current buffer M2 with no loss (i.e., the two transistors have the
same drain current), which is followed by LC load. Therefore, the voltage across the LC load at
resonance is approximately bounded by its dynamic resistance RD multiplied by the drain current,
which is the same as the output voltage Vout relative to VDD. In other words,

Vout = ID RD = gm
′ v1 RD = gm

′RDV1 sin(ω1t). (9.26)

That is to say, when the gate of M2 is at the small signal ground, in respect of signal v1 the circuit
works as a CS cascoded amplifier. However, when the gate of M2 is used as the input terminal for
the second signal, for example when the dual-gate MOS mixer signal v2 comes from a local oscillator
(LO), the common drain current is additionally controlled by v2. Variation of the drain current because
of variation of the v2 voltage is manifested as a change in the circuit’s overall gm, as

ID = k[(VDC2 +VGS2)−Vth]
2,

∴

gm ≡ dID

d(VDC2 +VGS2)
= 2k[(VDC2 +VGS2)−Vth]

= 2kVDC2 + 2k(V2 sin(ω2t)−Vth)

∼ gm
′+ gmΔ sin(ω2t), (9.27)

where, gm
′ is part of the circuit’s gm due to v1 (9.25), while gmΔ is a variation of the circuit’s gm due

to v2, whose common mode is at (i.e., it is centred around) VDC2. It is important to note that VDC2 is
not constant any more and that this arrangement works because the two transistors are identical with
the same drain current.

After replacing gm
′ in (9.26) with gm from (9.27), it follows that

Vout = [gm
′+ gmΔ sin(ω2t)]RDV1 sin(ω1t)

= gm
′ RDV1 sin(ω1t)+ gmΔ RDV1 sin(ω2t)sin(ω1t)

∼ gmΔ RDV1 [cos(|ω1 −ω2|t)+ cos((ω1 +ω2)t)] , (9.28)

where (9.28) focuses only on the cos product term and the LC resonator is tuned to either of the two
desired tones and filters out all the other harmonics.
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In conclusion, a dual-gate FET mixer is commonly used in the design of an RF mixer to multiply the
incoming RF signal with the LO. Setting the appropriate LO frequency, the RF signal is then precisely
shifted in the frequency domain, i.e., either “down-converted” or “up-converted”. In addition, from
(9.28), it becomes obvious that the v2 signal amplitude should be as large as possible so that the gmΔ
term is maximized, which is one of the advantages of this circuit.

9.6 Image Frequency

A less obvious, but very important, consequence of signal multiplication (9.1) and (9.2) is that for
any given frequency ω1 there are two separate single tones ω2 and ω3, that produce exactly the same
|ω1 −ω2| = |ω1 −ω3| tones (Fig. 9.7).4 At the same time, the higher frequency tones (ω1 +ω2)
and (ω1 +ω3) are easily distinguished. This phenomenon of dual frequencies entering the mixer
and producing the same output tone is so important in wireless communication systems that it is
commonly referred to as “image frequency”, or a “ghost image”. For instance, if the original intent
was to multiply frequencies ω1 and ω2, then signal ω3 would be declared a ghost image. Similarly,
ω2 would be declared a ghost image if the original intent was to do frequency shifting of the ω1 and
ω3 tones.

9.6.1 Image Rejection

The problem of ghost images is very real and is dealt with by using the following two methods.
First, the transmitting frequencies are licensed and assigned at a national level—some frequencies are
forbidden for communications because they would represent ghost images to their dual frequencies,
which are already in use. Second, radio receiver front-end electronics are required to be able to
suppress image frequencies relative to the desired tones by a specified amount.

The front end of a receiver consists of one or more parallel tuned resonant circuits that act as
a bandpass filter centred around the resonant frequency. To really appreciate the need for high Q
resonators, let us try to find out what happens when the incoming signal frequency is not exactly the
same as the LC tank resonant frequency. In other words, at what distance Δω is the image frequency
found from the resonant frequency suppressed by the Q factor of the front-end LC tank?

Fig. 9.7 Frequency
domain diagram of the
relative positions of the
main and image
frequencies

4Although all three signals ω1, ω2, and ω3 are shown as having the same amplitude, in general it does not have to be
the case.
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Fig. 9.8 Realistic LC tank
model

Fig. 9.9 Graphical
representation of an
image-rejection measure

9.6.2 LC Tank Admittance

In order to estimate the amount of signal suppression for a tone that is not centred at the resonant
LC frequency we need to evaluate the frequency dependence of a realistic LC tank model (Fig. 9.8).
A realistic inductor is modelled as a serial combination of an ideal inductor L and an ideal resistor R
that embodies the total wire resistance in the resonant loop (including the inductor’s DC resistance),
while the capacitor is still assumed to be ideal. We already derived an expression, (5.61), that is
repeated here for convenience

|Y |= Y0

√
1+(δQ)2, (9.29)

where ω is close to ω0 (i.e., it is less than one decade away), so that ω/ω0 ≈ 1 and

δ =
ω
ω0

− ω0

ω
. (9.30)

The graph in Fig. 9.9 demonstrates the relationship between the resonant tone ω0 and the nearby
tone ωimage for cases of high and low Q resonators. Lower Q means a wider bandwidth, which means
that signal (ωimage) is more attenuated than the resonant tone normalized to 0 dB level. Higher Q
provides a narrower bandwidth, which means that the same image signal is even more attenuated,
hence, it is more suppressed relative to the desired tone at ω0.

A straightforward implementation of (9.29) to calculate the output voltage at the image frequency,
assuming the signal current IS, yields

|V0|= |IS|
|Y | =

IS

Y0
√

1+(δ Q)2
, (9.31)

which, at resonance, reduces to V0(ω0) = IS/Y0. Hence, the relative voltage amplitude between the
non-resonant and resonant voltages is given by

Ar �
|V0|

V0(ω0)
=

1√
1+(δQ)2

(9.32)
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for a single tuned circuit. If several tuned circuits are included and isolated by amplifiers, then the
overall response is given by the product Ar(tot) = Ar1Ar2 . . .Arn. Further improvement of the image
rejection is usually achieved by using a double-conversion radio receiver architecture.

Example 9.1. An AM broadcast receiver is tuned to 500 kHz with an LC resonator whose Q = 50.
Calculate the signal rejection in dB of unwanted signal being transmitted at 1,430 kHz.

Solution 9.1. Because the front-end LC tank is tuned at f0 = 500 kHz, a radio transmitter emitting at
that frequency is the desired signal. It is then straightforward to implement (9.29) as follows

δ Q =

(
ω
ω0

− ω0

ω

)
Q =

(
1430
500

− 500
1430

)
50 = 126,

which, after substituting in (9.32) and approximating
√

1+ 1262 ≈ 126, yields

Ar = 20 log
1

126
=−42dB.

Therefore, if a second radio station is transmitting at 1,430 kHz, its signal is received as 126 times
weaker than the signal from the desired radio station. Using two tuned amplifiers would double the
selectivity and further suppress the image signal down to −84 dB.

9.7 Summary

In this section, we have learned about the frequency-shifting mechanism that is fundamental to radio
communication systems. The underlying mathematics is based on multiplying two sinusoidal forms,
while the practical realization is based on passing the two single tones through a nonlinear element.
Because of imperfect multiplication in realistic systems based on diodes, BJT or FET devices and
additional filtering is required to remove unwanted tones. As a side product of the multiplication
operation, we learned about the existence of the ghost image and its influence on the wanted signals.
Image suppression is an important requirement for the front end of radio receivers, hence we worked
out a formula for estimating the image (or any other side signal, for that matter) suppression relative
to the desired tone that is aligned with the LC resonant frequency.

Problems

9.1. For this problem, use these four single-tone signals:
S1 =V1 sin(ω1t), S2 =V2 sin(ω2t), S3 = cos(|ω1 −ω2|t), and S4 = cos((ω1 +ω2)t).

Assuming f1 = 1 MHz, f2 = 20 MHz, V1 = 2 V, and V2 = 3 V, do the following:

(a) Find an expression for S = S1 S2. Using graphing software of your choice, plot S, (V1V2)S1, and
−(V1V2)S1 in the same window. Observe the relative relationships between these signals.

(b) Plot So = 1/2 · (V1V2) · (S3 − S4). What can you conclude?

9.2. Starting from S1 = sin(2π × 10MHz× t), find two other single tones that could be used to
generate a single tone at f = 1 kHz. Explain the process and the result.
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9.3. A large number of radio stations transmit their programs at various carrier frequencies. A radio
receiver is tuned to receive an AM wave transmitted at a carrier frequency of fRF = 980 kHz. The LO
inside the receiver is set at fLO = 1,435 kHz. Find:

(a) The frequencies coming out of the receiver’s mixer.
(b) Which frequency is IF.
(c) The frequency of a radio station which would represent an image frequency to the radio station.
(d) The frequency graph of the frequencies involved.

9.4. A tuned RF amplifier has an LC tank with Q = 20 and it is tuned at RF frequency f0. Estimate
the attenuation of the image signal, if the image frequency is 10% higher than the RF signal.



Chapter 10
Phase-Locked Loops

Abstract Arguably the most important circuit in modern electronics is a PLL. A PLL is embedded
into virtually every piece of modern electronic equipment: computers, wireless communication
systems, and test equipment, to name a few. What is more, each of the subsystem blocks inside these
systems may contain their own PLL sub-circuit manufactured in an IC technology. With the advent of
IC technologies, embedding PLL circuits into higher-level systems became a routine matter, where the
embedding is done “on-chip”, i.e on the same silicon die as the rest of the analog, digital, or mixed-
signal ICs. Modern RF transceivers that include PLL circuits are realized as a single IC, implying
that cost, size and power consumption are very important design parameters that contributed to the
widespread use of PLLs. In this chapter, we introduce only the terminology, the basic principles of
operation, and the applications of PLL; detailed analysis and study of PLL are far beyond the scope
of this book.

10.1 PLL Operational Principles

A PLL is a closed loop feedback circuit that employs an external stable reference signal to control
both frequency and phase of its internal VCO circuit. In other words, PLL tries to exactly follow in
time the leading reference signal. In general, two signals may be either completely unrelated to each
other, for instance the frequencies of a fly’s flapping wings and the phases of the moon, or they may be
in some fixed relationship between the two frequencies and phases. It is important to realize that two
related periodic signals may be synchronized in phase, in frequency, or in both phase and frequency
(Fig. 10.1). A PLL has a goal to synchronize both phase and frequency of its VCO wave with the
reference wave.

In a typical application, an external stable crystal oscillator is used as a reference that provides an
input signal to the PLL circuit, which is then accurately replicated in the loop, both in terms of its
frequency and phase. The PLL continuously keeps self-adjusting its internal VCO wave to match the
reference signal over long periods of time, i.e., it stays “locked” to the reference. However, the role
of the PLL does not stop there, a PLL is capable of providing multiple copies of the same reference
signal to various circuits in the system, while at the same time it provides a driving capability that
is far beyond what the crystal itself can provide. In fact, a crystal is barely capable of serving as a
signal source to a very light load that is physically located close by, i.e., it cannot provide high current
drive. What is more, a PLL can create not only multiple copies of the same frequency reference,
but also signal copies that are at any fractional multiple of the reference frequency. Considering that
stable crystal references are manufactured in a limited range of frequencies, that particular capability
of a PLL by itself would be sufficient to justify the use of PLL circuits. In its basic form, when used
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Fig. 10.1 Time-domain
examples of signals
“locked” (i.e.
synchronized) in
frequency, phase, and
frequency and phase to the
reference signal

Fig. 10.2 Basic PLL
circuit block diagram

to generate on-chip frequency references, the PLL is said to work as a clock synthesis unit (CSU).
However, as we will se in the following sections, a PLL is an extremely versatile circuit that is used
for number of different applications.

In its basic form, a PLL consists of three main blocks (Fig. 10.2): a phase detector (PD), a loop
filter, and a VCO. The three blocks are arranged into a feedback loop that operates as follows. The
PD compares the frequency and phase of the local VCO’s wave with the frequency and phase of the
incoming reference signal. Technically, it should be called a “phase comparator” because it measures
the phase difference θd and frequency difference ωd between the two waves. The output waveform of
the PD at node �1 takes the shape of a pulse-width modulated (PWM) stream whose average value
is a function of the phase and frequency differences. This averaged, i.e. DC, PWM stream voltage at
node �2 is applied as a control voltage to the VCO, as we discussed in Sect. 8.7.

10.2 Linear Model of PLL

In order to make PLL analysis manageable within the scope of this book, we adopt linear models of
its basic blocks, even though the linearities are valid only for a limited range. In addition, even though
the input vin and output vout signals of a PLL are not always pure sinusoidal waveforms (in fact, more
often they are pulse streams), for the purposes of our analysis we assume that they are sinusoidal
waves, i.e.
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Fig. 10.3 Phase detector
block diagram of (10.5)

vin = sin(ω in t +θin), (10.1)

vout = sin(ω in t +θout), (10.2)

where, ωin is the constant input reference frequency, ωout is the locked output frequency, and θin and
θout are the reference and output phases. By definition, frequency is a derivative of phase, hence the
output frequency is also written as

ωout ≡ d
dt
(ω in t +θout) = ω in +

d
dt

θout, (10.3)

∴

Δωout = ωout −ω in =
d
dt

θout, (10.4)

∴

θout =

∫
Δωout dt. (10.5)

Therefore, (10.5) implies that PLL requires a basic integrator block that converts the change of the
VCO output frequency Δωout into the output phase θout (see Fig. 10.3).

These are the basic equations of the PLL linear model. We are now going to take a closer look at
its basic blocks.

10.2.1 Phase Detector Model

The main purpose of a PD is to measure the difference between the input phase θin and the VCO phase
θout (i.e., the PLL output phase) and to convert it into a proportional DC voltage level. Therefore, we
define the instantaneous phase error θerr as

θerr = θin −θout. (10.6)

The measured phase error information is used to generate a proportional DC error voltage verr as

verr = KPD θerr, (10.7)

where KPD is the proportionality constant. The DC error voltage is to be converted into frequency
by the VCO circuit. However, VCOs are designed to oscillate at some nominal, i.e free-running,
frequency ω0 that is usually set in the middle of its frequency tuning range, i.e.
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Fig. 10.4 Phase detector
block diagram of (10.9)

Fig. 10.5 Phase detector
characteristic

ω0 =
ωmax +ωmin

2
. (10.8)

For practical reasons, the free-running frequency ω0 is associated with a positive DC control voltage
vc0 	= 0. The choice of the free-running control voltage simplifies the biasing setup of the VCO and
enables its frequency to shift both above and below the free-running frequency, while the control
voltage always stays positive. Therefore, if the phase error equals zero then the DC error voltage
equals θerr = 0 ⇒ verr = vPD0, which is reflected by a shift of function (10.7) up by vPD0 	= 0, i.e.

verr = KPD θerr + vPD0 =Vc, (10.9)

which is synthesized by the signal flow shown in Fig. 10.4. By definition, the PD characteristic, i.e.,
verr against θerr, is periodic with the basic range between −π/2 ≤ θerr ≤ π/2 (see Fig. 10.5).

10.2.2 VCO Model

The main purpose of a VCO is to convert a DC control voltage level Vc into proportional frequency
ωout of the output wave. It is desirable to have a linear relationship between the DC control level and
the output frequency, although it is not a mandatory requirement (Fig. 10.6). Every VCO is designed
for a certain range of control voltage ωmax to ωmin that corresponds to the range of the control voltage
Vcmax to Vcmin. Outside that region, behaviour of the VCO is not considered valid.

We define output frequency deviation Δωo as the difference between the output frequency ωout and
the input reference frequency ω in, i.e.,

Δωo ≡ ωout −ω in. (10.10)

The slope of the VCO characteristic around the lock frequency is called the “VCO gain” KVCO,
therefore it is defined as

KVCO
ωout

Vc
, (10.11)
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Fig. 10.6 VCO
characteristic

Fig. 10.7 VCO block
diagram of (10.12)

Fig. 10.8 Block diagram
of the basic PLL linear
model

that is, the frequency deviation (10.10) is approximated as

Δωo = KVCO (Vc −Vc0), (10.12)

which is directly synthesized by the block diagram in Fig. 10.7.
When the output frequency equals the input frequency, the output frequency deviation equals zero

and the PLL is said to be “in lock”. In other words, the output frequency deviation is a measure of
how far the output frequency is from the input reference frequency. Therefore, by definition, when
Δωo = 0, the control voltage equals Vc0, Fig. 10.6.

10.2.3 PLL Bandwidth

We are now ready to put these three linear models (the PD, the VCO, and the integrator) together
in a simple PLL loop (Fig. 10.8). In its simplest form, the PLL loop starts at the input of PD where
the two waves are compared in terms of their respective phases. The PD compares the instantaneous
phase θout of the VCO wave with the reference phase θin of the input wave and generates the error
signal in accordance with (10.9). If, for instance, the reference wave phase is ahead of the VCO
phase, a positive error signal Verr is generated. The error signal is added to the voltage control signal
Vc0 which forces the VCO to increase its current frequency by Δωout relative to the free-running
frequency, i.e., the VCO is forced to “speed up” and try to “catch” the reference signal. The frequency
increase is converted into the new phase by the integrator block, which is again evaluated at the PD
input terminals. After the first cycle is finished, the two input waves are closer to each other; the loop
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forces the VCO to keep increasing its frequency until the two phases are matched and the PD detector
generates Verr = 0. That is interpreted by the loop as the “stop” command, i.e., the VCO is expected
to hold its frequency unchanged. If the reference phase was behind (“lagging”) the VCO phase, then
the sign of Verr is negative and the VCO is forced to “slow down” until the two phases match.

Once the PD generates the zero error signal, this whole process is continuously repeated; the PLL
stays locked to the reference signal and only wiggles the minimal amount around the value of the
input reference phase.

For the sake of argument, let us now allow the input reference signal to change its frequency,
without being concerned about why and how it happened. We should be able to understand by now
that the PLL loop always tries to follow the input reference signal; it does not know that it is running
after a “moving target”. The decision on whether to “speed up” or “slow down” is made at the end of
each cycle.

Which brings us to the main point of this discussion: the change of the reference frequency is an
AC signal by itself. That is, the PLL loop must have sufficient loop bandwidth to enable the PLL to
accurately follow the input frequency variations and to keep the lock. For instance, if the integrator
block takes too much time to process the current error information about the Δωout, then the PLL
would never be able to accurately follow the input frequency changes. Indeed, the PLL would only
sluggishly lock to some average value of the AC signal because that is what an integrator does. From
control theory, we already know that making the integrator much faster than the input AC signal only
makes the loop unstable, i.e., the “speed up” and “slow down” variations amount to self oscillations.

The careful reader should have recognized by now that the feedback loop in Fig. 10.8 is equivalent
to a general feedback loop with the single forward gain block G(s) defined as

G(s) =
KPD KVCO

s
=

K0

s
, (10.13)

where K0 = KPD KVCO, after the integrator block is replaced with 1/s = 1/jω function. Then, by
inspection, we write the phase transfer function as

θout

θin
=

G(s)
1+G(s)

=
K

K + s
. (10.14)

Therefore, for small variations, the loop bandwidth is determined by the frequency point when the
absolute value of the loop gain |G(jω)|= 1, i.e., at the 3 dB point, hence

1 =
KPD KVCO

ω3dB
,

∴
ω3dB = KPD KVCO, (10.15)

which give us a hint of how to control the loop bandwidth. We have to alter the loop gain without
changing the parameters of the PD and VCO blocks: their gains are the result of circuit topologies
used in the design. The obvious solution is to add a simple voltage divider in the signal path and
proportionally reduce the loop gain, which reduces the bandwidth as well. As designers, we have full
freedom to determine the voltage divider resistive ratio, i.e., it means that (10.13) takes shape

G(s) =
KPD KVCO KR

s
, (10.16)
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Fig. 10.9 Block diagram
of PLL with added R1, R2
voltage divider for the
purpose of reducing the
loop bandwidth

Fig. 10.10 Block diagram
of PLL with added R1, R2,
C0 lead–lag loop filter for
the purpose of controlling
the loop bandwidth

which describes the topology in Fig. 10.9. A PLL with a simple voltage divider attenuator that is used
to control the loop bandwidth is usually referred to as a “first-order PLL” because its transfer function
(10.14) has only a first-order polynomial of s in the denominator. With the added resistive divider, the
loop bandwidth becomes,

1 =
KPD KVCO KR

ω3dB
,

∴
ω3dB = KPD KVCO KR, (10.17)

where KR is the resistive divider gain. Therefore, by careful design of the divider, we keep control of
the PLL bandwidth.

10.2.4 The Loop Filter Model

The first-order PLL represents the simplest circuit topology that gives control of the loop bandwidth to
the designer. Unfortunately, its main drawback is that it inherently reduces the DC gain and, therefore,
reduces the VCO’s control voltage. Consequently, in accordance with (10.12), the frequency tuning
range is also proportionally reduced. And that is a problem.

Instead of using the simple voltage divider that indiscriminately reduces the loop DC gain, the
most commonly used solution is to add a large capacitor and simply brake the newly introduced DC
path through the R2 resistor (see Fig. 10.10), which is commonly known as a “lead–lag” filter. A
straightforward analysis of the lead–lag network yields its transfer function F(s) as

F(s) =
R2

R1 +R2

s+ 1
R1+R2

s+ 1
R2C0

, (10.18)
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where, after substituting (10.18) in (10.16), we write the new expression for the forward path gain as

G(s) =
KPD KVCO F(s)

s
. (10.19)

It is straightforward, although a bit involved, to write an expression for the loop gain transfer
function as

θout

θin
=

Ks+ 1
R1+R2

s2 +
(

K + 1
R2C0

)
s+ K

R1+R2

, (10.20)

where K = KPD KVCO F(s). Because the denominator of the transfer function consists of a second-
order polynomial, this version of the PLL transfer function is commonly referred to as a “second-order
PLL”.

10.3 PLL Applications

There are several typical applications of PLL circuits in modern communication systems and new
ones are still being invented. Most often, a PLL is used as a frequency synthesizer, a clock recovery
unit, or a tracking filter. Its uses as a phase and frequency modulator/demodulator are mentioned in
Sects. 11.4 and 12.3.3.

10.3.1 Frequency Synthesizers

Probably most obvious application of a PLL is in the design of a multiple-frequency synthesizer. The
main motivation for this application comes from, for instance, the FM radio broadcasting system.
In most countries, the frequency spectrum of 87.5 MHz to 108.0 MHz is used for this purpose and
each radio station is required to fit into one of 101 channels, numbered from 200 (87.9 MHz) to 300
(107.9 MHz) in increments of 200 kHz. For successful signal reception, the synthesized frequency
needs to be accurate to within 10 parts per million (ppm), which is to say that the accuracy of a crystal
oscillator is required. Considering that the crystal itself is one of the bulkiest parts that is used in
modern radio electronics, having 101 crystals in parallel would be a very impractical radio indeed.

Instead, a single crystal reference is used to provide a stable input reference to PLL that includes a
“programmable divider” in its feedback path (see Fig. 10.11). Operation of the frequency synthesizer
is based on a single 10 MHz crystal reference whose frequency is divided by 50, hence the 200 kHz
reference is perceived by the PD. A tunable VCO is designed to generate a wave in the 87.9 MHz
to 107.9 MHz frequency range as its output, which is then taken back through the feedback path
into the programmable divider whose division ratio is N = 439.5 to 539.5. Consequently, any of the
101 discrete frequencies can be divided down to a 200 kHz wave, which is then compared with the
200 kHz reference wave. We note that the trick in this circuit is in the fractional programmable divider
that reduces any of the 101 different frequency values to the one value, which enables the use of the
single crystal reference.



10.4 Summary 261

Fig. 10.11 Block diagram
of a PLL frequency
synthesizer with added
programmable divider in
the feedback path

10.3.2 Clock and Data Recovery Units (CRU)

Without going into design details, we note that in many communication systems there is a need to
recover both the original clock frequency and the data by looking only into the received data stream.
This process is called “clock and data recovery” and it is routinely done in disk players, floppy disk
readers, and telephone and satellite data links. The basic PLL circuit is usually used for this purpose,
with special attention paid to the design of the PD and the loop filter. Because the clock recovery
process is data dependent (which for all practical purposes is a random process), the recovered clock
suffers from increased timing jitter. Hence, the design of clock and data recovery units (CRU) presents
a significant challenge to circuit designers.

10.3.3 Tracking Filters

Narrowband filters are usually designed for a given fixed centre frequency by using fixed value
components. However, there are applications where the carrier frequency “drifts” in time, for instance
due to the Doppler effect. If a fixed narrowband filter were used to track signals suffering from the
Doppler effect, it would very quickly lose the signal because the carrier frequency would drift out
of the filter’s bandwidth. Instead, a PLL behaves as a very narrowband filter whose centre frequency
moves with the carrier frequency of the input wave.

10.4 Summary

Although the linear model PLL is valid only over a very limited range and the treatment presented in
this chapter is incomplete, it is intuitively simple and sufficient as a first introduction to this fascinating
circuit. The basic terminology, functionality, and applications presented should be sufficient for the
reader to develop an initial understanding of how and why PLL circuits fit into the topic of wireless
communication systems. Because the detailed study of PLL circuits is far beyond the scope of this
book, the reader is encouraged to consult the references and continue exploring the details of PLL
topologies.
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Problems

10.1. For the PLL model in Fig. 10.9, given that the gain of the PD is KPD = 1.27 V/rad and the
VCO gain is PVCO = 2Mrad/s/V, the goal is to design a resistive divider to satisfy the bandwidth
requirement of ω3dB = 0.73Mrad/s. Determine R1 and R2 values by using your engineering judgment.

10.2. The centre frequency of a PLL is set to 10 MHz. After power up, the minimum input signal
frequency that causes the PLL to start following it is 9.9 MHz; after that, the PLL follows the input
signal as long as it is within 10MHz± 500kHz. Outside that range, the PLL loses the lock again.
Estimate the lock range and the capture range of this PLL.



Chapter 11
Modulation

Abstract In the broad sense, the term “modulation” implies a change in time of a certain parameter.
For instance, while listening to a steady single-tone signal with constant amplitude and frequency
coming out of a speaker, we merely receive the simplest message that conveys information only about
the existence of the signal source and nothing else. If the source is turned off, then we cannot even
say if there is a signal source out there or not. For the purpose of transmitting a more sophisticated
message, the communication system must use at least the simplest modulation scheme, based on time
divisions, i.e., turning on and off the signal source. By listening to short and long beeps, we can decode
complicated messages letter by letter. When you think about it, smoke signals are based on the same
principle. As slow and inefficient as it is, Morse code does work and is used even today in special
situations, for example in a very low SNR environment.

In this chapter, we study the main modulation techniques for wireless communications, which are
based on the time variation of periodic electrical signals.

11.1 The Need for Modulation

The main purpose of a communication system is to transmit a message from one point in space to
another. It would be very inefficient, to say the least, if we had a single communication system that is
capable of transmitting only one message at a time. Just imagine if the whole world’s phone system
used a single metallic wire and users had to line up at the two ends for a chance to communicate
with the other side. An evolutionary improvement is the development of a network with multiple
communication points. Indeed, the phone system is based on the existence of a temporary physical
wire connection between the sending and the receiving points, which, of course, necessitates the
existence of switching circuits. Today, direct transmission of relatively LF signals, such as our voice,
is routinely done through the phone network.

However, it is easy to recognize that the wire-based communication network is very expensive to
build and maintain. That is mostly because the wire itself needs a supporting medium, in this case the
Earth’s surface, which presented huge technical challenges, for instance, when the intercontinental
cables were laid at the bottom of the Atlantic and Pacific oceans.

A wireless transmission system does not have this issue, however its own problem immediately
becomes visible in the case of direct transmission of audio signals. One commonly used antenna is
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Fig. 11.1 Dipole antenna

known as a “half-wave dipole antenna”,1 a name derived from the requirement that the antenna wire
length L is approximately equal to half the wavelength λ (Fig. 11.1), which is calculated as

L =
1
2

λ =
1
2

cT =
1
2

c
f
≈ 300× 106m/s

2
1

f [1/s]
=

150
f [MHz]

[m], (11.1)

where λ is the wavelength of the incoming EM wave, T is its period, and c is the speed of light.
Antenna designers usually fudge (11.1) by approximately 5%, so that the commonly cited rule of
thumb for the length L of the wire intended to receive a signal at frequency f is written as

L =
143

f [MHz]
[m], (11.2)

which, for a simple example of audio frequency f = 1 kHz= 0.001 MHz leads to a required antenna
L= 143 km long. For all practical purposes, we already have that antenna in the form of the phone
cables laid in trenches all around the world. Which is to say that direct radio transmission of
audio signals is not practical. A straightforward solution to this problem is to apply the frequency
shifting principle and move the audio signals higher in the frequency domain. For instance, if the
signal frequency is f = 10 MHz then we calculate, from (11.2), that the required antenna must be
approximately L= 143/10= 14.3 m, while for a signal f = 1 GHz, the required dipole antenna is
L= 0.143 m long. Obviously, the use of higher frequency signals results in more practical antenna
sizes. A further study of EM wave propagation properties showed that transmission losses through
various materials are dependent on the frequency. Hence, for the given transmission medium (air in
this case), not all wavelengths travel the same distance for the same initial signal power, which means
that the choice of operating frequency is very important in regard to how much energy is used for the
transmission.

An efficient communication system needs to be capable of transmitting multiple transmissions
at the same time. Considering that the audio bandwidth requires approximately 20 kHz, if the RF
equipment is capable of working from, say, 1 GHz to 2 GHz, then the (2−1)GHz= 1 GHz frequency
bandwidth can be viewed as a wide cable that consists of 1 GHz/20 kHz= 50E3 parallel “wires”,
i.e., 50,000 separate “channels”, where each channel can carry one full audio signal. If each of
the 50,000 audio sources is precisely frequency shifted and aligned next to each other within the
1 GHz bandwidth, then by means of frequency shifting and filtering, the wireless system is enabled to
transmit multiple signals at the same time. In practical terms, a wirelessly transmitted signal consists

1For a detailed theory of quarter-wave and dipole antennas see, for example, Antennas and Propagation for Wireless
Communication Systems by S. Saunders and A. Aragón-Zavala.
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of two signals: a high-frequency signal that serves as the carrier and a low-frequency information
signal that is somehow embedded into the carrier by the transmitter circuitry and de-embedded by the
receiver.

We can now summarize the reasons why modulation is needed:

• To enable practical wireless transmission of audio signals.
• To enable power-efficient transmission that depends on the carrier frequency.
• To serve as the mechanism of embedding low-frequency information into the high-frequency

carrier.

For a given periodic signal, a natural question is what exactly we can modulate. A general, time-
domain, periodic signal c(t) is described as

c(t) =C sin(ω t +φ), (11.3)

where C is its maximum amplitude, ω is its radial frequency, and φ is its initial phase. By inspection
of (11.3), we conclude that there are three possible ways to embed information into the carrier:

• Vary the amplitude C in time so that C(t) becomes equal to the time variation of the information
signal (this method is called “amplitude modulation”).

• Vary the frequency ω in time so that ω(t) becomes equal to the time variation of the information
signal (this method is called “frequency modulation”).

• Vary the phase φ in time so that φ(t) becomes equal to the time variation of the information signal
(this method is called “phase modulation”).

Although, theoretically any combination of the three parameters C, ω , and φ could be used to
modulate the carrier c(t), including modulating all three at the same time, in practice a communication
system is designed to work with only one type of modulation. Hence, we only talk about either
amplitude, frequency, or phase modulation (PM) systems. In the following sections, we take a closer
look at each of these three main modulation methods.

11.2 Amplitude Modulation

Conceptually, amplitude modulation (AM) is the simplest form of carrier modulation. In this
methodology, the amplitude of the carrier signal is made to replicate the shape of the baseband
modulating signal, i.e., the information-carrying signal (for instance, the voice signal). While keeping
in mind that a complicated signal consists of multiple single tones, we derive an analytical expression
for the AM signal as described in this section.

The AM technique is based on the existence of two time-varying signals (assuming zero initial
phase)

b(t) = B sinωb t, (11.4)

c(t) =C sin ωc t, (11.5)

where b(t) is the LF information (i.e., the modulating signal), B is its maximal amplitude, ωb is its
angular frequency, and c(t) is the high-frequency carrier, C is its maximal amplitude, ωc is its angular
frequency.

The sum of the modulating signal b(t) and the carrier’s maximum amplitude C is called the
“envelope wave” e(t), which is described as

e(t) =C+ b(t). (11.6)



266 11 Modulation

Fig. 11.2 Amplitude
modulated signal, the
unmodulated carrier, and
the information signal in
the form of an envelope

Note that for the unmodulated AM signal, i.e., b(t)= 0, the envelope e(t) equals the carrier’s
maximum amplitude C and it is, therefore, constant (see Fig. 11.2).

An analytical expression for the modulated carrier amplitude cAM(t) is derived by replacing the
carrier’s amplitude C in (11.5) the with expression for the envelope (11.6), which is the equivalent of
saying that the carrier amplitude is modulated by the baseband signal, i.e.

cAM(t) = e(t)sinωc t

= (C+Bsinωb t)sinωc t

=C

(
1+

B
C

sinωb t

)
sinωc t

=C (1+msinωb t)sinωc t (11.7)

= sinωc t +msinωb t sinωc t

= sinωc t +
m
2
[cos |ωc −ωb| t − cos(ωc +ωb) t] , (11.8)

where the modulation index is defined as m=B/C. Without losing in generality, after setting C = 1 in
(11.7) everything afterwards is normalized to the carrier maximal amplitude.

The AM index m is an important communication parameter that shows the ratio of the baseband
and the carrier maximum amplitudes (see Fig. 11.3). In the interests of efficient power transfer and
high SNR, it is desirable to have the amplitude of the modulating signal as high as possible relative
to the carrier’s amplitude. If the carrier’s maximal amplitude is greater than the modulating signal’s
amplitude, i.e., m < 1, then the embedded envelope is a faithful representation of the information
(in this case, a clean sinusoidal shape). If the carrier’s maximal amplitude is equal to the modulating
signal’s amplitude, i.e., m= 1, the embedded envelope is still a faithful copy of the information.
However, in the case of modulation index m > 1 the envelope is not a faithful copy of the information.
Keep in mind that the amplitude-modulated signal has two symmetrical envelopes, one positive and
one negative, that carry the same information. As long as the two envelopes are kept separate and
do not overlap (i.e., the positive envelope stays positive and the negative envelope stays negative), it
is possible to recover the information from either of the two envelopes, Fig. 11.3 (left and centre).
However, once the two envelopes overlap, Fig. 11.3 (right), the information is distorted because
sections of the positive envelope cross over and become part of the negative envelope, and vice versa,
which causes signal clipping. This is referred to as “over-modulation”: neither the positive nor the
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Fig. 11.3 Time domain plot of sinusoidal amplitude modulation (11.7) for three values of the AM modulating index.
For m ≤ 1, the modulating signal is correctly embedded in the envelope, however, for m > 1 signal clipping occurs and
the sinusoidal envelope shape is distorted at the zero amplitude level

a

c d

bFig. 11.4 Trapezoidal
patterns of an AM signal:
(a) for m < 1; (b) for
m > 1, with the clipping
section easily visible as the
straight line tail; (c) for
m < 1 and weak RF driver,
i.e., the carrier signal is too
strong; and (d) for m < 1
and nonlinear modulator,
with visible nonlinear gain
for high amplitudes

negative envelope looks like the original information (it looks like a clipped sinusoidal). Note that
in case of over-modulation, (11.7) is not valid within the clipping region. In practical systems, the
modulation index is held close to one for most of the time.

11.2.1 Trapezoidal Patterns and the Modulation Index

Except for the trivial case of a single-tone modulating signal (Fig. 11.3), observing amplitude-
modulated signals in the time domain using an oscilloscope is cumbersome because it is difficult to
synchronize the time sweep. Instead, non-periodic signals, for instance voice, are observed using the
“trapezoidal method”, which is usually used to plot Lissajous curves. In this method, the AM signal
cAM(t) is fed into channel A and the modulating signal b(t) is fed into channel B of the oscilloscope.
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Fig. 11.5 Frequency
spectrum of an AM signal
containing a harmonic at
the carrier frequency ωc in
addition to the two side
harmonics (ωc +ωb) and
|ωc −ωb|

By setting the plotting mode so that channel A is on the vertical axis and channel B is on the horizontal
axis, the amplitude-modulated signal plots trapezoidal patterns similar to the ones in Fig. 11.4.

It is straightforward to expand the definition of the AM index as

m =
B
C

=
(C+B)− (C−B)
(C+B)+ (C−B)

=
2(C+B)− 2(C−B)
2(C+B)+ 2(C−B)

, (11.9)

which is easily correlated with the geometrical sizes of the plots in Fig. 11.4. Hence, by measuring
lengths of the long and short trapezoidal sides directly on the oscilloscope and applying (11.9), we
calculate the modulation index.

11.2.2 Frequency Spectrum of Amplitude-Modulated Signal

By inspection of (11.7) and (11.8), we realize that amplitude modulation is equivalent to the
multiplication operation discussed in Sect. 9.1. Therefore, the frequency content of the amplitude-
modulated signal contains the two side tones, the upper-side (ωc +ωb) and the lower-side |ωc −ωb|
harmonics. In addition, the AM signal also contains harmonic ωc at the carrier frequency. It is
important to notice that the amplitude of the side tones is multiplied by m/2, which (in the best case
of m= 1) means that amplitude of the side tones is half of the carrier amplitude tone (see Fig. 11.5).
We also observe that, for a baseband signal whose highest harmonic is ωb, the amplitude-modulated
signal occupies the bandwidth BW = 2ωb that is centred around the carrier frequency.

11.2.3 Average Power

It is important to quantify the amount of energy contained in each of the three harmonics of an AM
signal (11.8) as

cAM(t) = sinωc t +
m
2

cosωL t − m
2

cosωU t

= cC + cL − cU, (11.10)

where cC is the instantaneous carrier voltage, cL is the instantaneous voltage of the lower-side
harmonic |ωc −ωb|, and cU is the instantaneous voltage of the upper-side harmonic (ωc +ωb).
Hence, the instantaneous power of the AM wave across a resistor R is
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pAM =
c2

AM

R

=
(cC + cL − cU)

2

R
=

c2
C

R
+

c2
L

R
+

c2
U

R
+

2
R
(cCcL − cLcU − cUcC) , (11.11)

where, the three squared terms denote the instantaneous power of each of the wave components: the
carrier, the lower-side harmonic, and the upper-side harmonic.

Let us first evaluate the cross-product term (cCcL − cLcU − cUcC). As we discussed in Sect. 2.6.1,
the product of two sinusoidal terms is another sinusoidal term (it is irrelevant for our discussion that
it is frequency shifted). Furthermore, the average value of a sinusoidal waveform is zero, therefore
all three cross products have zero average values and do not contribute to the total average power
calculations.

With reference to (11.5) and (11.10), for each of the three squared terms in (11.11), starting with
the carrier voltage, we write expressions for their average power as

PCavg =
c2

Crms

R
=

(
C√

2

)2

R
=

C2

2R
, (11.12)

PLavg =
c2

Lrms

R
=

(
mC/2√

2

)2

R
=

m2

4
C2

2R
=

m2

4
PCavg, (11.13)

PUavg =
c2

Urms

R
=

(
mC/2√

2

)2

R
=

m2

4
C2

2R
=

m2

4
PCavg = PLavg. (11.14)

Hence, the total average power PT of an AM waveform is therefore

PTavg = PCavg+
m2

4
PCavg+

m2

4
PCavg = PCavg

(
1+

m2

2

)
. (11.15)

In order to simplify the syntax, we keep in mind that (11.15) refers to the average power and we
simply write

PT = PC

(
1+

m2

2

)
. (11.16)

Again, the value of the AM factor m is important for the overall power transfer efficiency, with
(11.16) showing that the total average power required for m= 1 is PT = 1.5PC, while each of the
sidebands transfers only 1/4PC. We conclude that even for 100% AM scheme, i.e., m= 1, only 1/6

of the total power is present in each of the sidebands (each contains its own copy of the useful
information), while 2/3 of the total power is in the carrier (which contains no information whatsoever).

Although the above analysis focused on a single-tone signal, we keep in mind that a non-sinusoidal
modulating signal consists of a number of sine waves, not necessarily harmonically related. The
overall average power is then the sum of the individual single-tone average powers:

PT = PC

(
1+

m2
1

2
+

m2
2

2
+ · · ·

)
, (11.17)

where mi (i = 1,2, . . . ,n) is the modulation index of tone i. A detailed analysis of random signals
similar to speech involves statistical mathematical models and is the subject of advanced courses in
signal processing, hence it is omitted in this book.
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11.2.4 Double-Sideband and Single-Sideband Modulation

The amplitude modulation scheme described so far is the most straightforward form of signal modu-
lation. Its full name is “double-sideband–full carrier” (DSB–FC) modulation. In summary, it has the
advantage of being very simple to modulate and demodulate, but has the following disadvantages:

• It can be over-modulated, which causes signal distortion (generation of new tones that can end up
being shifted outside the assigned bandwidth).

• It is inefficient in the use of power (most of the transmitted power is in the carrier, which contains
no information).

• Its required bandwidth is twice the modulation signal’s bandwidth, that is, it does not use the
frequency bandwidth efficiently, which is important because the overall available bandwidth is
limited and directly controls the maximum number of the users.

The power inefficiency and bandwidth requirement of the DSB–FC modulating scheme present
serious concerns for modern battery-powered RF equipment. By inspection of (11.8) and (11.16),
we conclude that major power savings could be achieved by removing the carrier tone from the AM
signal frequency spectrum before it reaches the transmitting antenna. After some further analysis, we
also conclude that the two side tones are entirely down to the product of the carrier and the modulating
signal, while the carrier term is caused only by the presence of the DC offset in the modulating signal.
Therefore, if the modulating signal is somehow balanced so that the DC term cancels, the output
spectrum would contain only the two sideband terms with no carrier term. Such a modulation scheme
is known as “double-sideband–suppressed carrier” (DSB–SC) modulation.

Indeed, the whole class of symmetrical modulating circuits, commonly known as “balanced
modulators”, was developed to perform carrier tone removal. Before we proceed into specific circuit
examples of AM circuits, let us summarize the possibilities from the conceptual point of view. In
general, transmission of a single tone is rarely used, instead complicated signals such as speech or
music are most often transmitted. From the conceptual perspective, our main concern is to determine
the frequency bandwidth that is required by the signal. For instance, an audio signal occupies an
approximately 20 kHz-wide bandwidth, which means that we must allocate a 20 kHz frequency
bandwidth for its transmission. Hence, we need to use the terms “upper sideband” (USB) and “lower
sideband” (LSB) to indicate that the transmitted signal consists of more than a single tone, where the
sideband is bounded by the frequencies of its lowest and highest tones.

Once the carrier tone is removed by the use of balanced modulators, the modulated signal still
consists of both upper and lower sidebands and occupies double the required bandwidth. This issue
is resolved by using bandpass filters in the last stages of the AM transmitter, which removes either
the lower or the higher sideband. This AM scheme is known as “single-sideband–suppressed carrier”
(SSB–SC) modulation using either the USB or the LSB frequency range. The frequency spectrums of
these four major AM schemes is summarized in Fig. 11.6.

11.2.4.1 Bandpass Filters for SSB Modulation

Although functionally very simple, the design of bandpass filters suitable for SSB suppression is
limited by the available technology. The main problem becomes more obvious after we take a look
at the commonly cited formula for the required Q factor of the bandpass filter, which is expressed in
terms of the amount of required suppression AdB as

Q =
fC

Δ f

√
10

(
AdB
20

)

4
, (11.18)



11.2 Amplitude Modulation 271

Fig. 11.6 Amplitude
modulated signal spectrum:
(a) double-sideband–full
carrier (DSB–FC);
(b) double-sideband–
suppressed carrier
(DSB–SC); (c) single-
sideband–suppressed
carrier (SSB–SC) using
lower sideband (LSB);
(d) single-sideband–
suppressed carrier
(SSB–SC) using upper
sideband (USB)

Fig. 11.7 Bandpass filter
definition for LSB
suppression, (11.18), of a
DSB–SC signal

where fC is the carrier frequency, Δ f is the separation between the USB and the LSB, and AdB is
the required attenuation expressed in units of dB (see Fig. 11.7). A practical implementation of SSB
suppression bandpass filters is based on the following options:

• Surface acoustic wave (SAW) filters are hybrid filters based on electromechanical signal conversion
using piezoelectric materials. In the AM frequency range, this kind of filter may be able to achieve
a Q factor as high as 35,000 (the literature data is not always conclusive).

• Crystal filters are another form of quartz crystal that can achieve a Q factor in the order of 20,000
(again, we take this number as indicative rather than definitive).

• Mechanical filters are based on the mechanical resonance of various metallic materials. We assume
that their Q factor is of the order of 10,000, however some nickel–iron alloys apparently achieve a
Q factor as high as 25,000.

• Ceramic filters are made of ceramic alloys and may be able to achieve Q factors in the order of
2,000.

• RLC filters are based on discrete components. With careful design, they may provide Q factors in
the order of 500.

The Q factor numbers here are only for illustrative purposes. Keep in mind that the Q factor is defined
for a specific centre frequency and bandwidth, which means that it may not always be possible to
compare fairly the various types of SSB bandpass filter. Nevertheless, for the sake of the exercise, we
assume that all these filters are comparable and on an equal footing.

Example 11.1. In a typical AM radio system, the signal bandwidth is Δ f = ±100 Hz. Estimate
the type of SSB filter that is needed to suppress the LSB by AdB = 80 dB, if the centre frequency is:
(a) fC = 100 kHz and (b) fC = 1 MHz.
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Fig. 11.8 Block diagram
of a phase shifter
generating an SSB AM
signal

Solution 11.1. By direct implementation of (11.18), we write

(a)

Q =
fC

Δ f

√
10

(
AdB
20

)

4
=

100kHz
200Hz

√
10(

80
20)

4

= 12,500 i.e., we need a crystal filter or better.

(b)

Q =
1MHz
200Hz

√
10(

80
20)

4

= 125,000 i.e., we need several SAW filters in cascade.

Aside from the “brute force approach” of using a high Q bandpass SSB suppression filter to
directly remove one of the sidebands, there are number of more sophisticated techniques in use. To
illustrate the possibilities, let us take a look at a typical representative method known as the “phase
shift method”.

In the phase shift method, two identical balanced modulators are used in parallel (Fig. 11.8).
The message signal b(t) is fed directly into modulator A and with a phase shift of 90◦ into modulator B.
The carrier frequency is provided by the crystal oscillator and it is fed into modulator A with the 90◦
phase shift. The two output waves bA(t) and bB(t) are first added in the summing block and the output
wave is an SSB with suppressed lower sideband. We keep in mind that balanced modulators cancel
the carrier frequency. In order to see how the LSB cancellation happens, we need to take a look at the
mathematics of this system.

Assuming that the message signal is b(t)= sin(ωb t) and the carrier signal is c(t)= sin(ωc t), then
the two balanced modulator output signals are

bA(t) = cos[(ωc t + 90◦)−ωb t]− cos[(ωc t + 90◦)+ωb t]

= cos[ωc t −ωb t + 90◦]− cos[ωc t +ωb t + 90◦], (11.19)

bB(t) = cos[ωc t − (ωb t + 90◦)]− cos[ωc t +(ωb t + 90◦)]

= cos[ωc t −ωb t − 90◦]− cos[ωc t +ωb t + 90◦]. (11.20)
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The first of the two cosine terms in (11.19) and (11.20) are LSB terms that are opposite in phase, the
one in (11.19) is leading by 90◦ while the one in (11.20) is lagging by 90◦. Therefore, they cancel
when added in the summing block2 and the output of the summing block is

SSB = bA(t)+ bB(t) =−2 cos[ωc t +ωb t + 90◦] = 2 sin[ωc t +ωb t], (11.21)

which is the USB signal at ωc t +ωb t frequency. We note that this circuit produces true SSB AM
output spectrum, that by controlling the phase of the LO we can easily choose to cancel either USB
or LSB, and that there is no more need to have the SSB filter. On the negative side, the need for a
wide band phase shifting circuit limits the practical range of this scheme. In addition, the demodulator
on the receiving side needs to be synchronized with the incoming SSB wave; any mismatch in the
transmitter and the receiver local waveforms will cause unwanted tones. Considering the number of
SSB schemes that have been developed over time, we limit our discussion to the two basic techniques
presented in this section.

11.2.5 The Need for Frequency and Phase Synchronization

In a transmitter’s AM circuit, the information-carrying signal b(t) is up-converted using the local
carrier tone c(t) that is generated by the transmitter’s VCO. Once the amplitude-modulated signal
departs from the antenna into space, the receiving circuit must tune in the appropriate frequency band
and down-convert the incoming RF signal to the baseband. This frequency shifting is done by the
receiver’s mixer, which uses the receiver’s VCO as the source of the high-frequency reference for
its multiplication operation. Aside from technical details of the tuning process itself, there is another
important issue that at first is not obvious.

A common assumption is that the receiver’s local VCO generates exactly the same frequency
ωc as the one generated by the transmitter’s VCO (which is located faraway from the receiver).
Considering the vast distances between the transmitter and the receiver, it is natural to ask how these
two frequencies are synchronized and if there is any consequence if they are not equal. To answer
these questions, let us take a look what happens when the receiver’s local VCO generates a tone that
is only slightly off both in frequency and in phase relative to the tone generated by the transmitter’s
VCO, i.e., instead of the correct carrier wave c(t)= f (t) cosωc t generated by the transmitter, the
receiver’s VCO generates a slightly incorrect c′(t)= cos [(ωc +Δωc)t +θ ], which has an error both
in frequency Δωc and in phase θ 	= 0. For simplicity, the modulating signal is f (t), so that the
multiplication operation is performed by the receiver as3

{ f (t) cosωct}×{cos [(ωc +Δωc)t +θ ]}
= f (t) {cosωc t cosωc t cos(Δωc t +θ )− cosωc t sinωc t sin(Δωc t +θ )}
∴

=
1
2

f (t)cos(Δωc t +θ )+
1
2

f (t)cos2ωc t cos(Δωc t +θ )

− 1
2

f (t)sin 2ωc t sin(Δωc t +θ ), (11.22)

2See Sect. 2.6.4.
3Trigonometric identity: cos(α ±β )= cosα cosβ ∓ sinα sinβ .



274 11 Modulation

where the last three terms denote the frequency spectrum due to the frequency and phase
mismatch. The last two terms are at a high frequency, close to 2ωc t because 2ωc � Δωc, i.e.,
2ωc ± Δωc ≈ 2ωc, and are easily removed by a bandpass filter centred at Δωc. The first of the
terms, however, shows that instead of correctly recovering the information signal f (t), the resulting
waveform is a function of cos(Δωct + θ ). This is a rather serious issue since each time the cosine
argument equals an odd number multiple of π/2, i.e., (Δωct +θ )= (2n+1)π/2, the entire f (t) signal
disappears. The user perceives this as a strong audio effect known as “beating” of the output signal.

Therefore, in order to correctly demodulate the incoming DSB signal, it is necessary to multiply it
by using the local tone with exactly correct phase and frequency. This means that a DSB radio system
requires quite a complicated receiver. However, on the positive side, if there is no frequency and phase
mismatch, it is possible to simultaneously transmit at the same frequency on a second DSB channel
but with carrier phase θ = 90◦ with respect to the first channel. These two signals can be received
independently of one another. This transmitting scheme is known as quadrature multiplexing.

In Chap. 10, we introduced phase-locked-loop (PLL) circuit topology. PLL circuits are fundamental
for wireless communication because they are capable of synthesizing periodic waveforms (either
sinusoidal or square) that are both phase- and frequency-locked to the waveform of the RF carrier.
Hence, they can (ideally) eliminate problems related to the phase and frequency offsets between the
local VCO and the RF carrier waveforms.

In summary, DSB and SSB transmitting schemes have the following main advantages:

• They are efficient in respect to the signal power, there is no waste due to the carrier tone.
• DSB can transmit two channels simultaneously by using the quadrature multiplexing methodology.
• SSB modulation is efficient in terms of its frequency bandwidth requirements.

The main disadvantages of these AM schemes are that a much more complicated transceiver is
required and that SSB is not suitable for pulse (digital) communication or music. Today, a number of
various schemes are used in either DSB or SSB modulation receivers.

11.2.6 Amplitude Modulator Circuits

From the mathematical point of view, amplitude modulation operation is equivalent to the frequency-
shifting operation described in Chap. 9. Therefore, the mixer circuits described in Sects. 9.3–9.5 are
perfectly valid as amplitude modulator circuits. The diode mixer introduced in Sect. 9.2 does not have
gain; hence, it is used only at very high frequencies where the active devices also lose their gain.

Modulation is done inside the transmitter circuit and a wide range of circuits are used for AM. A
detailed study of transmitter circuits is left for another occasion; in this book, we focus only on the
general principles and a few typical modulation circuits.

Amplitude modulation may be done either at a low level in the transmitter, i.e., where the signal
power is still relatively low, for example at the base of an input BJT or at a high level in the transmitter
hierarchy, i.e., both the carrier and the modulating signals are combined close to the antenna.

There are at least three possible low-level schemes used to generate AM waves, as shown by the
block diagrams in Fig. 11.9:

1. A literal implementation of the AM waveform model (11.7).
2. A nonlinear device that produces an AM waveform, which is mathematically approximated by a

polynomial as

vo = a0 + a1vi + a2v2
i + · · · . (11.23)



11.2 Amplitude Modulation 275

a

b

c

Fig. 11.9 The principles
of low-level AM
modulators

After substituting vi = f (t)+Acosωc t it follows that

vo =a0 + a1 f (t)+ a1 cosωc t

+ a2 f 2(t)+ 2a2 A f (t)cosωc t + a2 A2 cos2 ωc t + · · · , (11.24)

which, after expanding the squared cosine terms,4 shows that a nonlinear device generates spectrum
components that do not exist in the original signal. Hence, a bandpass filter is needed to remove
the frequency components that are not close to the carrier frequency, so that

v(t)≈ a1 cosωc t + 2a2 A f (t)cosωc t, (11.25)

which is the desired AM waveform.
3. Nonlinearity does not have to be provided by an active component. Inherently, any switching

function is also nonlinear, in fact it is very nonlinear. A switching device that is controlled by
a periodic signal ωc is usually referred to as a “chopper” and may be used to generate an AM
waveform. Effectively, the chopper works as a multiplier for its input signal b(t) and the switching
square wave (i.e., the switch is a binary device) at ωc frequency. Again, the chopper is followed
by a bandpass filter that is needed to filter out harmonics from the pulse spectrum.

One of main disadvantages of low-level AM modulators is that the modulation must be followed
by a linear amplifier. Linear amplifiers are relatively inefficient for power transfer applications, hence
these modulating schemes are not used for high-power RF transmitters in commercial broadcasting
radio stations or for modern battery-powered wireless devices. Instead, some topology based on a
high-level scheme that employs a class C amplifier is used more often. In the following pages, we
briefly introduce several commonly used circuits for amplitude modulation.

4Use trigonometric identities for cos2 θ =
1+ cos2θ

2
and sin2 θ =

1− cos2θ
2

.
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Fig. 11.10 A typical BJT
amplitude modulator
circuit

Fig. 11.11 Time domain
plot of input and output
signal shapes for a class C
amplifier that illustrates the
nonlinear mode of
operation

11.2.6.1 BJT AM Circuit

At least in principle, one of the simplest ways to do amplitude modulation is to feed the carrier tone
and the modulation signal to a single active device as shown in Fig. 11.10. The base serves as the
input terminal for the RF signal c(t), while the emitter serves as the input terminal to the modulation
signal b(t). The nonlinear characteristics of the active device provides frequency shifting, while the
LC resonant circuit at the output node is tuned to either of the two sidebands. As we already know, the
resonator tank presents high impedance at the chosen sideband frequency, while effectively shorting
to the ground all other tones in the signal spectrum.

11.2.6.2 Class C AM Circuit

Most modern, highly efficient, low-power, battery-powered wireless devices employ a class C
amplifier (or some other switching amplifier configuration) in their transmitting stages. One of
the main advantages of using a class C amplifier in a broadcast AM transmitter is that only the
final stage needs to be modulated; all the preceding stages can be driven at a constant signal level.
However, in order to obtain a better quality AM waveform sometimes the last two stages of the
transmitter are modulated. The power efficiency usually associated with switching amplifiers comes
from their nonlinear mode of operation, which is in contrast to linear amplifiers. Instead of faithfully
reproducing the input signal throughout the whole period, switching amplifiers are turned one only
for a short period of time, Fig. 11.11.

The main disadvantage of the class C amplifier approach is that a large audio amplifier is also
needed for the modulation stage, with power consumption at least equal to the transmitter output
itself. Traditionally, the modulation is applied using an audio transformer and this device is also bulky.
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Fig. 11.12 A BJT
collector modulator

Direct coupling from the audio amplifier is also possible (known as a cascode arrangement), though
this usually requires quite a high DC supply voltage (around 30 V or even more), which is not suitable
for mobile units.

A simplified schematic diagram of a typical class C modulator circuit is shown in Fig. 11.12. The
input RF carrier signal c(t) enters through transformer T1 whose secondary inductance LS together
with capacitor CS creates an LC resonating bandpass filter. The BJT is biased in class C operation,
which means that the transistor conducts only for a very short period of time close to the peak am-
plitudes of the carrier signal, Fig. 11.11. These short pulses cause the collector current which, in turn,
drives the output resonator circuit which consists of a primary inductor Lp of the output transformer
T2 and capacitor C2. Decoupling capacitor C0 forces node �1 to become a small signal ground.

The modulating signal b(t) is added to the supply voltage VCC through the secondary of the
transformer T3. For sinusoidal modulation, the collector supply voltage is

vCE =VCCb(t) =VCC +B sin ωb t

=VCC (1+msinωb t) , (11.26)

where m=B/VCC is the AM index. When m= 1 the peak modulation signal voltage must equal
the supply voltage, i.e., B=VCC. Consequently, when there is no modulation, b(t)= 0, the collector
voltage would be VCC, while with the maximum RF input the voltage swing is 2VCC, which maintains
the collector voltage average of VCC. Therefore, the positive peak of RF swing can reach 4VCC. This
is an important design parameter that requires that the BJT must have high breakdown voltage.

11.2.6.3 Balanced AM Circuits

The main property of a balanced modulator is that it outputs the product of the two input signals
b(t) and c(t) while suppressing one or both of them. Based on whether only one or both of the
input tones is removed from the output spectrum, the balanced modulator is said to be either single-
or double-balanced. That is, in the ideal case of a double-balanced modulator, the output spectrum
contains ωc ±ωb tones but neither ωc nor ωb themselves. If signal-suppressing input is used by the
carrier c(t) then a balanced modulator produces the DSB–SC spectrum. A large number of balanced
modulator designs are in use; we review the operation of three typical circuits: diode ring modulators,
balanced FET modulators, and IC balanced modulators.
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vin = b(t)
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Fig. 11.13 Double-balan
-ced diode ring modulator

Fig. 11.14 Multiplication of signal b(t) with ±1 pulse stream c(t) results in an amplitude-modulated carrier signal
cAM(t) = b(t)× c(t)

11.2.6.4 Double-Balanced Diode Ring Modulator

A simple circuit commonly used for low-frequency applications in telephone networks is based on
four diodes and two transformers (see Fig. 11.13). The bulkiness of the two transformers is probably
the main reason this modulator is not used in more applications. The amplitude-modulated output
produced by the diode ring modulator is “double-balanced with suppressed carrier”. Diode pairs
D1–D2 and D3–D4 are alternatively switched on and off by the HF carrier c(t), where the carrier
signal could be either a sinusoidal or a square wave at frequency ωc whose amplitude is much larger
than that of the modulation signal b(t). Therefore, the output signal cAM(t) is produced by multiplying
the modulation signal b(t) with ±1 pulse stream, Fig. 11.14.

In the ideal circuit, all four diodes are perfectly matched and the two transformers are perfectly
symmetrical, hence, when HF signal is zero, c(t)= 0, then the output signal is also zero, cAM(t)= 0.
By inspection, we follow the HF current entering the centre tap of transformer T1, which then splits
and passes in parallel through diodes D1 and D2, only to converge again at the centre tap of T2

and return to the HF source. The two HF currents that enter the primary side of transformer T2 in
opposite directions induce voltages of equal magnitude and opposite polarity in the T2 secondary,
which therefore cancel each other and produce zero voltage output.

The square wave switching function c(t) can be written using its Fourier transformation with
amplitude A=π/2 as

c(t) = sinωc t +
1
3

sin3ωc t + · · ·+ 1
n

sinnωc t + · · · , (11.27)

where n= 2k+ 1 is an odd number. Further mathematical analysis shows that multiplication of the
time-varying signal c(t) and the sinusoidal modulation b(t)= sinωb t, after substituting (11.27),
results in

cAM = b(t)× c(t)

= sinωb t sinωc t + sinωb t
1
3

sin 3ωc t + · · ·+ sinωb t
1
n

sinnωc t + · · · , (11.28)

which, after expanding all products, shows that the output spectrum contains only (nωc ±ωb) terms
with neither ωc nor ωb terms by themselves, hence this is a double-balanced modulator.
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Fig. 11.15 Single-balan
-ced FET modulator

11.2.6.5 Single-Balanced FET Modulator

Instead of using diodes, two FET transistors are connected as in Fig. 11.15 to produce a DSB–SC
amplitude-modulated waveform. The modulation signal b(t) is split into two copies at the symmetrical
secondary of T1, while the carrier signal c(t) is injected into the circuit through its own 1:1 transformer.
The two FET transistors are perfectly matched, which is usually achieved by using IC components.

By inspection, we write

vGS1 = c(t)+ b(t) =C cosωc t +B cosωb t, (11.29)

vGS2 = c(t)− b(t) =C cosωc t −B cosωb t, (11.30)

hence, the drain currents of the two FET transistors are approximated by the second-order
polynomials as

iD1 ≈ I0 + a1 vGS1 + a2 v2
GS1, (11.31)

iD2 ≈ I0 + a1 vGS2 + a2 v2
GS2, (11.32)

hence, after substituting (11.29) and (11.30), we write

iD1 = I0 + a1 (C cosωc t +B cosωb t)+ a2 (C cosωc t +B cosωb t)2, (11.33)

iD2 = I0 + a1 (C cosωc t −B cosωb t)+ a2 (C cosωc t −B cosωb t)2. (11.34)

The total current in the primary of transformer T2 is the current difference (iD1 − iD2), which
subsequently induces the output voltage AM waveform as

cAM = M
d(iD1 − iD2)

dt
, (11.35)

where M is the mutual inductance between the primary and secondary inductances of transformer T2

(in an ideal case M = 1). Therefore,

(iD1 − iD2) = 2a1 B cos(ωb t)+ 4a2 BC cos(ωb t) cos(ωc t)

= 2a1 B cos(ωb t)+ 2a2 BC cos(ωc −ωb)t + 2a2 BC cos(ωc +ωb)t. (11.36)

By inspection of (11.36) we conclude that its first term contains frequency component ωb of the
modulating signal b(t), the second term is at frequency (ωc −ωb), and the third term is at (ωc +ωb).
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Fig. 11.16 Double-balan
-ced IC modulator based
on a Gilbert cell

The linear addition of these three terms and derivation (11.35) do not change the frequency spectrum,
hence the output voltage cAM waveform contains only the two sidetones (ωc±ωb) and the modulation
signal b(t). It should be noted that if waveforms b(t) and c(t) exchanged input terminals, then the
carrier tone would have survived and b(t) would have been suppressed from the output frequency
spectrum.

11.2.6.6 Double-Balanced IC Modulator

In order to reduce the size of the electronic equipment, the use of transformers in modern mobile
devices is avoided if possible. Ideally, the goal is to design all critical functions that are needed
for radio equipment communication using IC technology. It is no surprise that balanced modulators
are available in IC form (Fig. 11.16). The AM modulator circuit is a Gilbert-cell-based differential
multiplier. A Gilbert cell is a very versatile circuit that has many applications. If used in switching
mode, it works as a balanced AM multiplier circuit.

The circuit works as a multiplier of the two input signals. When it is used as a balanced modulator,
an elementary analysis of the circuit is as follows. First, we find the output signal when the carrier
signal is absent. Second, we add the carrier signal as the product. The carrier is considered to be a
high-level switching voltage that alternately switches transistors pairs Q1–Q4 and Q2–Q3 on and off.

With no carrier signal applied, and assuming that the base currents are negligible, after summing
the currents at junctions �1 and �2 , we write

I2 = I+ ie,

I1 = I− ie. (11.37)

Hence, the output voltage vo is

v′o = v2 − v1 = R(I2 − I1) = R(2ie). (11.38)
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Application of KVL to the loop that contains the modulating voltage signal b(t) and resistance Re

yields

b(t) =Vbe5 + ve −Vbe6, (11.39)

∴
b(t)≈ ve (11.40)

because the circuit operates with small signal current I � ie and keeps Vbe5 ≈Vbe6. Therefore

ie =
ve

Re
=

b(t)
Re

, (11.41)

∴

v′out =
2R
Re

b(t) =
2R
Re

sinωb t (11.42)

after substituting (11.41) back into (11.38). When the carrier signal c(t) is added then the output is
the product of the two. In the case of a square carrier signal, which contains an infinite number of odd
harmonics, we approximate its function as

c(t) = sin(ωc t)+
1
3

sin(3ωc t)+
1
5

sin(5ωc t)+ · · · ≈ sin(ωc t), (11.43)

where all higher harmonics (at 3ωc, 5ωc, . . . ) are easily filtered out, which leads to an expression for
the output voltage vo when both the carrier c(t) and the modulation b(t) signals are present,

vout ≈ v′out × c(t) =
2R
Re

sin(ωb t)× sin(ωc t)

=
R
Re

[cos(ωc −ωb)t − cos(ωc +ωb)t] , (11.44)

that is, the output contains only the upper and lower side tones, while the carrier itself does not
appear in the output. This modulator circuit is a typical example of how, by taking advantage of IC
technology where the components are manufactured as perfect copies of each other, almost perfectly
balanced voltages and currents are possible without the external bulky components.

11.3 Angle Modulation

Following the discussion in Sect. 11.1 in regard to (11.3), we now proceed to find out how the two
angular parameters of the carrier signal c(t), ω and phase φ can be modulated by the modulating signal
b(t). Although, frequency and PM are similar and are often studied together under the more inclusive
name “angle modulation”, the two are different in very important details. Frequency modulation (FM)
is commonly used for HiFi broadcasting of music and speech, because of its lower sensitivity to
noise, while PM requires a more complicated receiver and is used in some wireless LAN standards,
and military and space applications.
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11.3.1 Frequency Modulation

The modulating signal b(t) in (11.4) is used to vary the frequency ωc of the carrier waveform c(t) in
the time domain. Let the change in carrier frequency be

Δωc = k b(t), (11.45)

where k is a constant known as the “frequency deviation constant”; then the instantaneous carrier
frequency is

ω(t) = ωc +Δωc = ωc + k b(t), (11.46)

where ωc is the unmodulated carrier frequency. After substituting b(t) = Bcosωb t in (11.46), the
instantaneous frequency f (t) of the FM waveform becomes

ω(t) = ωc + k B cosωb t, (11.47)

∴

f (t) =
ω(t)
2π

= fc +
k B
2π

cosωb t, (11.48)

that is, the maximum and minimum values of the instantaneous frequency are

fmax = fc +
k B
2π

, (11.49)

fmin = fc − k B
2π

, (11.50)

where the maximum swing of the instantaneous frequency from the unmodulated carrier frequency
fc is called “peak frequency deviation” Δ f and is defined as

Δ f ≡ fmax − fc =
k B
2π

, (11.51)

which enables us to define the FM index mf and the deviation ratio δ as

mf ≡ Δ f
fm

=
k B
ωb

, (11.52)

δ ≡ Δ f
fc

=
k B
ωc

. (11.53)

An example sketch diagram of the instantaneous frequency ωc(t) variation over time is shown in
Fig. 11.17 (top). It is important to understand that this graph illustrates the frequency–time curve and
not the amplitude–time curve, which is shown in Fig. 11.17 (bottom).

An analytical expression for the FM waveform may be derived as follows. The unmodulated carrier
is a sine wave, therefore

c(t) =C sin(ωc t +φ). (11.54)
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Fig. 11.17 FM waveform:
Frequency over time (top)
and amplitude over time
(bottom). The modulating
signal information is
clearly embedded by the
control of the carrier’s
frequency

Equation (11.54) is only a special case of the more general case

c(t) =C sin[θ (t)], (11.55)

where θ (t) is an arbitrary time-dependent function. By definition, the angular frequency ωc(t) is the
rate of change in time of θ (t). Only when the frequency is constant is the particular form of (11.54)
valid. When the frequency is time-dependent, as in FM, an instantaneous angular frequency may be
defined as

ωc(t) = 2π fc(t) =
dθ (t)

dt
, (11.56)

∴

θ (t) =
∫

ωc(t)dt. (11.57)

The instantaneous frequency ωc(t) is related to the modulated frequency through relation (11.48).
For instance, in the case of constant (unmodulated) angular frequency ωc, we write

θ (t) =
∫

ωc dt = ωc t +φ , (11.58)

where φ is the integration constant. In the case of sinusoidal modulation, after substituting (11.54)
into (11.57) we have

θ (t) =
∫

2π ( fc +Δ f cosωb t)dt = ωc t +
Δ f
fm

sinωb t +φ . (11.59)

The integration constant φ may be made equal to zero by an appropriate choice of time reference axis,
while the expression for the sinusoidally modulated FM wave is obtained by substituting (11.59) into
(11.55) as5

cFM =C sin

(
ωc t +

Δ f
fm

sin ωb t

)

=C sin (ωc t +mf sinωb t)

=C [sin(ωc t) cos(mf sinωb t)+ cos(ωc t) sin(mf sinωb t)] . (11.60)

5Use the trigonometric identity: sin(α ±β ) = sinα cosβ ± cosα sinβ .
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We note that, unlike the AM index m, the FM index mf can be greater than unity.
It turns out that mathematicians have already found suitable expansions for functions of type

cos(xsin y) using Bessel functions, i.e.,

cos(mf sinωb t) = J0(mf)+ 2
∞

∑
n=1

J2n(mf) cos(2nωb t), (11.61)

sin(mf sinωb t) = 2
∞

∑
n=0

J2n+1(mf) sin[(2n+ 1)ωb t], (11.62)

where Jn(mf) is the Bessel function of the first kind and of n-th order. After substituting (11.61) and
(11.62) into (11.60), and after expanding the sinusoidal products, the analytical expression of the FM
waveform for the case of sinusoidal modulation (11.60) is written as

cFM = J0(mf)C sinωc t

+ J1(mf)C [sin(ωc +ωb)t − sin(ωc −ωb)t]

+ J2(mf)C [sin(ωc + 2ωb)t + sin(ωc − 2ωb)t]

+ J3(mf)C [sin(ωc + 3ωb)t − sin(ωc − 3ωb)t]

+ · · · , (11.63)

where, Bessel function Jn(mf) is defined by the series

Jn(mf) =
mn

f

2n n!

[
1− m2

f

2(2n+ 2)
+

m4
f

2(4)(2n+ 2)(2n+ 4)

− m6
f

2(4)(6)(2n+ 2)(2n+ 4)(2n+6)
+ · · ·

]
. (11.64)

It is handy to have Bessel functions (11.64) both in graphical form (Fig. 11.18) and in tabular form
(Table 11.1). For instance, by reading values from the table for FM index mf = 1.0, we find that first
five significant spectral component amplitudes are:
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Table 11.1 Bessel functions of order 1–10, for modulation factors 0–10

mf J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

0.0 1.000 – – – – – – – – – –
0.2 0.990 0.099 0.005 – – – – – – – –
0.4 0.960 0.196 0.020 0.001 – – – – – – –
0.5 0.938 0.242 0.030 0.002 – – – – – – –
0.6 0.912 0.287 0.044 0.004 – – – – – – –
0.8 0.846 0.369 0.076 0.010 0.001 – – – – – –
1.0 0.765 0.440 0.115 0.020 0.002 – – – – – –
1.2 0.671 0.498 0.159 0.033 0.005 0.001 – – – – –
1.4 0.567 0.542 0.207 0.050 0.009 0.001 – – – – –
1.5 0.512 0.558 0.232 0.061 0.012 0.002 – – – – –
1.6 0.455 0.570 0.257 0.072 0.015 0.002 – – – – –
1.8 0.340 0.582 0.306 0.099 0.023 0.004 0.001 – – – –
2.0 0.224 0.577 0.353 0.129 0.034 0.007 0.001 – – – –
2.5 −0.048 0.497 0.446 0.217 0.074 0.019 0.004 0.001 – – –
3.0 −0.260 0.339 0.486 0.309 0.132 0.043 0.011 0.002 – – –
3.5 −0.380 0.137 0.459 0.387 0.204 0.080 0.025 0.008 0.001 – –
4.0 −0.397 −0.066 0.364 0.430 0.281 0.132 0.049 0.015 0.004 0.001 –
4.5 −0.321 −0.231 0.218 0.425 0.348 0.195 0.084 0.030 0.009 0.002 0.001
5.0 −0.178 −0.328 0.467 0.365 0.391 0.261 0.131 0.053 0.018 0.005 0.001
6.0 0.151 −0.277 −0.243 0.115 0.358 0.362 0.246 0.130 0.056 0.021 0.007
7.0 0.300 −0.005 −0.301 −0.168 0.158 0.348 0.339 0.234 0.128 0.059 0.023
8.0 0.172 0.235 −0.113 −0.291 −0.105 0.186 0.338 0.321 0.223 0.126 0.061
9.0 −0.090 0.245 0.145 −0.181 −0.265 −0.055 0.204 0.327 0.305 0.215 0.125
10.0 −0.246 0.043 0.255 0.058 −0.220 −0.234 −0.014 0.217 0.318 0.292 0.207

carrier frequency ( fc) J0(1.0) = 0.765
first-order side frequencies ( fc ± fb) J1(1.0) = 0.440
second-order side frequencies ( fc ± 2 fb) J2(1.0) = 0.115
third-order side frequencies ( fc ± 3 fb) J3(1.0) = 0.020
fourth-order side frequencies ( fc ± 4 fb) J3(1.0) = 0.002

The fact that the spectrum components around the carrier frequency decrease in amplitude does
not mean that the carrier wave is amplitude modulated. The carrier wave is the sum of all harmonics
in its spectrum, and the harmonics add up to produce the constant amplitude FM waveform,
Fig. 11.17 (bottom). The main distinction to note is that the FM modulated carrier is not a sine
wave, whereas each of the spectrum components around the carrier frequency is. In addition, negative
amplitudes in Table 11.1 only indicate the phase inversion.

Existence of the negative harmonic amplitudes implies that there are values of the FM index mf for
which the corresponding harmonic amplitude is zero, for instance if mf = 2.4,5.5,8.65, . . . amplitude
of the tone at the carrier frequency becomes zero. It is important to distinguish this case from its
matching AM-balanced case of suppressed carrier. For the FM waveform, if the tone at the carrier
frequency is suppressed it only means that its energy is redistributed to the side tones, while the FM
waveform amplitude is always constant. This statement emphasizes the point that it is only the sinu-
soidal component in the FM spectrum that is at the carrier frequency, not the FM carrier itself, whose
amplitude may become zero and varies from positive to negative peak values as the modulation index
changes.

The ideal FM waveform frequency spectrum consists of the infinite number of harmonic tones
uniformly spaced by the modulation frequency fb (see Fig. 11.19). Therefore, the procedure for
establishing the required FM waveform bandwidth involves approximate methods. One commonly
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Fig. 11.19 Frequency
spectrums of an FM
waveform showing only
the first two relevant side
tones: mf = 1 (left) and
mf = 2.4 (right)

used method for estimating FM waveform bandwidth is based on approximation that sets the
bandwidth limits by inclusion of the highest relevant harmonics on both sides as

BFM = 2n fb, (11.65)

where n is the highest order of the side frequency harmonic tone whose amplitude is significant
(i.e., not negligible). By careful observation, using values from Table 11.1, it was found that if the
order of the side frequency is greater than mf + 1, the FM waveform amplitude is within 5% of the
unmodulated carrier amplitude. Using this approximation as the guide for estimating the bandwidth
requirement, (11.65) is rewritten as

BFM = 2(mf + 1) fb = 2(Δ f + fb). (11.66)

Relation (11.66) is known as “Carson’s rule”. In order to illustrate the application of this rule, let us
take a look at the following numerical examples:

• If Δ f = 75 kHz and fb = 0.1 Hz then BFM = 150 kHz
• If Δ f = 75 kHz and fb = 1.0 kHz then BFM = 152 kHz
• If Δ f = 75 kHz and fb = 10 kHz then BFM = 170 kHz

Thus, although the modulation frequency changes by a factor of 100, the bandwidth occupied by the
spectrum is almost constant.

Bessel functions relate the voltage amplitude of each of the sinusoidal side frequency components
to the unmodulated carrier amplitude. That is

En = Jn Ec, (11.67)

where En is the amplitude of the n-th harmonic, Jn is Bessel’s function of n-th order, and Ec is the
amplitude of the carrier tone. Assuming that the amplitudes En and Ec are their RMS values, the
power contained in the n-th sinusoidal component is given as

Pn =
E2

n

R
. (11.68)

After noticing that there is only one component at the carrier frequency and pairs of components for
each frequency n, the total power in the FM waveform is simply the sum of all harmonics, i.e.

PT = P0 + 2P1+ 2P2+ . . .

=
E2

0

R
+

2E2
1

R
+

2E2
2

R
+ . . .

=
J0E2

c

R
+

2J1E2
c

R
+

2J2E2
c

R
+ . . .
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Fig. 11.20 PM waveform:
Phase over time (top) and
amplitude over time
(bottom). The modulating
signal information is
clearly embedded by the
control of the carrier’s
phase, which is shown by a
dashed line for reference

= Pc
(
J2

0 + 2
(
J2

1 + J2
2 + . . .

))
, (11.69)

where Pc is the power of the unmodulated carrier and Jn are Bessel’s functions for the given value
of modulation index mf. Again, the total power in the modulated waveform remains constant for all
values of the modulation index. This is illustrated by the fact that the sum of the squares of the Bessel
function coefficients in (11.69) for a given value of mf is always unity. For instance, if mf = 1.5, the
total power PT relative to the unmodulated carrier power Pc is found using values from Table 11.1 as

PT

Pc
= 0.5122 + 2(0.5582+ 0.2322+ 0.0612+ 0.0122+ 0.0022) = 1.000258.

That is, if only the first five side harmonics are used then the rounding error is 0.026%.

11.3.2 Phase Modulation

The third method of RF carrier modulation is PM which is somewhat similar to the FM technique.
In today’s communication systems, it is often used for satellite and deep-space missions because, like
FM, its noise properties are superior to AM but, unlike FM, it can be produced in a simple circuit
driven from a frequency stable, crystal-controlled carrier oscillator. A VCO is intentionally made very
variable with respect to frequency to produce high deviations and a high modulation index.

The derivation process of an analytical expression for the PM waveform (Fig. 11.20) is similar to
the one used for deriving the FM waveform expression. Start with the unmodulated carrier that is
given by

c(t) = sin(ωc +φc). (11.70)

When phase-modulated, the carrier phase φc is replaced with the instantaneous phase φ(t), where

φ(t) = φc +K b(t), (11.71)

where K is the phase deviation constant (analogous to k for FM) and b(t) is the modulating signal.
Because φc is constant, we can set its value to zero by choosing the appropriate reference point. After
substituting b(t) = Bm(t), where m(t) is a general time-dependent function, (11.71) becomes

φ(t) = Δφ m(t), (11.72)
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Fig. 11.21 Phase
modulator block diagram

where Δφ = K B is the maximum phase deviation. After substituting (11.72) back into (11.70), the
expression for the phase-modulated waveform is written as

cPM(t) = sin[ωc t +Δφ m(t)] = sin[ωc t +mp sinωm t] (11.73)

for sinusoidal modulation. After renaming the phase deviation Δφ to PM index mp, a comparison of
(11.73) and (11.60) shows a similarity between FM and PM schemes.

A simplified block diagram of a PM waveform generator is derived after expanding (11.73) and
using the narrowband approximation Δφ < 0.25, i.e., cosΔφ ≈ 1 and sinΔφ ≈ Δφ . After applying
these approximations, the following result is obtained (remember that cosine and sinusoidal functions
are the same, except for a 90◦ phase difference):

v(t) = Acosωct −A(mp cosωb) sinωct. (11.74)

Equation (11.74) is presented in a graphical form in Fig. 11.21, which suggests one possible block-
level diagram of a simple PM transmitter implementation scheme.

11.3.3 Angle Modulator Circuits

Frequency modulation is done by means of a VCO circuit whose varicap biasing control terminal
serves as the input terminal for the modulation voltage VD = b(t). Therefore, any circuit described
in Sect. 8.7 is perfectly suited for the role of an angle modulator circuit. In this section, we study
two additional principles that are used in VCO circuits for modulating the frequency of the output
waveform: the reactance modulator and the varicap-based phase modulator.

11.3.3.1 Reactance Modulator

The main disadvantage of varicap-based FM circuits is their narrow tuning range, which is due to
the diode’s very narrow small-signal operational zone. Instead, at frequencies that are not ultra high,
wider tunable impedance variation can be achieved with a circuit known as “reactance modulator”.
Its operation is based on the intentional increase and exploitation of Miller’s effect by a circuit that
effectively behaves as voltage-controlled capacitive impedance (Fig. 11.22) between the output node
and the ground.

Use of a FET device indicates an assumption that the gate current ig = 0, which is the first
approximation used in the analysis of a reactance modulator circuit. In addition, the use of an RFC,
i.e., “RF choke”, inductor enables DC biasing of the FET while blocking AC currents. The equivalent
schematic circuit diagram for such an arrangement is shown in Fig. 11.22 (right).
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Fig. 11.22 A reactance
modulator circuit and its
equivalent small signal
network

Effective output impedance Zo, as seen by looking into the output node, is found by definition.
That is, by the ratio of the output voltage vo to the output current io, as

iC =
vo

R+ZC
=

vo

R− j 1
ωC

, (11.75)

∴

vgs = RiC =
Rvo

R− j 1
ω C

, (11.76)

which leads to an expression for M1 drain current id as

id = gmvgs = gm
Rvo

R− j 1
ωC

. (11.77)

It is time to introduce the following assumptions: current iC through the capacitor C branch needs to
be much smaller than the M1 drain current id, i.e id � iC or id+ iC ≈ id; and the capacitor C impedance
XC is much greater than resistance R, that is R−XC ≈−XC.

Application of these approximation enables us to write an expression for the output current io, as

io = iC + id ≈ id = gm
Rvo

R− j 1
ω C

≈ gm
Rvo

−j 1
ω C

=
vo

−j 1
ω gm RC

,

∴

Zo ≡ vo

io
=−j

1
ω (gm RC)

=−j
1

ω CRM
, (11.78)

where CRM = (gm ω RC) depicts the effective capacitance as seen at the output node of the reactance
modulator. Through (11.78), we have shown that disposition of the output impedance Zo of the
reactance modulator is very well approximated by a tunable capacitance CRM = f (gm), which is
controlled by the M1 gate-source voltage, i.e., CRM = f (vgs). Hence, the reactance modulator behaves
as a voltage-controlled capacitor, which can be connected to an LC resonator tank for purposes of
controlling its resonant frequency and, therefore, enabling FM. As a closing note, if the positions of
the resistor R and capacitor C are swapped inside the network, the output impedance would effectively
become inductive. As an exercise, the reader is encouraged to derive that expression.
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Fig. 11.23 Phase
modulator circuit

11.3.3.2 Varicap Diode-Based Phase Modulator

A steady RF waveform c(t) generated by a crystal oscillator with constant amplitude and phase
is injected into the PM circuit whose straightforward implementation is shown in Fig. 11.23. For
simplicity, the varicap biasing control voltage b(t) is not shown. It is implicitly assumed that the
varicap capacitance is a function of the modulation voltage, i.e., CD(t)= f (b(t)). The variation of
diode capacitance CD alters the phase angle of the phase modulator’s tuned-circuit admittance and
then the phase angle of its RF voltage.

Time-dependence of the RF waveform phase is implemented by adding voltage-controlled phase
variation on the phase of the constant RF waveform, as already seen in (11.71), which is repeated
here for convenience

φ(t) = φc +Kb(t) = K b(t), (11.79)

where K is the phase deviation constant, b(t) is the modulating signal, and φc is the phase of the RF
waveform c(t). By setting φc = 0 in (11.79), the phase variation φ(t) =K b(t) is expressed relative
to φc.

Using a procedure similar to that used in Sect. 8.7, the phase deviation constant K of the simple
phase modulator (Fig. 11.23), after the derivative term is expanded into three terms, is derived as
follows.

K =
dφ
dVD

=
dφ
dC

dC
dCD

dCD

dVD
, (11.80)

where the total tuning capacitance C consists of the varicap capacitance CD and capacitance C1 in
serial connection, i.e.

C =
CD C1

CD +C1
,

∴

dC
dCD

=

(
C1

C1 +CD0

)2

=
1

(1+ n)2 , (11.81)

where n is the ratio of varicap capacitance CD0 to fixed capacitance C1 at varicap biasing voltage V0.
As we already know, admittance Y of a tuned LC circuit with dynamic resistance RD and phase6 is

6Use the Pythagorean theorem on complex numbers.
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Y =
1

RD
+ j

(
ω0 C− 1

ω0 L

)
, (11.82)

∴

tanφ =

[
RD

(
ω0 C− 1

ω0 L

)]
≈ φ , (11.83)

where, for small angles we applied the approximation tanφ ≈ φ , hence

dφ
dC

= ω0 RD =
Q
C

=
Q(C1 +CD)

C1CD
=

Q(1+ n)
CD0

(11.84)

after substituting RD =Q/ω0C into (11.84) and after applying biasing voltage V0. We already found
the sensitivity of varicap capacitance versus diode voltage, hence, after substituting (8.42), (11.84)
and (11.81) into (11.80), we write

K =

[
Q(1+ n)

CD0

] [
1

n+ 1

]2 [
− CD0

1+ 2V0

]

=− Q
(1+ n)(1+ 2V0)

. (11.85)

Example 11.2. Estimate the PM deviation constant K for the phase modulator in Fig. 11.23 for the
following data: V0 = 15 V, C = 10CD0, and Q= 70.

Solution 11.2. A straightforward implementation of (11.85) yields

K =− Q
(1+ n)(1+ 2V0)

=− 70
(1+ 10)(1+ 2×15V)

=−0.2rad/V, (11.86)

which means that, if the biasing voltage across the varicap diode changes by 1 V, the phase of the
output waveform changes by 11.46◦.

11.4 PLL Modulator

By careful inspection of the PLL circuit in Fig. 11.24, we note that by adding a modulation signal
b(t) to the original VCO control signal vD, we effectively push the VCO away from the reference
point. If the loop bandwidth is wide enough, the loop quickly responds and generates the cancelling
signal because the two phases at the input terminals of PD are forced by the loop to be equal. Hence,
the total control signal is then vc = vD + b(t) and must be constant because the input reference phase
θin is constant. Therefore, the input phase −θin is proportional to vD and θout is proportional to the
modulation signal b(t).

Fig. 11.24 A PLL phase
modulator circuit
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11.5 Summary

The three main modulation schemes, AM, FM, and PM, are briefly introduced in this chapter.
Modulation is a process by which the useful baseband signal b(t) (i.e., the information) is embedded
into the HF single-tone signal c(t) by altering its amplitude, frequency, or phase and is frequency-
shifted upward and centred around the HF carrier frequency ω0. Therefore, very loosely, the mixer
circuits discussed in Chap. 9 may be considered as a special case of modulators because mixers are
analyzed only from the perspective of the frequency-shifting operation (i.e., signal multiplication).
Frequency upshifting is primarily done in the transmitting part of the wireless radio system. Because
they are similar, frequency and PM schemes are often studied together under the common designation
of “angle modulation techniques”. Although modern wireless systems employ mostly FM and PM
schemes, because of their lower sensitivity to amplitude noise, AM is the simplest and oldest of the
three schemes and is still widely used in long-distance Earth-bound broadcasting systems.

Problems

11.1. An audio signal Aa = 15sin(2π1,500t) modulates a carrier Ac = 60sin(2π100000t).

1. Sketch the audio signal and the carrier waveform.
2. Construct the modulated wave.
3. Determine the modulation factor and percentage modulation.
4. What are the frequencies of the audio signal and the carrier?
5. What frequencies would show up in a spectrum analysis of the modulated wave?

11.2. How many AM broadcasting stations can be accommodated in a 100 kHz bandwidth if the
highest frequency modulating the carriers is 5 kHz?

11.3. A large number of radio stations transmit their programs at various carrier frequencies. A
radio receiver is tuned to receive amplitude-modulated waves transmitted at a carrier frequency of
fRF = 980 kHz. The LO inside the receiver is set at fLO =1,435 kHz. Estimate,

1. The frequencies coming out of the receiver’s mixer.
2. Which frequency is IF.
3. The frequency of a radio station which would represent the image frequency.
4. The frequency graph of the frequencies involved.

11.4. A tuned RF amplifier has an LC tank with Q= 100 tuned at RF frequency f0. Estimate the
attenuation of the image signal, if the image frequency is 5% lower than the RF signal.

11.5. For a phase-modulation circuit that consists of a middle-tapped inductor in parallel with a serial
combination of capacitor C and varicap diode Cd0, find the phase deviation constant K. Data: Q= 70,
C = 10Cd0, V0 = 15a,V.

11.6. For a FM index of mf = 1.5 and modulation signal fb = 10 kHz, find:

1. The estimated required bandwidth BFM (using Carson’s rule).
2. The ratio of the total power PT to the power in the FM unmodulated waveform.
3. Which harmonic has the highest amplitude.

11.7. Determine the power content of each of the sidebands and of the carrier of an AM signal that
has modulation of 85% and contains 1,200 W of total power.
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11.8. Using the plots in Fig. 11.3, sketch the corresponding trapezoidal forms.

11.9. An AM signal whose carrier waveform is modulated 70% contains 1,500 W at the carrier
frequency. Determine the power content of the upper and lower sidebands for this percentage
modulation. Calculate the power at the carrier and the power of each of the sidebands when the
percentage modulation drops to 50%.

11.10. An AM standard broadcast receiver is to be designed with an IF (IF) of 455 kHz.

1. Calculate the required frequency that the local oscillator fLO should be at when the receiver is
tuned to fc = 540 kHz, if the LO tracks above the frequency of the received signal.

2. Repeat (a) if the LO tracks below the frequency of the received signal.

11.11. A fc = 107.6 MHz carrier is frequency modulated by a fm = 7 kHz sine wave. The resultant
FM signal has frequency deviation of Δ f = 50 kHz.

1. Find the carrier swing of the FM signal.
2. Determine the highest and the lowest frequencies attained by the modulated signal.
3. What is the modulation index of the FM wave?

11.12. An FM transmitter has total power of PT = 100 W and modulation index of mf = 2.0.

1. Find the power levels contained in all frequency components.
2. Estimate the bandwidth requirement if the modulation signal is fm = 1.0 kHz.

11.13. For the circuit in Fig. 11.22, find the value of capacitor C. Data: fout = 3.5 MHz, CT = 83.4 nF,
LT = 20 nH, R = 100Ω , gm(M1)= 10 mS.



Chapter 12
AM and FM Signal Demodulation

Abstract When a modulated signal arrives at the receiving antenna, the embedded information must
somehow be extracted by the receiver and separated from the HF carrier signal. This information
recovery process is known as “demodulation” or “detection”. It is based on an underlying mechanism
similar to the one used in mixers, where a nonlinear element is used to multiply two waves and
accomplish the frequency shifting. However, the demodulation process is centred around the carrier
frequency ω0 and the signal spectrum is shifted downward to the baseband and returned to its original
position in the frequency domain. Both modulation and demodulation involve a frequency-shifting
process; both processes shift the frequency spectrum by a distance ω0 on the frequency axis; and
both processes require a nonlinear circuit to accomplish the task. Although very similar, the two
processes are different in very subtle but important details. In the modulating process the carrier wave
is generated by the LO circuit, and then combined with the baseband signal inside the mixer. In the
demodulating process, however, the carrier signal is already contained in the incoming modulated
signal and it can be recovered at the receiving point.

12.1 AM Demodulation Principles

In order to introduce the AM demodulation process analytically, let us consider a simple square law
device, with one input and one output terminal, whose voltage–current characteristic is

i(t) = a2 c2
AM(t), (12.1)

where a2 is a constant and cAM(t) is an amplitude-modulated (AM) wave of the following form

cAM(t) =C (1+mcosωb t) cosωc t, (12.2)

where b(t) is the information baseband signal and m is the amplitude modulation index that is
presented at its input terminal. Then, the output signal contains the following terms

i(t) = a2 C2 [1+mcosωb t]2 cos2 ωc t

=
a2 C2

2
[1+mcosωb t]2 [1+ cos2ωc t]

R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits
and Design Techniques, DOI 10.1007/978-1-4614-1117-8 12,
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= a2 C2
[

1
2
+m cosωb t +

m2

4
+

m2

4
cos2ωb t

+
1
2

cos2ωc t +
m
2

cos(2ωc +ωb)t +
m
2

cos(2ωc −ωb)t

+
m2

2
cos2ωc t +

m2

8
cos(2ωc + 2ωb)t +

m2

8
cos(2ωc − 2ωb)t

]
. (12.3)

That is, the output spectrum contains tones at ωb, 2ωb, 2ωc, (2ωc +ωb), (2ωc −ωb), 2(ωc +ωb),
and 2(ωc +ωb), with the carrier frequency ωc being absent. We keep in mind that there is a wide
separation between the baseband frequency ωb and the HF carrier ωc (i.e., ωc � ωb), let alone the
separation between ωb and nωc, or between ωb and any other tone (nωc ±ωb) for that matter. The
point is that, even with a relatively simple LP filter, we are able to suppress all higher-frequency tones
and approximate the output current signal i(t) with

i(t)≈ a2 mC2
[
cosωb t +

m
4

cos2ωb t
]
, (12.4)

which consists only of the desired information signal ωb and its second harmonic 2ωb, with DC terms
(i.e., 1/2, m/2, etc.) removed. It is now matter of designing an LP filter with steep frequency transfer
curve so that the attenuation of the second harmonic is “good enough” relative to the first harmonic.

12.2 Diode AM Envelope Detector

There is a debate in the literature about the distinction between the terms “detector” and “demod-
ulator” in respect to whether the diode AM envelope detector is a real demodulator or not. The
argument is mostly semantic, with claims that a “true” demodulator must involve two input signals, the
local carrier signal and the AM signal, not just the AM signal. Having acknowledged the argument,
we proceed into analysis of the simplest possible AM envelope detector (also known as the “peak
detector”) for extracting information from the envelope of the AM signal. It also happens to be one of
the most versatile little circuits in electronics and is used in a wide range of applications.

The diode peak detector circuit (see Fig. 12.1) has a built-in timing constant τ = RC that is
fundamental to its operation. The diode serves as an ideal switch that controls the flow of the AM
signal. On the positive swing of the sinusoidal input voltage VAM, the diode is forward biased and
the capacitor voltage VC follows as VC = VAM because the AM signal source is directly connected to
the capacitor. When the input AM voltage reaches its maximum value Vm, the diode becomes reverse
biased and it turns off. That is, the capacitor voltage is at VC = Vm and the capacitor is disconnected
from the AC source. Hence, it starts to discharge exponentially through resistor R with timing constant
τ = RC. The discharging process lasts as long as VC > VAM, i.e., until the next upswing of the input
AM voltage when the diode turns on again and the cycle repeats (see Fig. 12.2).

Fig. 12.1 Diode AM
envelope detector
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Fig. 12.2 The piece-wise
approximate shape of the
envelope wave as decoded
by the diode AM envelope
detector; the value of
voltage drop Vr is
exaggerated relative to the
maximum amplitude Vm; in
reality Vm �Vr and Δ → 0

An exact analysis of the recovered signal wave cpk(t) is a bit more involved, both numerically
and in using calculus, and is covered in the literature. For the purposes of our analysis, we use the
approximate engineering approach, which yields reasonably accurate results.

12.2.1 Ripple Factor

With reference to Fig. 12.2, it is assumed that the output voltage Vpk is approximated with a linear
function within the time window that is labelled as Δ in each cycle. In reality, during that time period
Vpk =VAM. Indeed, the approximation is valid because the maximum amplitude Vm of the two signals
(VAM and Vpk) is Vm � Vr, where Vr is the amount of voltage by which the capacitor is discharged
before the diode turns again on the subsequent upswing of the input wave. Consequently, the value of
the time window Δ → 0 is very small, which also means that period T of the sawtooth Vpk function
is approximately equal to the period of the sinusoidal VAM function. In addition, it is assumed that
the timing constant τ = RC � T , hence the exponential capacitor discharge1 is approximated with
the linear function within one period T time window. For the sake of clarity, in Fig. 12.2 the value of
amplitude Vr is exaggerated relative to the amplitude of Vm.

With these approximations in mind, we write an expression for the average value VDC of the
extracted sawtooth voltage as

VDC =Vm − Vr

2
= IDC R, (12.5)

where IDC is the average discharge capacitor current. The value of IDC is approximated as follows.
Starting with a fully charged capacitor C whose voltage is VC = Vm, the diode is turned off and the
capacitor discharge current IDC is controlled by resistor R; it is assumed constant because of the τ � T
approximation. The value of the constant discharging current is easily calculated as the initial current
at the beginning of the discharging cycle when the capacitor voltage is VC =Vm, hence

IDC =
Vm

R
. (12.6)

The RMS amplitude value of the sawtooth voltage wave is

Vrrms =
Vr

2
√

3
. (12.7)

1See Sect. 4.1.5.3.
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Fig. 12.3 Diode resistance
rD and variables used in an
approximate analysis of
diode detector efficiency

After one full time period T , the capacitor voltage has dropped by Vr (Fig. 12.2), which is controlled
by the time constant τ = RC as

Vr =Vm −V0 =Vm −Vm e
−

T
RC =Vm

⎡
⎣1− e

−
T

RC

⎤
⎦

∴

≈Vm

[
1−

(
1− T

RC

)]
=

Vm

R
T
C

= IDC
T
C

=
IDC

f C
, (12.8)

where T = 1/ f is the period of the carrier wave and the exponential function was approximated by
(9.8), using only the linear terms. After substituting (12.8) into (12.7), we write

Vrrms =
IDC

f C 2
√

3
. (12.9)

The ripple factor rF of the extracted Vpk signal is defined as

rF ≡ Vrrms

VDC
=

IDC

f C 2
√

3
IDC R

=
1

f RC 2
√

3
. (12.10)

Naturally, the ripple factor reduces if:

• The frequency of the input signal is reduced—in the limiting case for DC input (of course), there
is no ripple.

• A larger capacitor, which stores more charges and increases the timing constant τ , is used—in the
limiting case of C → ∞ the capacitor voltage never changes.

• A larger resistor is used—in the limiting case R → ∞ no current flows, therefore τ → ∞ and the
voltage across the capacitor never changes.

The ripple factor increases at higher frequencies or if smaller RC components are used. In most cases,
(12.10) is adequately accurate, especially in the case of small ripple values.

12.2.2 Detection Efficiency

Internal diode resistance rD causes, effectively, a voltage divider formed by the diode resistance
and the load resistor R. Hence, the amplitude of the incoming AM wave vAM is proportionately
reduced, which is quantified by the “detection efficiency factor”. A reasonably accurate analytical
expression for detection accuracy may be derived after making the following assumptions. First, let
us approximate the current–voltage characteristic of the diode with a linear function, Fig. 12.3 (right),
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Fig. 12.4 Definitions used
in the approximate analysis
of diode current iD

which is reasonable around the diode’s biasing point. Second, let us assume that the voltage VDC

across the RC load is constant over the AM wave period, i.e., ripple factor rF = 0 (see Fig. 12.3 (left)
and Fig. 12.4). Third, the diode current iD is assumed to be

iD =

⎧⎨
⎩

vD

rD
, for vD ≥ 0

0, for vD < 0
, (12.11)

where the last two assumptions are valid for τ � RC. At the same time, the value of DC through the
diode is also calculated from the resistor load side as

ID =
VDC

R
. (12.12)

The AM wave vAM that enters the diode AM detector is described as

vAM =C (1+m cosωb t) cosωc t =VAM cosωc t, (12.13)

where VAM = C (1+m cosωb t) = f (C,m,ωb, t) is the time-varying amplitude of the carrier wave
cosωc t, which is introduced simply for convenience of writing the following equations, m is the
amplitude modulation index, and cosωb t is the modulation baseband wave.

With these assumptions, in reference to Fig. 12.4, we write an expression for voltage across the
diode while in conducting mode, i.e., vD > 0, as

vD = vAM −VDC =VAM cosωc t −VDC, (12.14)

∴

iD =

⎧⎨
⎩

VAM

rD
cosωc t − VDC

rD
, for vD ≥ 0

0, for vD < 0
, (12.15)

where rD is the diode resistance for the given biasing point. The point in the AM signal cycle θ =ωc t0

corresponds to the crossover point when vAM >VDC and the diode turns on, therefore the diode current
iD > 0 becomes larger than zero. That particular amplitude value when vAM(θ ) = VDC = VAM0 is
important for our analysis (Fig. 12.4) and we note that the following relation holds

VAM cosωc t0 =VAM cosθ =VDC. (12.16)

By inspection of Fig. 12.4, we note that frequency spectrum of the instantaneous diode current iD
must contain an infinite number of harmonics because of its sharp switching characteristic, however
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we will focus only on its DC and the first harmonic term at frequency ωc. Therefore, we find the
average value of the diode current IDC by integrating iD over one period, i.e., by definition

ID =
1

2π

∫ 2π

0
iD dωc t,

∴

ID =
1
π

∫ θ

0
iD dθ (12.17)

because θ changes only within the 0,π window. Therefore, we continue the integration as

ID =
1

πrD

∫ θ

0
(VAM cosθ −VDC) dθ

=
1

πrD
(VAM sinθ −VDCθ ) , (12.18)

which, after substituting (12.16), becomes

ID =
1

πrD
VAM (sinθ −θ cosθ ) . (12.19)

From (12.12), (12.16), and (12.19), we write

ID =
VDC

R
(12.20)

=
VAM cosθ

R
(12.21)

=
VAM

πrD
(sinθ −θ cosθ ) , (12.22)

∴
rD

R
=

1
π

sinθ −θ cosθ
cosθ

(12.23)

=
1
π
(tanθ −θ ), (12.24)

which gives the ratio of the diode resistance and the load resistor (rD/R) as a function of θ but not the
two resistances by themselves.

Now we have all elements needed to define the detection efficiency η of the diode detector as the
ratio of the average value of the load voltage VDC relative to the peak AM input wave VAM by using
(12.16) as

η =
VDC

VAM
= cosθ . (12.25)

From (12.20) and (12.22), we also write

η =
R

πrD
(sinθ −θ cosθ ) , (12.26)

which provides the detection efficiency η as a function of (R/rD,θ ). It is important to note that it does
not depend on VAM by itself, which implies that the detection efficiency is also not a function of the
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amplitude modulation index m. These two equations, (12.25) and (12.26), provide the designer with
a tool to determine the required type of diode (i.e., its resistance) and loading resistor for the desired
detection efficiency. It is not easy to write explicit analytical expressions for η = f (R/rD); instead we
use the two equations to produce a graphical relationship of η = f (R/rD) (see Fig. 12.5).

Example 12.1. For a given diode, whose resistance is rD = 100Ω, determine the value of the loading
resistor R if the desired detection efficiency for the diode AM detector is η = 80%.

Solution 12.1. From (12.25), we find

η = cosθ ∴ θ = arccos(0.8) = 0.6435 (12.27)

then we write

R
rD

=
π η

(sinθ −θ cosθ )
= 29.5, (12.28)

which, for the given rD = 100Ω, yields R = 29.5× 100Ω= 2.95kΩ.

12.2.3 Input Resistance

Similarly to any other electronic circuit, it is important to find an expression for the effective input
resistance Reff of the diode AM detector for given resistance R. Due to the nonlinear nature of the
circuit, the most often used analytical method is based on analysis of power absorbed by the detector.
In this case, we make an approximation by taking into account only the fundamental harmonic of the
diode current iD, whose maximum value is found by direct implementation of the Fourier coefficient as

IDmax =
1
π

∫ 2π

0
iD cosωc t d(ωc t)

=
2
π

∫ θ

0

1
rD

(VAM cosα −VDC) cosα dα
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=
2

πrD

∫ θ

0
VAM cos2 αdα −

∫ θ

0
VDC cosα dα

=
2

πrD

(
1
4

sin2α +
α
2

)∣∣∣∣
θ

0
−VDC sinα|θ0

=
2VAM

πrD

(
θ +

1
2

sin2θ − sinθ cosθ
)

=
VAM

πrD
(θ − sinθ cosθ ) . (12.29)

The power P dissipated in the diode and the resistor is, by definition

P =
1
T

∫ T

0
vAM iD dt =

VAMIDmax

2
=

V 2
AM

2πrD
(θ − sinθ cosθ ),

∴

Reff

rD
≡ V 2

AM

2P
=

π
θ − sinθ cosθ

, (12.30)

which only yields the ratio of the input resistance Reff and the diode resistance rD as a function of θ .
In order to find out how resistor R influences the input resistance, we substitute (12.24) into (12.30)
and write

Reff

R
=

Reff

rD

rD

R
=

tanθ −θ
θ − sinθ cosθ

, (12.31)

which only gives the ratio of the input effective resistance Reff and resistor R as a function of θ . In
the ideal case, detection efficiency is high, i.e., η → 1, which implies very low θ → 0. We expand the
sinusoidal terms into their respective power series

sinθ =
∞

∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = θ − θ 3

3!
+

θ 5

5!
−·· · ≈ θ − θ 3

6
,

cosθ =
∞

∑
n=0

(−1)n

(2n)!
x2n = 1− θ 2

2!
+

θ 4

4!
−·· · ≈ 1− θ 2

2

and we take only the first two terms of the series. After substituting (12.25) into (12.31), we derive

Reff

R
=

1
cosθ

sinθ −θ cosθ
θ − sinθ cosθ

=
1
η

⎡
⎢⎢⎣

(
θ − θ 3

6

)
−θ

(
1− θ 2

2

)

θ −
(

θ − θ 3

6

)(
1− θ 2

2

)
⎤
⎥⎥⎦

=
1
η

⎡
⎢⎢⎣

θ 3

3
2θ 3

3
+

θ 5

2

⎤
⎥⎥⎦≈ 1

η

⎡
⎢⎢⎣

θ 3

3
2θ 3

3

⎤
⎥⎥⎦

=
1

2η
≈ 1

2
(12.32)
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for the case of high detection efficiency η → 1. Therefore, we approximate the effective input
resistance as Reff ≈ 1/2R. The detailed functional relationship of Reff/R = f (θ ), as derived in (12.31),
is shown in Fig. 12.6.

12.2.4 Distortion Factor

So far we have used linearized approximations to estimate the parameters of a diode AM amplitude
detector, which worked quite well and produced reasonably accurate expressions. One of the
approximations that we made was linearization of the diode IDVD characteristic, which is one source
of distortion in the output wave due to the nonlinearity of the exponential function. For large decoding
efficiency circuits and strong modulation signals, this distortion source contributes a few percentage
points; for weak modulation signals, however, this source of distortion may be as high as about 25%.

The second, and less obvious, source of distortion is caused by the capacitor discharge current
being constant and set by the timing constant τ = RC. The problem is that the choice of timing
constant is always a compromise between opposing requirements. In an AM wave, peaks and troughs
of the envelope signal may come almost randomly, hence it is realistic that “clipping” may occur (see
Fig. 12.7) when the timing constant is too long and the slope of the discharging current is not steep
enough to follow the envelope downslope accurately. Consequently, the recovered waveform does not
accurately follow the embedded AM envelope and the recovered signal is distorted.
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In order to reduce the ripple factor, the timing constant needs to be long relative to the period T of
the carrier signal. However, if it is made too long, clipping occurs. We need to estimate the maximum
allowable value of the timing constant in order to prevent clipping and yet to make the response of
the diode detector fast enough to follow the slope of the envelope signal, where the clipping factor is
determined by making this compromise.

The most critical condition for the peak detector occurs when the modulation frequency ωb is
highest. The envelope wave equation is given by

b(t) =C0 (1+m cosωb t), (12.33)

where C0 is the maximum amplitude of the carrier signal and m is the amplitude modulation index.
At any moment in time t = t0, the value and slope of the modulation envelope of the modulation
signal are

b(t0) =C0 (1+m cosωb t), (12.34)(
db(t)

dt

)∣∣∣∣
t0

=−ωb mC0 sinωb t. (12.35)

By setting the potential across the capacitor equal to the modulation voltage at t = t0, we write,

vC =C0 (1+m cosωb t). (12.36)

After considering t > t0, the capacitor signal decays at the following rate

vC =VC0 e
−

t − t0
RC , (12.37)

∴(
dvC

dt

)∣∣∣∣
t0

=− 1
RC

vC =− C0

RC
(1+m cosωb t). (12.38)

In order to avoid diagonal clipping, the capacitor voltage vC must be equal to or less than the envelope
voltage vb for time t > t0 and the slope must be equal to or less than the envelope slope at t = t0 (which
is clearly not the case in Fig. 12.7). These conditions are written as

−C0

RC
(1+m cosωb t)≤−ωb mC0 sinωb t, (12.39)

∴
1

RC
≥ ωb

m sinωb t
1+m cosωb t

. (12.40)

The fastest RC constant is at the point when

d
dt

m sinωb t
1+m cosωb t

= 0,

∴

mωb
[cosωb t(1+m cosωb t)+m sin2 ωb t]

(1+m cosωb t)2 = 0, (12.41)
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which is equivalent to the following conditions:

cosωb t(1+m cosωb t)+m sin2 ωb t = 0, (12.42)

cosωb t +m(cos2 ωb t + sin2 ωb t) = 0 ∴ cosωb t =−m. (12.43)

After substituting cosωb t =−m into (12.42), we give the second solution as

−m(1−m2)+m sin2 ωb t = 0 ∴ sinωb t =
√

1−m2. (12.44)

Values of the two sinusoidal functions, (12.43) and (12.44), at this particular instance in time are
substituted back into (12.40), which yields the boundary condition for the timing constant RC where
the capacitor voltage has the greatest difficulty in following the modulation signal as

1
RC

≥ ωb
m
√

1−m2

1−m2 ,

∴
1

RC
≥ ωb

m√
1−m2

, (12.45)

which is the commonly cited condition that needs to be satisfied if the output voltage vC is to follow
the AM waveform envelope even under the worst conditions. The formula is very approximate in the
sense that, for instance, it implies that for the maximum modulation index m= 1, the RC time constant
would have to be zero, which further implies that the output waveform is equal to the input AM carrier
waveform, i.e., no envelope detection is possible. A more conservative condition, which was found
experimentally, modifies (12.45) to

1
RC

≥ mωb, (12.46)

which gives a guide to the designer in how to select the passive component values for the design of a
diode AM envelope decoder.

12.3 FM Wave Demodulation

The recovery process for information embedded into an FM wave carrier is based on a two-step
procedure where the frequency variation of the carrier is first converted into an amplitude variation,
which is then converted back into the baseband modulation signal by conventional AM demodulators.

In principle, an FM demodulation system includes a chain of processing sub-blocks (see Fig. 12.8):
a frequency-to-amplitude converter, an AM envelope detector, and an LP filter. The transfer function
of a frequency-to-amplitude converter is

H(jω) =
VAM(jω)

VFM(jω)
, (12.47)

∴

vAM(t) =
dvFM

dt
, (12.48)
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Fig. 12.8 FM wave demodulation chain

which serves as a time-domain differentiator of the FM wave. For a frequency-modulated signal at
carrier frequency ω0, we write

vFM(t) = A cos(ω0 t +θ (t)), (12.49)

where A is the FM wave’s fixed amplitude and θ (t) is the time-varying phase angle. Therefore, using
(12.48), the output of the frequency-to-amplitude converter is

vAM(t) =−A

[
ω0 +

dθ
dt

]
sin(ω0 t +θ (t)), (12.50)

whose amplitude portion is first approximately detected by the envelope detector as

vpk(t) = A

[
ω0 +

dθ
dt

]
, (12.51)

where, the first term ω0 A is a DC component and is to be removed by the LP filter. The second term
contains the embedded information signal b(t) through (11.59) that may be written as

θ (t) = mf

∫
b(t)dt, (12.52)

where mf is the FM index. Therefore, output of the envelope detector (12.51) contains the information
b(t) that is subsequently “cleaned up” and fully recovered by the LP filter.

There are three main types of FM demodulator circuit that are reviewed in the following sections:

• Slope detectors and FM discriminators
• Quadrature detectors
• PLL demodulators

They are used to implement the general system shown in Fig. 12.8 and described by (12.47)–(12.52).
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Fig. 12.9 A slope detector
circuit using a simple LC
resonator (circled) and an
AM slope detector

Fig. 12.10 Slope detection
using a simple LC
resonator

12.3.1 Slope Detectors and FM Discriminators

Although slope detectors are not much used any more, their simplicity and obvious operation allows
us to easily understand the basic principle of frequency-to-amplitude conversion, therefore they serve
the educational purpose well. At its core, a slope detector employs a simple LC resonator tank and a
diode AM detector in series (see Fig. 12.9). Although it is a very simple network, the exact analysis of
a slope detector circuit is very complicated because the input signal vFM is frequency modulated and,
therefore, a simple steady-state analysis does not apply; instead, transient analysis is required.

Nevertheless, we illustrate its operation graphically in Fig. 12.10. The resonant LC tank is tuned
at ω0 frequency and the carrier frequency of the incoming FM wave vFM is ωFM not equal to ω0,
i.e., ωFM 	= ω0. Because of that arrangement, the non-modulated tone of the incoming FM wave
falls on the slope of the LC resonator’s frequency characteristic, Fig. 12.10. As we discussed in
Sect. 9.6.2, the vertical axis of the LC resonator frequency characteristic shows the amplitude of the
incoming tone relative to the amplitude of the resonant tone at ω0 that is normalized to one. Thus, the
amplitude of the incoming tone at ωFM is reduced to A0. As the frequency of the incoming FM wave
changes to ωFM ± Δω , the amplitude of the recovered FM wave also changes in accordance with the
slope of the LC tank characteristic. Once the FM wave passes through the resonator tank it becomes
amplitude modulated in accordance with its embedded modulation signal b(t), which is to say that the
conventional diode AM detector is now able to extract the modulation signal b(t) as usual.

We note that either side of the frequency characteristic may be used for frequency-to-amplitude
conversion. On the right side of the characteristic, the increase in frequency corresponds to a decrease
in amplitude; on both sides of the characteristic, the tuning range is very narrow. In addition, we also
note that the recovered signal is distorted by the nonlinear characteristic. For example, the amplitude
of the recovered sinusoid is not symmetrical around the A0 point—the positive side is slightly larger
(Fig. 12.10).
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Fig. 12.11 A dual slope
detector using symmetrical
LC resonators and AM
slope detectors
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Fig. 12.12 Dual slope FM
detection using two slightly
offset LC resonators

12.3.1.1 Dual Slope Detector

A simple evolutionary step for improving the slope detector’s performance is to design a “dual slope
detector” by creating a symmetrical circuit that literally contains two mirrored versions of the slope
detector (see Fig. 12.11). The resonant frequencies of the two resonators are tuned to two separate
frequencies that are slightly off on each side relative to the ωFM value. Due to the symmetrical
topology of the circuit, i.e., signals flowing through the two sides of the circuit are opposite in phase,
the newly created frequency characteristic has a wider linear region centred around the FM carrier
frequency ωFM (Fig. 12.12). The main strength of the dual slope FM decoder, namely the linearity that
is created by the two offset resonators, is also the source of its main weakness. The circuit depends
on three key frequencies (the FM carrier frequency and the two side frequencies), which means that
it enables the reception of radio signals at each of these three frequencies instead of only one. In
addition, it requires two variable capacitors, which further increases its complexity.

12.3.1.2 Foster–Seeley Dual Slope Detector

A modified version of a dual slope FM detector, known as “Foster–Seeley” (see Fig. 12.13), includes
a shunting capacitor C0 between the primary L1 and the centre tap of the secondary inductance L2 of
the input transformer, a shunting capacitor C2 across the secondary inductance L2, and an RF choke
RFC. It would be possible to use a resistor instead of RFC, however, that would reduce detection
efficiency of the peak detectors (the RFC blocks the RF signals and provides a DC path). The input
transformer is dual side tuned, i.e., both the L1C1 and L2C2 resonators are tuned to the non-modulated
carrier frequency ω0 of the incoming FM wave.
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Fig. 12.13 A
Foster–Seeley
discriminator

A limited analysis of a Foster–Seeley decoder is possible and is educational. We start by assuming
that reactances XC0 and XC4 are very small, while reactance XL = XRFC are very high. With these two
assumptions, we approximate the voltage across RFC by following the (C0, RFC, C4) path, as

vL = jXL i3 = jXL
vFM

−jXC0 + jXL − jXC4

≈ jXL
vFM

+jXL
= vFM, (12.53)

where bold letters indicate vector variables. By assuming a small mutual inductance between primary
and secondary transformer inductances, we can approximate the resonant current i1 inside the L1C1

resonant tank as

i1 ≈ vFM

r1 + jXL1
≈ vFM

jXL1
(12.54)

for a high Q primary inductor, where r1 is the internal resistance of the L1 inductor. This current
induces EM potential v2 inside the secondary coil. After substituting (12.54), we write

v2 =±jωM i1 =±M
L1

vFM. (12.55)

The secondary coil is loaded by capacitor C2, hence, after ignoring the loading effect of the diodes (and
keeping the low mutual coupling approximation, i.e., the term ω2M2/rp ≈ 0), we write an expression
for the secondary resonant current iC2 = iL2 = i2 as

i2 ≈ v2

r2 + jXL2 − jXC2
=± vFM

r2 + j(XL2−XC2)

M
L1

(12.56)

after substituting (12.55), where r2 is the internal resistance of the L2 inductor.
The same secondary current causes voltages va0 and vb0 across their respective half L2 inductance,

after arbitrarily picking the positive sign of the current, as

va0 = i2
jXL2

2
=

vFM

r2 + j(XL2 −XC2)

jXL2 M
2L1

, (12.57)

vb0 =−i2
jXL2

2
=

vFM

r2 + j(XL2 −XC2)

jXL2 M
2L1

, (12.58)

∴

vab = i2 XL2 =
vFM

r2 + j(XL2 −XC2)

jXL2 M
L1

, (12.59)
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Fig. 12.14 Vector diagram for Foster–Seeley discriminator internal voltages

which means that va0 and vb0 have 180◦ phase difference and |vab| has the same shape as in Fig. 12.12.
We note that the DC potential at the output terminals Va′ is proportional to the peak voltage Va, while
potential Vb′ is proportional to Vb, relative to the ground, therefore the total output DC voltage is

Va′b′ =Va′0 +V0b′ =Va′0 −Vb′0. (12.60)

Now, we consider the following three cases:

• A non-modulated FM wave, i.e., the instantaneous frequency ω(t) is equal to the FM carrier ω0

frequency: The secondary circuit is at resonance and the two reactances are equal (XL2 = XC2),
therefore, from (12.57) and (12.58), it follows that |va0| = |vb0|, which after taking into account
(12.60) leads to the conclusion that the output DC voltage is Va′b′ = 0.

It is instructive to present the internal voltages on a vector diagram. At resonance, both the
primary and the secondary resonators have real impedances and there is, therefore, 90◦ difference
between voltages vRF and va0. At the same time, voltage vL across RFC is in phase with vRF

(12.53), as shown in Fig. 12.14 (left).
• A modulated FM wave for which the instantaneous frequency ω(t) is lower than the FM carrier

ω0 frequency: The secondary circuit is at resonance and reactance (XL2 < XC2), therefore, from
(12.57) and (12.58) it follows that |va0|< |vb0| (Fig. 12.14 (centre)).

• A modulated FM wave for which the instantaneous frequency ω(t) is higher than the FM carrier
ω0 frequency: The secondary circuit is at resonance and reactance (XL2 > XC2), therefore, from
(12.57) and (12.58) it follows that |va0|> |vb0| (Fig. 12.14 (right)).

In order to find phase angle θ between vectors vFM and vab, i.e., between the input FM voltage and
the inducted voltage across L2, we rearrange and approximate (12.59) assuming high Q value, as

vab

vFM
=

1
r2 + j(XL2 −XC2)

M
L1

=
1

1+ j

[
1
r2
(XL2 −XC2)

] jXL2 M
r2 L1

=
1

1+ j

[
1
r2
(XL2 −XC2)

] jXL2 M
r2 L1

=
1

1+ j
1
r2

(
ωL2 − 1

ωC2

) jXL2 M
r2 L1

=
1

1+ j
ωL2

r2

(
1− 1

ω2L2C2

) jXL2 M
r2 L1

=
1

1+ j
ωL2

r2

(
1− ω2

0

ω2

) jXL2 M
r2 L1
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=
1

1+ j
ω0L2

r2

(
ω
ω0

− ω0

ω

) jXL2 M
r2 L1

=
1

1+ j
ω0L2

r2
δ

jXL2 M
r2 L1
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, (12.61)

where Q is the Q factor of the secondary coil, M = k
√

L1L2, and δ is sometimes referred to as the
“detuning factor”.

At resonance when ω = ω0, then δ = 0, leading to

vab

vFM
=

jω L2 M
r2 L1

= jQk

√
L2

L1
, (12.62)

that is, at resonance when the primary and the secondary resonators are left only with their real
impedances, there is a 90◦ phase difference between the vab and vFM vectors due to the C0 capacitor.
For any other case, when the instantaneous frequency is off from the resonant frequency, there will be
a positive or negative phase angle θ added to the 90◦ average phase angle (see Fig. 12.14). Phase shift
θ is small and is caused by the first term of (12.61), which is approximated2 as

θ = arg
1

1+ jQδ
≈ arg(1− jQδ ) =−arctan(Qδ ) ≈−arctan

2QΔω
ω0

(12.63)

after detuning factor δ was approximated by using substitution ω = ω0 +Δω , as

δ =
ω0 +Δω

ω0
− ω0

ω0 +Δω
=

2Δω
ω0 +Δω

≈ 2Δω
ω0

. (12.64)

The last parameter that we need to define for the discriminator is its sensitivity factor kd. In other
words, we are interested in finding out how much change in the output DC voltage Vab is generated
for a unit change in frequency, i.e.

kd ≡ dVab

d f

[
V
Hz

]
(12.65)

and we determine Foster–Seeley parameters using both analytical results in this section and the vector
diagram.

Therefore, the overall function of the Foster–Seeley discriminator is to produce a changing DC
voltage at the output terminals whose amplitude is proportional to the amplitude of the FM embedded
signal. Very often in the literature, we find another version of the Foster–Seeley discriminator called
a “ratio detector”. With a minor tweak, the ratio detector achieves better AM rejection than the
discriminator with about 6 dB (theoretically) lower sensitivity. Subsequently, a number of modified
versions of the ratio detector have been designed and used.

2For b � 1, it follows that b2 ≈ 0, hence,
1

1+ jb
=

1
1+ jb

1− jb
1− jb

=
1− jb
1+b2 ≈ 1− jb.
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Fig. 12.15 Solution vector
diagram for Example 12.2
(not to scale)

Example 12.2. One of most common IF in FM receivers is f0 = 10.7 MHz while the maximum
allowed frequency deviation from the carrier frequency is Δ f = 75kHzpk, i.e., Δ f = 150kHzpp. The
internal components of a Foster–Seeley discriminator are scaled so that

K =
QM
2L1

= 0.5

and it has Q = 23.259. The output voltage is measured as Va = 1Vrms. Determine the peak output
voltage Vab and discriminator sensitivity.

Solution 12.2. Phase shift θ is calculated from (12.64) as

θ =−arctan
2QΔω

ω0
=−arctan

2× 23.259× 75kHzpk

10.7MHz
=−18◦. (12.66)

Knowing θ , we construct a vector diagram that contains a right triangle with 90◦, 18◦, and 72◦, as
shown in Fig. 12.15. From the K = 0.5 data point and (12.61), we conclude that |vL|= |va/K = 2 (keep
in mind that vL = vRF). With that information, it is straightforward to apply Pythagoras’ theorem
on right triangles to Fig. 12.15 and conclude that Vab = Va′ −Vb′ = 2.196Vrms =

√
2× 2.196Vrms =

3.106VDC.
The calculated voltage Vab = 3.106 V DC is generated by the circuit due to the maximum frequency

deviation therefore kd = 3.106VDC/75kHz ≈ 41.5μV/Hz.

12.3.2 Quadrature Detector

A quadrature detector is based on a similar principle to a slope detector. However, instead of
converting the incoming FM wave into an AM wave, a quadrature detector first converts an FM wave
into a PM wave. This conversion is done by means of a phase-shifting network whose phase versus
frequency characteristic is linear, hence variation of the carrier frequency Δωc creates a frequency-
dependent phase shift. In principle, the function of a quadrature decoder is relatively simple. As
its name implies, it is based on two signals whose phase difference is 90◦ (hence, they are “in
quadrature”), where the incoming FM wave is split and transmitted through two separate paths. The
first path is a simple short connection, while the second path leads through a phase-shifting network
(see Fig. 12.16), which adds first a fixed 90◦ phase shift due to capacitor C0 and then an additional
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Fig. 12.16 A quadrature
decoder circuit

θ = kω Δω0 shift due to the RpLpCp resonator network. Consequently, the original FM wave arrives
at node �1 with its original θ = 0 phase, while its copy arrives at node �2 with a new phase of
θ = π/2+ kω Δω0, where kω is the proportionality constant.

In the following simplified analysis, we extract the term causing the frequency-dependent phase
shift and show that it is indeed linear for small frequency variations. Along the way, we are not
concerned about exact expressions for the amplitude of a sinusoidal wave, because it is always set by
passive component values of an RLC resonant circuit and it may contain a large number of polynomial
terms if calculated exactly. Instead, we focus only on the phase-altering terms. In addition, we assume
high Q values, which simplifies the serial to parallel transformation of RLC resonating networks. We
note that the resonant frequency of the phase-shifting network is

ω0 =
1√

(C0 +Cp)Lp
= ωc (12.67)

because, looking into node �2 , the two capacitors appear in parallel (C0 is connected to the AC ground
through the FM signal source).

To show how the linear θ = f (Δω) phase shift characteristic is implemented, let us take a look at
a simplified schematic diagram of a quadrature decoder and its phase-shifting network (Fig. 12.16).
First, we note that reactance XC0 of capacitor C0 and impedance ZRLC of parallel RpLpCp resonator
are in series, and they effectively create a voltage divider at node �2 , hence we write

v2 =
ZRLC

XC0 +ZRLC
v1 = A0 v1, (12.68)

where, term A0 is determined by the exact set of values (C0,Rp,Lp,Cp) of what is just another RLC
resonating circuit. Exact derivation of A0 involves a set of serial–parallel transformations and contains
a number of polynomial terms. However, we already showed details of a similar derivation in (12.61),
where we concluded that the transfer function A0 of any resonant RLC network may be simplified
into the following general form

A0 =
jK

1+ jα
=

jK√
1+α2

; ∠(arctanα)

=
K√

1+α2
; ∠

(π
2
+ arctanα

)
, (12.69)
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where K = f (Q) is a real constant that controls the amplitude. However, α = f (ω ,ω0,Q) is a function
of the passive component values3 and the instantaneous frequency ω . The general form (12.69) is very
handy because we can determine its amplitude and phase4 simply by inspection. After substituting
(12.69) into (12.68), we write

v2 =
K√

1+α2
v1; ∠

(π
2
+ arctanα

)

=
K√

1+α2
V1 cosωc t; ∠

(π
2
+ arctanα

)

=
K1√

1+α2
cos

(
ωc t +

π
2
+ arctanα

)
, (12.70)

where K1 = KV1 is the new amplitude proportionality constant. The time domain term affects the
phase θ (t) and we need to find its average value relative to the sinusoidal variation. Therefore, we
evaluate the time-dependent term by integrating it over carrier time T/2, as

I =
ω
π

∫ π
ω

0
cos

(
ωc t +

π
2
+ arctanα

)
dt

=− 2
π

α√
1+α2

,

∴

phase(v2) ∝ − 2
π

K1√
1+α2

α√
1+α2

=−K2
α

1+α2 , (12.71)

where K2 = (K1 × 2/π) is the new amplitude proportionality constant. A plot of (12.71) shows the
linear phase dependence against the frequency variations (see Fig. 12.17).

3Keep in mind that ω0 = f (RLC) and Q = f (ω0L,R).
4Keep in mind that φ = arctan ℑ/ℜ, which reduces to φ = arctanℑ when ℜ = 1.
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Now that we have found out how the Δω to phase conversion is implemented, we need to find
out how the embedded information signal b(t) is extracted. That extraction is done by the multiplier
circuit in the frequency domain after signals v1 and v2 have reached its input terminals. Hence, output
of the multiplier circuit, after substituting kω Δω = arctanα and assuming an ideal multiplier, is

f (θ ) = v1 × v2 = K0

[
cosωc t × cos

(
ωc t +

π
2
+ kωΔω

)]

=−K0 [cosωc t × sin(ωc t + kωΔω)]

=−K0

2
[sin(2ωc t + kωΔω)− sin(kωΔω)]

≈ K0

2
sin(kωΔω), (12.72)

where the approximation was introduced after the signal passed through the LP filter and the high-
frequency tone close to 2ωc was removed from the signal spectrum. As the last step of signal recovery,
we note that

b(t) ∝ sin(kωΔω)≈ kωΔω (12.73)

for small variations of the sine argument. Therefore, for small frequency shifts, a quadrature decoder
has a reasonably linear characteristic. We note that implementation of the multiplier and the LP filter
is very important for operation of an analog quadrature decoder. However, if v1 wave is digital, i.e., a
square pulse stream, then a simple digital multiplier (in form of an AND gate) is employed.

12.3.3 PLL Demodulator

By careful inspection of the PLL circuit (Fig. 10.2), we note that if, instead of looking into the VCO’s
output node that generates either a sinusoidal or a square wave at frequency ω0, we probe the VCO’s
input node �2 where the (quasi) DC voltage level is generated, then without any additional circuitry
we have realized a phase or a frequency demodulator. We keep in mind that the voltage at node �2 is
directly proportional to the change of frequency Δω of the wave entering the input of the PD. If the
input wave is an FM wave, then the VCO control voltage accurately tracks the FM, in other words the
envelope of the modulation signal b(t) that is embedded into the FM wave.

There are two slightly different cases of PLLs for FM demodulation. In the first case, when the
loop bandwidth is wide enough to match the bandwidth of the modulation signal, then the PLL works
as a frequency demodulator. On the other hand, if the loop bandwidth is very narrow, then the PLL is
locked to the unmodulated carrier signal ω0 so that the reference phase is averaged, that is, the phase
detector holds almost constant phase that serves as a reference for comparison with the VCO phase.

12.4 Summary

Basic techniques for recovery of the received information b(t) are based on a very simple diode-
rectifying circuit that is a fundamental component of both AM and FM demodulators. Accurate
reproduction of the envelope wave is obviously important and the amount of imperfection of the
recovered information signal b(t) is referred to as “distortion”. When the recovered signal carries
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Fig. 12.18 Simplified schematic diagram for Problem 12.1

Fig. 12.19 Simplified schematic diagram and voltage current characteristics for Problem 12.2

audio information, the distortion from a low-quality demodulator is perceived by our hearing system
as “bad sound”. Similarly, if the recovered signal carries digital information, the distortion may cause
“bit errors” if the binary signal levels shift too far from their acceptable levels, as defined by digital
noise margins. Modern, more sophisticated, integrated versions of radio transceivers heavily employ
PLL circuits both for modulation and demodulation of digital waves.

Problems

12.1. Using the simplified schematic in Fig. 12.18 and if R = 2kΩ, estimate:

(a) Detector input impedance
(b) Total power delivered to the detector
(c) v0(max), v0(min), and V0(DC)
(d) Average output current I0(DC)
(e) An appropriate capacitor value C to prevent diagonal clipping distortion for maximal modulation

frequency fm(max)= 5 kHz and maximal modulation index ma = 0.9

12.2. Assume that the AM diode detector in Fig. 12.19 (left) is receiving a 665 kHz IF carrier
modulated with a 5 kHZ tone as the input signal Vin. Component values are: C1 = 220 pF, C2 = 22 pF,
R1 = 470Ω, R2 = 4.7kΩ, RL = 50kΩ. The characteristics of diode ID against VD are shown in
Fig. 12.19 (right).

(a) Sketch qualitatively the detector output tones along an ω axis showing relative amplitudes of the
tones.

(b) Sketch the AM waveform shape at nodes �1 to �5 .
(c) Sketch the equivalent circuit at 5 kHz. Calculate the amplitude ratio of the input signal and the

signal at node �3 .
(d) Sketch equivalent circuit at 665 kHz. Calculate the amplitude ratio of the input signal and the

signal at node �3 . Comment on the result relative to the result in part (c).
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Fig. 12.20 Block diagram for Problem 12.3

12.3. The voltage signal received by a 50Ω antenna has an amplitude of 10μV (Fig. 12.20). Gain
contributions are noted next to each block of the system. Estimate:

(a) The input signal power in W and dBm units.
(b) The power delivered to the speaker in dBm and W.

12.4. A modulation wave signal has a symmetrical triangular shape with zero DC component and an
amplitude of Vb = 2Vpp while the carrier wave has amplitude of VC = 2Vp. Calculate the modulation
index and find the ratio of the side lengths in the corresponding trapezoidal pattern.

12.5. For an unmodulated signal, the AM current in the antenna is I0 =1 A, while the sinusoidal
modulation wave causes the antenna current to be Im =1.1 A. Calculate the modulation index.



Chapter 13
RF Receivers

Abstract In the general sense, a radio receiver is an electronic system that is expected to detect the
existence of a single, very specific EM wave in the overcrowded air space, separate it from the rest
of the frequency spectrum, and extract a message. Hence, the literal implementation of the receiver
function, which is known as a TRF receiver, consists only of a receiving antenna, an RF amplifier,
and an audio amplifier. In addition, advanced radio receiver versions include one or more mixers
and VCO blocks, which are meant to perform either a single-step frequency down-conversion (also
known as a “heterodyne receiver”) or multiple step frequency down-conversions (also known as a
“super-heterodyne receiver”) in order to shift the HF wave down to the baseband.

In this chapter, we study basic radio receiver topologies, the nonlinear effects caused by less than
ideal electronic circuitry used to implement the receiver, and receiver specification parameters.

13.1 Basic Radio Receiver Topologies

In its simplest form, a radio receiver is just an LC resonator with an envelope detector. The simplest
possible implementation is known as “crystal radio” (Fig. 13.1) and it consists of the antenna (a long
wire), an inductor with several taps (i.e., a quasi-tunable inductor), a diode, and high-impedance
headphones. The resonance is achieved by the antenna–inductor connection.

To understand how this works, we keep in mind that, for instance, the commercial AM radio band is
in the 530–1,710kHz range, that is, the associated wavelengths are from 566 to 174 m, or equivalently
141 to 44 m quarter wavelength. Using an antenna of quarter of the wavelength (λ/4) is common
practice, which means that even for the upper AM band we would need a wire at least 44 m long.
Usually, we settle for a wire about 20 m long (we have to be very careful with the trees and houses in
the neighbourhood), which means that at these frequencies the antenna is mostly capacitive. Indeed,
a 20 m long antenna behaves like a 250–300 pF capacitor. Knowing the resonance equation, it is
straightforward to calculated the required inductive size. The envelope detector is built of a diode
and high-impedance headphones that serve as the resistive load in combination with the antenna and
parasitic capacitances. Because of the high impedances within the circuit, i.e., small currents, the
amount of energy collected in the antenna is sufficient to generate an audio signal in the headphones.
Hence, there is no need for an external power supply, which was the reason why this kind of radio
receiver was used very much by soldiers during World War I (when the radio was named a “foxhole
radio”).

The most direct and oldest implementation of a commercial radio receiver was based on the TRF
topology (see Fig. 13.2). Although a TRF receiver may contain more than one RF tuned amplifier,
each RF amplifier must be directly tuned to its carrier frequency ωc, with subsequent stages tuned
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Fig. 13.1 A “crystal”
radio receiver topology

Fig. 13.2 TRF receiver topology

appropriately. This makes it a very impractical system to work with, especially with a large number
of radio stations. Nevertheless, this topology was the main technology until it was replaced by the
heterodyne receiver.

Tuning the resonator stage in a TRF receiver to the carrier implies that the envelope detector must
decode the message at the HF carrier frequency, which means that the carrier frequency must be
relatively low. In addition, a relatively wide bandwidth (i.e., low Q factor) of a single front-end LC
resonator allows a number of tones to pass through and enter the envelope detector, which directly
affects the overall SNR of the receiver as well as its selectivity. To make things worse, the RF amplifier
gain is a function of the signal frequency, hence different carrier frequencies were received with
different gains. At times when only a handful of radio stations were broadcasting, it was relatively
easy to separate their carrier frequencies so that they did not interfere with each other, even with the
low Q resonator tanks being used. As the radio broadcasting industry grew, the air space became more
crowded and the only way to increase Q, and therefore selectivity, was to add a cascade of LC tanks
(see Sect. 5.10). However, this was at a cost of increased complexity and increased effort to keep all
the resonators properly tuned.

The solution was to introduce, first, the heterodyne receiver topology (with one mixer/VCO
stage), as shown in Fig. 13.3, and then the super-heterodyne receiver topology (with two or more
mixer/VCO stages, also known as “double conversion”). Similarly to a TRF receiver, heterodyne
receivers first tune to the HF carrier frequency. However, after the RF amplifier stage separates the
desired carrier frequency from the crowded frequency spectrum, the carrier-centred signal is down-
shifted in frequency to some IF that is fixed for the given receiver. This makes it much easier to design
the downstream stages: they always work at the same frequency regardless to what carrier frequency
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Fig. 13.3 Heterodyne receiver topology. The super-heterodyne topology contains two or more cascaded mixer/VCO
stages that perform frequency down-shifting in more than one step

the RF stage is tuned to. The amount of shifting is determined by the current frequency of the local
VCO, which is tuned in tandem with the RF stage.

At the system level, a radio receiver is analyzed and characterized using common metrics, so that
we can compare the performance of various designs. Some of the most common parameters that are
compared are:

• Selectivity: the minimum separation between the desired carrier frequency and its first neighbour-
ing frequency, under the condition that the receiver can safely receive the intended signal.

• Sensitivity: the minimum amplitude of the incoming RF signal that the receiver can decode, under
the condition of the required SNR.

• Dynamic range: the amplitude ratio of the strongest and weakest signals that the receiver can
decode.

We establish detailed metrics for each of these parameters in the following sections, however, in the
meantime, we need to familiarize ourselves with terminology and several key consequences of the
fact that RF circuits are nonlinear systems.

13.2 Nonlinear Effects

Understanding the characterization of general systems is very important for understanding the
behaviour of radio systems. Let us review basic terminology from systems theory. We loosely define
a linear system as one in which the output signal consists of the sum of proportionally scaled input
signals. In mathematical terminology, it satisfies the superposition law, i.e.,

F [a1x1(t)+ a2x2(t)] = a1F(x1(t))+ a2F(x2(t)), (13.1)

where a1 and a2 are constants independent of time. If a system does not satisfy the superposition law,
then it is nonlinear.
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Fig. 13.4 An LTI system
(left) and a nonlinear and
time-variant system (right)

Fig. 13.5 Distorted
waveforms caused by
nonlinear transfer functions

A system is time invariant if a time shift in the input results in the same time shift at the output,
i.e., in mathematical terminology, if x(t) → (t), then x(t − τ) → (t − τ) for all values of τ . Systems
that are both linear and time invariant are known as “LTI systems”.

We define a memoryless system as one whose output does not depend on the past values of its
input. For instance, a memoryless linear system obeys the relation y(t) = ax(t), where a is a constant.
If a(t) is a function of time, then relation y(t) = a(t)x(t) describes a memoryless time-variant system.
We can define a memoryless nonlinear system by using the general polynomial relation

y(t) = a0 + a1x(t)+ a2x2(t)+ a3x3(t)+ · · · , (13.2)

where ai is constant in time (otherwise we are defining a time-variant memoryless nonlinear system).
Clearly, if in practice all terms in (13.2) disappear (or are negligibly small) except the first two, then
the linear approximation of y(t) would be valid. Figure 13.4 shows two networks, one that is LTI
and one that is both nonlinear and time variant. Note that, in Fig. 13.4 (right), the switch itself is a
nonlinear element: because of the dependence of the output variable y(t) on the switching frequency
ωc, time invariance is broken. General radio systems are analyzed using (13.2) where ai is a constant
because they are approximated as memoryless time-invariant nonlinear systems.

When the output amplitude is not a linear function of the input amplitude, we describe it as
“amplitude distortion”. In general, distortion is any difference between the original and output
forms of the signal (see Fig. 13.5). The following effects caused by nonlinearity of the transfer
characteristic are most commonly studied: harmonic distortion, gain compression, intermodulation,
and desensitization.
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13.2.1 Harmonic Distortion

After injecting a single-tone signal x(t) = B cosω t into a nonlinear system whose transfer function is
described as (13.2) with the DC term removed (i.e., a0 = 0), the output shows at the output node as

y(t) = a1B cosω t + a2B2 cos2 ω t + a3B3 cos3 ω t + · · · (13.3)

= a1B cosω t +
a2B2

2
(1+ cos2ω t)+

a3B3

4
(3cosω t + cos3ω t)+ · · ·

=
a2B2

2
+

(
a1B+

3a3B3

4

)
cosω t +

a2B2

2
cos2ω t +

a3B3

4
cos3ω t + · · ·

= b0 + b1 cosω t + b2 cos2ω t + b3 cos3ω t + · · · , (13.4)

where b0 is the output signal’s DC term. In addition, we make the following observations: the input
signal spectrum x(ω) contains only one tone ω , while the output signal spectrum y(ω) contains
higher-order harmonics 2ω , 3ω , etc. that did not exist in the input spectrum. They have been created by
the nonlinear transfer function. Even-order harmonics (i.e., terms with 2ω t, 4ω t, . . . ) are associated
with the even-order constants ai, i = 2k, therefore these terms disappear if the system transfer function
has odd symmetry, for instance, transfer functions of differential circuits. For large amplitude, B � 1
the n-th harmonics is approximately proportional to Bn. These are very important observations that
give clues about the frequency spectrum of a nonlinear system.

One of the commonly used quantitative measures of nonlinearity is “total harmonic distortion”
(THD). The individual percentage distortions are calculated as

D2 =
b2

b1
D3 =

b3

b1
D4 =

b4

b1
· · · (13.5)

relative to the first harmonic coefficient. Then, by definition, we calculate THD for voltage or
current as

T HD =
√

D2
2 +D2

3 +D2
4 · · ·. (13.6)

Example 13.1. A cosine current was measured at the output of a non-inverting amplifier. The three
experimentally determined pairs of the input voltage Vin and the matching output current Iout are:
Vmax ⇒ Imax = 1 mA, Vb ⇒ Ib = 0.01 mA, Vmin ⇒ Imax =−0.95 mA where Vb is the biasing voltage at
the midpoint between the maximum and minimum input voltage amplitudes. Based on the available
data, estimate the THD of the system.

Solution 13.1. The collected experimental data correspond to the cosine wave input voltage function
(the non-inverting amplifier), therefore we know the associated ω t angles.1 After substitution back
into (13.4), this results in:

Vin =Vmax ∴ ω t = 0 ∴ Imax = b0 + b1 + b2,

Vin =Vb ∴ ω t =
π
2

∴ Ib = b0 − b2,

Vin =Vmin ∴ ω t = π ∴ Imax = b0 − b1 + b2,

1Simply a plot cosine function and find arguments for its maximum, minimum, middle, and ±1/2 amplitude points.
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Fig. 13.6 Output signal
level against input signal
level and the 1 dB
compression point

which is solved as

b0 =
Ib

2
+

Imax

4
+

Imin

4
= 17.5μA,

b1 =
Imax

2
− Imin

2
= 975μA,

b2 =− Ib

2
+

Imax

4
+

Imin

4
= 7.5μA.

By definition, we write

D2 =
b2

b1
× 100% = 0.77,

T HD =
√

D2
2 +D2

3 +D2
4 · · ·=

√
D2

2 = D2 = 0.77%

because with only three measurements we can solve for up to the second order term in (13.4). If more
detailed measurement was done, for instance with five measured points that would add amplitudes at
Vin(±1/2), then we would have ω t = π/3 and ω t = 2π/3 corresponding angles as well, which would
enable us to calculate b0, b1, b2, b3, and b4 constants.

13.2.1.1 Gain Compression

A common property of most amplifier circuits is that as the input signal power level increases, at
first the output signal level increases proportionally. That is, for low-power signals, the output–input
relationship is linear Pout =APin, where A is the gain that is calculated as the A= dPout/dPin derivative.
However, eventually, the output signal level is limited by the circuit’s power supply level or the
reduced biasing current of its active devices. In other words, the small signal linearity relationship
does not hold for large input signal levels.

We define the 1 dB compression point as the input signal power level Sin(−1dB) which corresponds
to the gain A(−1dB) for which the output signal level is 1 dB lower relative to the linear model (see
Fig. 13.6, noting that the plot is in log–log scale).

The 1 dB compression point is determined both analytically and experimentally. Let us take a
nonlinear system described by (13.4) and try to find the 1 dB compression point. The first term in
(13.4) is the DC term, hence its derivative is zero and it is not part of the gain equation. The second
term describes the output signal of the input x(t) = Acosω t, hence we write the equations for the
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linear gain function (i.e., if all nonlinear terms in (13.3) are ignored) and the nonlinear gain function as

|Vout| ≈ a1B cosω t,

|V ′
out| ≈

(
a1B+

3a3B3

4

)
cosω t,

∴∣∣∣∣V
′
out

Vout

∣∣∣∣=
(

1+
3a3 B2

4a1

)
,

where the ratio V ′
out/Vout is the apparent gain between the linear and the nonlinear functions. Clearly,

if a3/a1 < 0 and
∣∣∣ 3a3 B2

4a1

∣∣∣< 1 then there is compression in the gain. After conversion into the dB scale,2

we write an expression for the apparent gain as

20 logV ′
out− 20logVout = 20log

(
1+

3a3 B2

4a1

)
,

−1dB = 20 log

(
1+

3a3 B2

4a1

)
,

10−1/20 − 1 =
3a3 B2

4a1
,

∴

B(−1dB) =

√
0.145

∣∣∣∣a1

a3

∣∣∣∣, (13.7)

where the input signal level Sin(−1dB) was introduced in dB, therefore

Sin(−1dB) = 20log [B(−1dB)] dB. (13.8)

Interestingly enough, (13.7) shows that the 1 dB compression point of the first harmonic is, through
a3, intimately connected to the third harmonic of the input signal. We formalize this connection in the
following sections.

13.2.2 Inter-Modulation

As opposed to harmonic distortion, which is caused by self-mixing of one input signal and where
the higher-order harmonics in (13.4) are relatively easy to suppress by LP filtering, intermodulation
involves two input tones with close frequencies ωa and ωb. Consequently, in case of any nonlinearity
the output spectrum must contains various harmonics of the fundamental tones, however, it also
contains tones that are not harmonics of the input frequencies.

2Keep in mind that loga/b = loga− logb.



326 13 RF Receivers

Fig. 13.7 Part of the
intermodulation frequency
spectrum showing the
third-order terms 2ωa ±ωb
close to the fundamental
tones

Let us assume the input signal is the sum of x(t) = B1 cosωa t +B2 cosωb t; then (13.3) becomes

y(t) = a1 (B1 cosωa t +B2 cosωb t)

+ a2 (B1 cosωa t +B2 cosωb t)2

+ a3 (B1 cosωa t +B2 cosωb t)3 + · · · , (13.9)

which, after expanding and collecting the frequency terms, yields the following terms

y(t) =
a2(B2

1 +B2
2)

2
(DC term)

+

(
a1B1 +

3
4

a3B3
1 +

3
2

a3B1B2
2

)
cosωa t (fundamental terms)

+

(
a1B2 +

3
4

a3B3
2 +

3
2

a3B2B2
1

)
cosωb t

+
a2

2

(
B2

1 cos2ωa t +B2
2 cos2ωb t

)
(second-order terms)

+ a2B1B2 [cos(ωa +ωb)t + cos |ωa −ωb|t]
+

a3

4

(
B3

1 cos3ωa t +B3
2 cos3ωb t

)
(third-order terms)

+
3a3

4

{
B2

1B2 [cos(2ωa +ωb)t + cos(2ωa −ωb)t]

+B1B2
2 [cos(2ωb +ωa)t + cos(2ωb −ωa)t]

}
, (13.10)

which shows that the output spectrum contains the two fundamental tones, ωa, ωb, the second-order
terms, 2ωa, 2ωb, |ωa±ωb|, and the third-order terms 3ωa, 3ωb, 2ωa±ωb, 2ωb±ωa. It is of particular
interest that we found third-order tones such as 2ωa ±ωb that are not harmonics of the fundamental
tones. The problem is that if the two input tones are close to each other, i.e., ωa ≈ωb, then 2ωa−ωb ≈
2ωa −ωa ≈ ωa! That is, there are cases in the frequency spectrum when the third-order terms are too
close to the fundamental tones, Fig. 13.7 and cannot easily be filtered out.

Frequency spectrum analysis (13.10) comes in handy for the “two-tone test” that uses two slightly
different tones with the same small amplitude B1 = B2 = B, which means that the higher harmonics
are negligible and (13.10) simplifies to



13.2 Nonlinear Effects 327

y(t) = a2B+B

(
a1 +

9
4

a3B2
)

cosωa t +B

(
a1 +

9
4

a3B2
)

cosωb t

+
B2a2

2
(cos2ωa t + cos2ωb t)+ a2B2 [cos(ωa +ωb)t + cos|ωa −ωb|t]

+
B3a3

4
(cos3ωa t + cos3ωb t)

+
3B3a3

4
{[cos(2ωa +ωb)t + cos(2ωa −ωb)t]

+[cos(2ωb +ωa)t + cos(2ωb −ωa)t]} . (13.11)

With an assumption of a small amplitude B, i.e., B2 → 0, the amplitudes of the fundamental terms are
approximated as

(
a1 +

9
4

a3B2
)
≈ a1. (13.12)

We are especially interested in the power of tones at (2ωb ± ωa) relative to the power of the
fundamental tones. In a similar fashion to the derivation of the 1 dB compression point, let us take
a look at the input signal level that causes the power of the third-order term to be equal to the power
of the fundamental, i.e.

a1B =
3B3a3

4
,

∴

B(IIP3) =

√
4
3

∣∣∣∣a1

a3

∣∣∣∣, (13.13)

where the amplitude of the fundamental was approximated as (13.12) and B(IIP3) refers to the input
signal level known as the third-order intercept point (IIP3). By comparing (13.13) with (13.7), it is
straightforward to write

B(−1dB) =

√
4
3

∣∣∣∣a1

a3

∣∣∣∣ 0.11 = IIP3− 9.6dB. (13.14)

We note that IIP3 gives nonlinearity because of the third-order terms and that the initial assumption
was that the two input tones had small amplitude. That is, expression (13.13) is not valid for strong
signals. Because of that, IIP3 is the theoretical point that is extrapolated from the linear portions of
the gain plot, shown in Fig. 13.8. It is interesting to note that the slope of the third-order term is three
times the slope of the fundamental. This observation leads to a graphical solution for the third-order
IIP3 from the experimental data (Fig. 13.9). The input power of the fundamental tones is measured and
compared with the power of the third-order term on a spectrum analyzer, where the power difference
ΔP is in dB, Fig. 13.9 (left), which is translated into the I/O power plot, Fig. 13.9 (right). Using similar
triangles, we conclude that the IIP3 point must be at

IIP3 = Pin +
ΔP
2

dB, (13.15)
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Fig. 13.8 Third-order
intercept point
extrapolation

Fig. 13.9 Graphical
solution for third-order
intercept point

which is a practical way of estimating the IIP3 by measurement. In this analysis, we have ignored
any effects of the second-order terms. They have less influence in narrowband systems relative to the
third-order terms, however in the case of low IF or direct conversion systems, the second-order terms
come very close to the baseband signal. If not taken care of, they may even “overwrite” the desired
tone. More detailed study of intermodulation terms is beyond the scope of this book.

13.2.3 Cross-Modulation

There are two important cases of cross-modulation that we need to become familiar with. In the first
scenario, two signals arrive at the antenna, one much stronger than the other. The problem is that the
desired signal is the “weak” one. As an illustration, imagine using a cell phone in a crowded bus with
another cell phone user very close by. The signal leaving the neighbouring cell phone is very strong,
but unfortunately it is not for you. The one that you are trying to hear is already at the end of its
journey and is very weak, barely dumping its leftover energy into the antenna. Unfortunately for you,
the other user is doing the same and your signal may be “blocked” or “jammed”.

Let us take a closer look at the case from the mathematical perspective. The incoming signal

x(t) = B1 cosωa t +B2 cosωb t; B2 � B1 (13.16)

is processed by a nonlinear circuit whose gain equation is given by (13.2), which, after substitution of
(13.16), becomes

y(t) ≈
(

a1B1 +
3
4

a3B3
1 +

3
2

a3B1B2
2

)
cosωa t + · · · ,

(B2 � B1)

≈
(

1+
3
2

a3

a1
B2

2

)
a1B1 cosωa t + · · · , (13.17)
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Fig. 13.10 Strong
interference and weak
signal in the same band

where, we focus only on the first fundamental term of the desired tone at ωa. Most circuits are
compressive, therefore a3/a1 < 0, which leads to the conclusion that, under the right circumstances
and large amplitude B2 of the blocking signal, the amplitude of the desired signal ωa may be reduced
to zero, i.e.

0 =

(
1− 3

2

∣∣∣∣a3

a1

∣∣∣∣B2
2

)
∴ B2 =

√
2
3

∣∣∣∣a1

a3

∣∣∣∣. (13.18)

Modern RF equipment is expected to correctly decode the desired signal in presence of an interfering
signal that may be 60–70 dB stronger.

In the second scenario (see Fig. 13.10), the receiving antenna is exposed to two signals, the desired
one at frequency ωa and a strong AM signal, i.e.

x(t) = B1 cosωa t +B2(1+mcosωb t)cosωc t. (13.19)

Using the same approach again, we focus only on the main harmonic of the desired signal, i.e.

y(t)≈
[

a1B1 +
3
2

a3B1B2
2

(
1+

m2

2
+

m2

2
cos2ωb t + 2mcosωb t

)]
cosωa t + · · ·

= f (ωb,2ωb)cosωa t (13.20)

in other words, the receiving signal is modulated by the AM signal, which is superimposed on
the original message. Depending on the exact circumstances, the desired signal may be completely
blocked by the strong AM signal.

13.2.4 Image Frequency

The main limitation of a TRF receiver, its limited selectivity over a wide range of receiving
frequencies, was a strong motivation for development of heterodyne receiver topology. Even though it
is much more complicated than the simple TRF receiver structure, advances in IC technology enable
very sophisticated heterodyne and super-heterodyne receivers to be manufactured as a sub-circuit
of even more complex communication integrated systems. Indeed, it is a standard expectation for
modern equipment to have one or more integrated RF transceivers included for a fractional increase
in the overall cost.
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Fig. 13.11 The frequency domain relation among the carrier frequency ωc, the image frequency ωghost, the LO
frequency ωVCO, and the sum and difference tones generated by mixer. This illustration assumes that ωVCO < ωc.
If ωVCO > ωc, then the roles of the carrier and the image frequency are swapped

However, the solution to the selectivity problem, which was enabled by the addition of a VCO–
mixer combination, comes with its own issue, known as the “image frequency”, which is sometimes
referred to as a “ghost frequency”. This inherent issue comes from the fact that a mixer generates two
tones, ωa ±ωb, at its output terminal (see Fig. 13.11). In order to see how the ghost frequency issue
arises, let us take a look at the following scenario. Let us say that an audio signal with fm = 1 kHz
is embedded into a carrier signal, fC = 10 MHz. At the receiving side, the LO is tuned to fVCO =
9.999 MHz. Routinely, we state that the frequency spectrum at output of the ideal mixer must contain

f1 = fC + fVCO = 10MHz+ 9.999MHz = 19.999MHz,

f2 = fC − fVCO = 10MHz− 9.999MHz = 1kHz, (13.21)

where f2 = 1 kHz is the desired signal, and f1 = 19.999 MHz is the high-frequency tone that is easily
removed by an LP filter. However, a more careful analysis reveals that, in the case of another signal
arriving at the receiving antenna, we may have the following scenario. Let us take a look at the
frequency that is located, in this case, at two times the modulation frequency fm below the carrier
frequency, i.e.

fghost = fC − 2 fm = 10MHz+ 2× 1kHz= 9.998MHz, (13.22)

which is close enough to the carrier frequency and, therefore, passes through the RF amplifier’s
resonator and enters the mixer. Consequently, output of the mixer must contain the following tones

f3 = fVCO + fghost = 9.999MHz+ 9.998MHz = 19.997MHz,

f4 = fVCO − fghost = 9.999MHz− 9.998MHz = 1kHz. (13.23)

To our surprise, we find out that we have received not the desired message but another message
carried by another carrier at the image frequency. Indeed, the second message was generated by a
second (real) transmitter working at fghost = 9.998 MHz frequency, and it is irreversibly mixed with
the desired message.

The issue of image frequency must be dealt with before the first mixer stage. The following
methods are most often used to deal with it:
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• Increasing the Q factor of the input front-end resonator and further rejecting the image (see
Sect. 9.6.1).

• Keeping a minimum distance between any two neighbouring radio-transmitting frequencies.
• Declaring “forbidden” frequencies within the frequency spectrum.
• Introducing super-heterodyne receiver topology with a second VCO–mixer pair that further

separates the troubling tones from the desired one.

In reality, the radio system design process involves a number of specifications and standards that
provide guidelines and working boundaries to the designer.

Example 13.2. For a standard AM receiver that is tuned to a carrier signal of fC = 620 kHz and uses
IF frequency of fIF = 455 kHz, determine the image frequency fimage if the receiver is designed to
have fVCO > fC.

Solution 13.2. With reference to Fig. 13.11, we write an expression for the frequency of the LO fVCO

as the difference between

fIF = fVCO − fC ∴ fVCO = fIF + fC = 1,075kHz,

∴
fIF = fimage − fVCO ∴ fimage = fIF + fVCO = 1,530kHz. (13.24)

13.3 Radio Receiver Specifications

System-level radio designers aim to improve the selectivity of the systems by designing architectures
that are better equipped to deal with the intermodulation and image frequency issues. It is common for
modern radio receiver architectures that are implemented using IC technologies to be able to select a
signal from a wide range of carrier frequencies that span over several “standard” frequency bands. For
example, the latest cell phones are capable of covering up to three GSM frequency bands, such as the
2,100–1,900–850MHz combination. The rule is that each user must conform to its assigned channel
boundaries, i.e., just as it is not desirable to have signal cross-talk within a multi-wire bundle, it is not
desirable to have “spilling over” of frequency spectrum among wireless channels.

13.3.1 Dynamic Range

The term dynamic range refers to the ratio of the largest and smallest values that the system is capable
of processing. For instance, if the lowest signal amplitude that an amplifier can detect and amplify
is 1 mV and the largest amplitude is 1 V, then its dynamic range is 1:1,000. It is common practice in
technical and science literature to describe 1 V relative to 1,000 V as a 60 dB dynamic range; that is,
dynamic range is a dimensionless number.

State-of-the-art electronic equipment often exhibits a dynamic range of more than 100 dB. In order
to put a perspective on these numbers, 100 dB is a ratio of 100,000:1 (the equivalent of 1 mV relative
to 100 V). That is equivalent to a ratio of, for instance, the height of the CN Tower in Toronto relative
to an ant.
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13.3.1.1 Noise Floor

The upper limit of the dynamic range is set by circuit nonlinearities. The most commonly used
metric for quantifying the dynamic range of a circuit is by specifying its 1 dB compression point
or, equivalently, its IIP3. Therefore, control of the upper signal limit is, to a large extent, under the
control of the designer. For instance, a straightforward way of increasing the upper signal limit is to
design the circuit to operate with increased power supply voltage level.

Determining the minimum signal level that can be detected against the background noise starts by
establishing the total amount of noise in the system. We introduced thermal noise in (3.2), which is
repeated here

Pn = k TΔ f W, (13.25)

which can be normalized for Δ f = 1 Hz, as

Pn = k T [W/Hz]. (13.26)

Unless specifically stated, we assume “room temperature” for the environment, i.e., T = 290 K, and
write

Pn = k T = 1.38× 10−23 J/K× 290K =−174dBm. (13.27)

This number is commonly used to set the “noise floor” at room temperature. Reducing the environment
temperature, of course, reduces the noise floor. That approach is used in high-end receivers for
radio astronomy where the incoming signal is very low. Indeed, the approximate power of the radio
signal that was transmitted by the Galileo space probe and arrived at Earth was in the order of
10×10−21 W or −170 dBm and requires a 70-meter-long DSN antenna. However, the cooling system
for temperatures close to 0 K is not suitable for general use. Circuit designers reduce the system noise
by controlling the frequency bandwidth Δ f .

13.3.1.2 Sensitivity

Defining the sensitivity of a receiver requires that we put together all the knowledge that we have
collected in this book and apply the following reasoning. The receiver input signal is referenced
relative to the noise floor. Depending upon the circuit bandwidth, there is additional 10 logΔ f noise
added into the system. Narrowband systems are the obvious conclusion, however, this opportunity for
noise reduction can be exploited only so much. Therefore, for any bandwidth above 1 Hz (13.25) is
extended as

Pn =−174dBm+ 10logΔ f dBm. (13.28)

Progressing through the receiver circuit, the internally generated noise is quantified by the noise figure
NF , which needs to be added into the noise budget, hence

Pn =−174dBm+ 10logΔ f +NF dBm, (13.29)

which sets the “real” noise floor for the receiver. In order to be useful, the receiver must be able to
process signals above the real noise floor; in other words, it has to be designed for a certain desired
signal-to-noise ratio, SNRdesired.
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Fig. 13.12 Elements of
dynamic range at room
temperature

We now define the receiver sensitivity (S) as the signal level

Sn = Pn + SNRdesired dBm, (13.30)

where Pn represents the level, for the given bandwidth Δ f , at which the signal power is equal to the
noise power. That is, the level is equivalent to the case when the SNR of the receiver is 0 dB (see
Fig. 13.12).

With this discussion in mind, we define the ideal dynamic range as the difference between the 1 dB
compression point and the receiver’s sensitivity, i.e.

DR = 1dBpoint − Sn dBm, (13.31)

which is a somewhat optimistic result. In practice, it is often adjusted by about 30% down to 2/3 DR.
Clearly, it is a goal to design a receiver with as wide a dynamic range as possible. The current state of
the art is about 100 dB.

Example 13.3. Determine the sensitivity of a receiver at room temperature whose NF = 5 dB,
BW = 1 MHz, and desired SNR = 10 dB.

Solution 13.3. A straightforward implementation of (13.29) yields

S =−174dBm+ 10log1MHz+ 5dB+ 10dB =−99dBm,

which is a relatively typical number for state-of-the-art receivers.

13.4 Summary

Figures of merit serve the purpose of comparing various design solutions and looking for ways to
improve them. Radio receivers deal with very low signal powers; a cell phone, for instance, receives
signals as low as −110 dBm. Thermal noise presents the lower power limit under which the desired
signal becomes irretrievably drowned in the background noise. On the upper side limit, nonlinear
effects in the receiver circuit and signal distortion become determining factors for establishing the
dynamic range.



334 13 RF Receivers

Fig. 13.13 AM receiver
block diagram for
Problem 13.2 (left) and
diagram for Problem 13.4
(right)

Problems

13.1. An AM receiver is designed to receive RF signals in the 500–1,600 kHz frequency range with
the required bandwidth of BW = 10 kHz at f0 = 1,050 kHz. The RF amplifier uses inductor L =
1μH.

1. Calculate the bandwidth at f = 1,600 kHz and capacitance C.
2. Calculate the bandwidth at f = 500 kHz and capacitance C.
3. Comment on the results.

13.2. An AM receiver is designed to receive RF signals in the 500–1,600 kHz frequency range. All
incoming RF signals are shifted to IF IF=465 kHz. AM receiver tuning is commonly done by a knob
that simultaneously tunes resonating capacitors in the RF and LO oscillator sections. For the receiver
architecture in Fig. 13.13 (matching network not shown),

1. Calculate the tuning ratio CRF(max)/CRF(min) of the resonator capacitor in the RF amplifier.
2. Calculate the tuning ratio CLO(max)/CLO(min) of the resonator capacitor in the local oscillator

LO.
3. Recommend the resonating frequency for the local oscillator.

13.3. The LO oscillator frequency is 11 MHz and the RF signal frequency is 10 MHz. What is the
image frequency?

13.4. The I/O power characteristic of an amplifier is given in Fig. 13.13 (right). Estimate the gain, the
1 dB compression point, and the IIP3.

13.5. A receiver whose IF frequency is 455 kHz is tuned to a 950 kHz signal. Find all the interference
signals including their second harmonics. Is any of them within the range 950kHz± 200kHz? If yes,
what Q factor of the front-end LC resonator is needed in order to suppress the interference signal to
−80 dB below the desired tone?

13.6. A receiver operates in the 3–30 MHz range while using 10.7 MHz IF frequency. Estimate the
range of oscillator frequencies and the range of image frequencies. Can you suggest filters to be used
with this receiver?

13.7. A double-conversion receiver architecture is based on two IF frequencies, IF1 = 10.7 MHz and
IF2 = 455 kHz. If the receiver is tuned to a 20 MHz signal, find the frequencies of the LOs and the
image frequencies.



Appendix A
Physical Constants and Engineering Prefixes

Table A.1 Basic physical
constants

Physical constant Symbol Value

Speed of light in vacuum c 299792458 m/s

Magnetic constant (vacuum μ0 4π ×10−7 N/A2

permeability)
Electric constant (vacuum permittivity) ε0 = 1/(μ0c2) 8.854187817×10−12F/m

Characteristic impedance of vacuum Z0 = μ0c 376.730313461Ω
Coulomb’s constant ke = 1/4πε0 8.987551787×109 Nm2/C2

Elementary charge e 1.602176565×10−19 C
Boltzmann constant k 1.3806488×10−23 J/K

Table A.2 Basic engineering prefix system

Tera Giga Mega Kilo Hecto Deca Deci Centi Milli Micro Nano Pico Femto Atto

T G M k h da d c m μ n p f a
1012 109 106 103 102 101 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18

Table A.3 SI system of
fundamental units

Name Symbol Quantity Symbol

Meter m Length l
Kilogram kg Mass m
Second s Time t
Ampere A Electric current I
Kelvin K Thermodynamic temperature (−273.16◦C) T
Candela cd Luminous intensity Iv
Mole mol Amount of substance n
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Appendix B
Maxwell’s Equations

The complete set of Maxwell’s equations is listed here for reference.

1. Gauss’s law for electric fields:
∮

S
D ·ds = qfree, enc integral form, (B.1)

∇ ·D = ρfree differential form. (B.2)

2. Gauss’s law for magnetic fields:

∮
S
B ·ds = 0 integral form, (B.3)

∇ ·B = 0 differential form. (B.4)

3. Faraday’s law:

∮
L
E ·d l =− d

dt

∫
S
B ·ds integral form, (B.5)

∇×E =−∂B
∂ t

differential form. (B.6)

4. Ampere–Maxwell law:

∮
L
H ·d l = Ifree, enc +

d
dt

∫
S
D ·ds integral form, (B.7)

∇×H = Jfree +
∂D
∂ t

differential form. (B.8)
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Appendix C
Second-Order Differential Equation

The three basic elements have voltages at their respective terminals as:

vR = iR vL = L
di
dt

vC =
q
C
. (C.1)

If they are put together in a series circuit that includes a voltage source v(t), after applying KVL, the
circuit equation is

v(t) = vL + vR + vC,

∴

v(t) = L
di
dt

+ iR+
q
C
. (C.2)

However, we know that a current is a derivative of charge in respect to time, hence we have the
second-order differential equation

v(t) = L
d2q
dt2 +R

dq
dt

+
1
C

q,

∴

v(t) =
d2q
dt2 +

R
L

dq
dt

+
1

LC
q. (C.3)

This is solved, starting with its auxiliary quadratic equation

0 = x2 +
R
L

x+
1

LC
(C.4)

and its general solution with complex roots is

r1,2 =
1
2

⎛
⎝−R

L
±
√(

R
L

)2

− 4
LC

⎞
⎠ . (C.5)
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Appendix D
Complex Numbers

A complex number is a neat way of presenting a point in (mathematical) space with two coordinates
or, equivalently, it is a neat way to write two equations in the form of one. A general complex number
is Z = a+ jb, where a and b are real numbers referred to as real and imaginary parts, i.e. ℜ(Z) = a,
and ℑ(Z) = b. Here is a reminder of the basic operations with complex numbers. Keep in mind that
j2 =−1.

(a+ jb)+ (c+ jd)= (a+ c)+ j(b+ d), (D.1)

(a+ jb)− (c+ jd)= (a− c)+ j(b− d), (D.2)

(a+ jb) (c+ jd) = (ac− bd)+ j(bc+ ad), (D.3)

(a+ jb)
(c+ jd)

=
(a+ jb)
(c+ jd)

(c− jd)
(c− jd)

=
ac+ bd
c2 + d2 + j

bc− ad
c2 + d2 , (D.4)

(a+ jb)∗ = (a− jb), (D.5)

|(a+ jb)|=
√
(a+ jb)(a− jb) =

√
(a2 + b2). (D.6)

It is much easier to visualize complex numbers and operations if we use vectors and the trigonometry
of a right triangle, i.e. Pythagoras’ theorem. The imaginary part always takes its value from the y axis
and the real part is always on the x axis (see Fig. D.1).

Therefore, an alternative view of complex numbers is based on geometry, i.e.

(a+ jb)≡ (|Z|,θ ), (D.7)

where, of course, the absolute value of Z is the length of the hypotenuse and the real and imaginary
parts are the two legs of the right-angled triangle, i.e.

|Z|=
√

Z Z∗ =
√

(a2 + b2), heta = arctan

(
b
a

)
, (D.8)

where θ is the phase angle. After using Euler’s formula, this becomes

ejx ≡ cosx+ jcosx (D.9)
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342 D Complex Numbers

Fig. D.1 Complex
numbers in [ℜ(Z), ℑ(Z)]
space, their equivalence to
Pythagoras’ theorem and
vector arithmetic

and enables us to write a really compact form of complex numbers

Z = a+ jb = |Z|ejθ , (D.10)

which leads into another simple way of doing complex arithmetic, by using the absolute values and
the arguments in combination with the algebraic rules of exponential numbers, for example

(
AejθA

) (
BejθB

)
= ABej(θA+θB) (D.11)

and we have the final link,

Aejθ ≡ A(cosθ + j sinθ ), (D.12)

where

ℜ
(

Aejθ
)
= A cosθ ℑ

(
Aejθ

)
= A sinθ . (D.13)



Appendix E
Basic Trigonometric Identities

sin(α + π/2) = +cosα (E.1)

cos(α + π/2) =−sinα (E.2)

sin(α +π) =−sinα (E.3)

cos(α +π) =−cosα (E.4)

sin(α ±β ) = sinα cosβ ± cosα sinβ (E.5)

cos(α ±β ) = cosα cosβ ∓ sinα sinβ (E.6)

sin2 α = 1/2(1− cos2α) (E.7)

cos2 α = 1/2(1+ cos2α) (E.8)

sin3 α = 1/4(3sinα − sin3α) (E.9)

cos3 α = 1/4(3cosα + cos3α) (E.10)

sin2 α cos2 α = 1/8(1− cos4α) (E.11)

sin3 α cos3 α = 1/32(3sin2α − sin6α) (E.12)

cosα cosβ = 1/2(cos(α −β )+ cos(α +β )) (E.13)

sinα sinβ = 1/2(cos(α −β )− cos(α +β )) (E.14)

sinα cosβ = 1/2(sin(α +β )+ sin(α −β )) (E.15)

cosα sinβ = 1/2(sin(α +β )− sin(α −β )) (E.16)

sinα ± sinβ = 2sin

(
α ±β

2

)
cos

(
α ∓β

2

)
(E.17)

cosα + cosβ = 2cos

(
α +β

2

)
cos

(
α −β

2

)
(E.18)

cosα − cosβ =−2sin

(
α +β

2

)
sin

(
α −β

2

)
(E.19)
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Appendix F
Useful Algebraic Equations

1. Binomial formula

(x± y)2 = x2 ± 2xy+ y2, (F.1)

(x± y)3 = x3 ± 3x2y+ 3xy2 ± y3, (F.2)

(x± y)4 = x4 ± 4x3y+ 6x2y2 ± 4xy3 + y4, (F.3)

(x± y)n = xn + nxn−1+
n(n− 1)

2!
xn−2y2 +

n(n− 1)(n− 2)
3!

xn−3y3 · · ·+ yn, (F.4)

where, n! = 1 ·2 ·3 · · ·n and 0! ≡ 1.
2. Special cases

x2 − y2 = (x− y)(x+ y), (F.5)

x3 − y3 = (x− y)(x2 + xy+ y2), (F.6)

x3 + y3 = (x+ y)(x2 − xy+ y2), (F.7)

x4 − y4 = (x2 − y2)(x2 + y2) = (x− y)(x+ y)(x2+ y2). (F.8)

3. Useful Taylor series

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · · , (F.9)

sinx =
∞

∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+

x5

5!
−·· · for all x, (F.10)

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
−·· · for all x, (F.11)

tanx =
∞

∑
n=1

B2n(−4)n(1− 4n)

(2n)!
x2n−1 = x+

x3

3
+

2x5

15
+ · · · for |x|< π

2
. (F.12)
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Appendix G
Bessel Polynomials

1. Bessel differential equation

x2 d2y
dx2 + x

dy
dx

+(x2 −α2)y = 0. (G.1)

2. Relation with trigonometric functions

cos(xsin α) =J0(x)+ 2 [J2(x)cos2α + J4(x)cos4α + · · · ] , (G.2)

sin(xsin α) =2 [J1(x)sin α + J3(x)sin 3α + J5(x)sin 5α + · · · ] , (G.3)

cos(xcosα) =J0(x)− 2 [J2(x)cos2α − J4(x)cos4α

+J6(x)cos6− J8(x)cos8α · · · ] , (G.4)

sin(xcosα) =2 [J1(x)cosα − J3(x)sin 3α + J5(x)sin 5α + · · · ] . (G.5)

3. Bessel series

J0(x) = 1− x2

22 +
x4

22 ·42 −
x6

22 ·42 ·62 + · · · , (G.6)

J1(x) =
x
2

(
1− x2

22 ·2 +
x4

2 ·24 ·2 ·3 + · · ·
)
, (G.7)

Jn(x) =
xn

2nn!

(
1− x2

22 · (n+ 1)
+

x4

2 ·24 · (n+ 1) · (n+ 2)

+
(−1)px2p

p!22p (n+ 1)(n+ 2) · · ·(n+ p)
+ · · ·

)
. (G.8)

4. Bessel approximations
For very large x, the Bessel function reduces to

Jn(x) =

√
2

π x
cos

(
x− nπ

2
− π

4

)
. (G.9)
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Glossary

This glossary of technical terms is provided for reference only. The reader is advised to further study
the terms in appropriate books, for example, a technical dictionary.

1 dB gain compression point The point at which the power gain at the output of a nonlinear device
or circuit is reduced by 1 dB relative to its small signal linear model predicted value.

Absolute zero The theoretical temperature at which entropy would reach its minimum value. By
international agreement, absolute zero is defined as 0 K on the Kelvin scale and as −273.15◦C on
the Celsius scale.

Active device An electronic component that has signal gain larger than one, for example a transistor.
Compare to passive device.

Active mode A condition for a BJT in which the emitter-base junction is forward biased, while the
collector-base junction is reverse biased.

Admittance The measure of how easily AC current flows in a circuit (in Siemens [S]). The reciprocal
of impedance.

Ampere (A) The unit of electric current defined as the flow of one coulomb of charge per second.
Ampère’s Law A current flowing into a wire generates a magnetic flux that encircles the wire

following the “right hand rule’ (the right thumb points in the direction of the current flow and
the curled fingers show the direction of the magnetic field). Study Maxwell’s equations for more
details.

Amplifier A linear device that implements the mathematical equation y = Ax, where y is the
amplified output signal, A is the gain coefficient, and x is the input signal.

Analogue The general class of devices and circuits meant to process a continuous signal. Compare
with digital and sampled signals.

Attenuation Gain lower than one.
Attenuator A device that reduces gain without introducing phase or frequency distortion.
Automatic gain control A closed-loop feedback system designed to hold the overall gain as constant

as possible.
Average power The power averaged over one time period.
Bandwidth The difference between upper and lower frequencies at which the amplitude response is

3 dB below the maximum. It is equivalent to half-power bandwidth.
Base The region of a BJT between the emitter and the collector.
Bel (B) A dimensionless unit used to express the ratio of two powers. A more practical unit is the dB.
Beta β The current gain of a BJT. It is the ratio of the change in collector current to the change in

base current, β = dIC/dIB.
Bias A steady current or voltage used to set the operating conditions of a device.
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Breakdown voltage The voltage at which the reverse current of a reverse-biased p–n junction
suddenly rises. If the current is not limited, the device is destroyed.

Capacitance The ratio of the electric charge and voltage between two conductors.
Capacitor A device made of two conductors separated by an insulating material for the purpose of

storing an electric charge, i.e., energy.
Celsius (◦C) A unit increment of temperature unit defined as 1/100 between the freezing point (0◦C)

and boiling point (100◦C) of water. Compare with Kelvin and Fahrenheit.
Characteristic curve A family of I–V plots shown for several parameter values.
Characteristic line impedance The entry point impedance of an infinitely long transmission line.
Charge A basic property of elementary particles of matter (electrons, protons, etc.) responsible for

creating a force field.
Circuit The interconnection of devices, both passive and active, for the purpose of synthesizing a

mathematical function.
Common base A single BJT amplifier configuration in which the base potential is fixed, the emitter

serves as the input and the collector as the output terminal. Also known as a “current buffer”.
Equivalent to a “common-gate” configuration for MOS amplifiers.

Common collector A single BJT amplifier configuration in which the collector potential is fixed, the
base serves as the input and the emitter as the output terminal. Also known as a “voltage buffer” or
voltage follower. Equivalent to a “common-drain” configuration for MOS amplifiers.

Common emitter A single BJT amplifier configuration in which the emitter potential is fixed, while
the base serves as the input and the collector as the output terminal. Also known as the “gm stage”.
Equivalent to a “common-source” configuration for MOS amplifiers.

Common mode The average value of a sinusoidal waveform.
Conductivity The ability of a matter to conduct electricity.
Conductor A material that easily conducts electricity.
Coulomb (C) The unit of electric charge defined as the charge transported through a unity area in

one second by an electric current of one ampere. An electron has a charge of 1.602× 10−19C.
Coulomb’s Law A definition of the force between two electric charges in space.
Current A transfer of electrical charge through a unity size area per unit of time.
Current gain The ratio of current at the output terminals to the current at the input terminals of a

device or circuit.
Current source A device capable of providing constant current value regardless of the voltage at its

terminals.
DC See Direct current.
DC analysis A mathematical procedure to calculate the stable operating point.
DC biasing The process of setting the stable operating point of a device.
DC load line A straight line across a family of I–V curves that shows movement of the operating

point as the output voltage changes for a given load.
Decibel (dB) A dimensionless unit used to express the ratio of two powers. A decibel is ten times

smaller than a bel (B).
Device A single discrete device, for instance a resistor, a transistor, or a capacitor.
Dielectric A material that is not good in conducting electricity, i.e. the opposite of a conductor.

Characterized by the dielectric constant.
Differential amplifier An amplifier that operates on differential signals.
Differential signal A difference between two sinusoidal signals of the same frequency, same

amplitude, same common mode, and with phase difference of 180◦.
Digital The general class of devices and circuits meant to process a sampled signal. Compare with

analogue and continuous signals.
Diode A nonlinear, two-terminal device that obeys the exponential transfer function. Used as

unidirectional switch.
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Direct current (DC) Current that flows in one direction only.
Discrete device An individual electrical component that exhibits behaviour associated with a resistor,

a transistor, a capacitor, an inductor, etc. Compare with distributed components.
Dynamic range The difference between the maximum acceptable signal level and the minimum

acceptable signal level.
Electric field A field generated by an electric charge, detected by the existence of the electric force

within a space surrounding the charge.
Electrical noise Any unwanted electrical signal.
Electromagnetic (EM) wave A phenomenon exhibited by a flow of electromagnetic energy through

space. In the special case of a standing wave, this definition may need more explanation.
Electron A fundamental particle that carries negative charge.
Electronics The branch of science and technology which makes use of the controlled motion of

electrons through different media and a vacuum.
Electrostatics The branch of science that deals with the phenomena arising from stationary or slow-

moving electric charges.
Emitter A region of a BJT from which charges are injected into the base. One of the three terminal

points of a BJT device.
Energy A concept that can be loosely defined as the ability of a body to perform work.
Equivalent circuit A simplified version of a circuit that performs the same function as the original.
Equivalent noise temperature The absolute temperature at which a perfect resistor would generate

the same noise as its equivalent real component at room temperature.
Fall time The time during which a pulse decreases from 90% to 10% of its maximum value

(sometimes defined between the 80% and 20% points).
Farad (F) The unit of capacitance of a capacitor. One farad is very large; the capacitance of the

Earth’s ionosphere with respect to the ground is around 50 mF.
Faraday cage An enclosure that blocks out external static electric fields.
Faraday’s Law The law of electromagnetic induction. See also Faraday cage.
Feedback The process of coupling output and input terminals through an external path. Negative

feedback increases the stability of an amplifier at the cost of reduced gain, positive feedback boosts
gain and is needed to create oscillating circuits.

Field A concept that describes a flow of energy through space.
Field-effect transistor (FET) A transistor controlled by two perpendicular electric fields used to

change the resistivity of the semiconductor material underneath the gate terminal and force current
between the source and drain terminals.

Flicker noise A random noise in semiconductors whose power spectral density is, to the first
approximation, inverse to frequency (1/ f noise).

Frequency The number of complete cycles per second.
Frequency response A curve showing the gain and phase change of a device as a function of

frequency.
Gain The ratio of signal values measured at output and input terminals.
Gauss’s Law A law relating the distribution of electric charge to the resulting electric field.
Ground An arbitrary potential reference point that all other potentials in a circuit are compared

against. The difference between the ground potential and the node potential is expressed as voltage
at that node. The ground node may or may not have the lowest potential in the circuit.

Henry (H) The unit of measurement for self and mutual inductance.
Hertz (Hz) The unit of measurement for frequency, equal to one cycle per second.
Impedance Resistance of a two-terminal device at any frequency.
Inductance A property whereby a change in the electrical current through a circuit induces an

electromotive force (EMF) that opposes the change in current.
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Inductor A passive electrical component that can store energy in a magnetic field created by an
electric current passing through it.

Input Current, voltage, power, or another driving force applied to a circuit or device.
Insertion loss The attenuation resulting from inserting a circuit between source and load.
Insulator A material with very low conductivity.
Intermediate frequency (IF) A frequency to which a carrier frequency is shifted as an intermediate

step in transmission or reception.
Intermodulation products Additional harmonics created by a nonlinear device processing two or

more single-tone signals.
Junction A joining of two semiconductor materials.
Junction capacitance Capacitance associated with a p–n junction region.
Kelvin (K) The unit increment of temperature on the absolute temperature scale.
Kirchhoff’s current law (KCL) The law of conservation of charge: at any instant, the total current

entering any point in a network is equal to the total current leaving the same point.
Kirchhoff’s voltage law (KVL) The law of conservation of energy given or taken by a potential field

(not including energy taken by dissipation): at any instant, the algebraic sum of all electromotive
forces and potential differences around a closed loop is zero.

Large signal A signal with an amplitude large enough to move the operating point of a device far
from its original biasing point. Hence, a nonlinear model of the device must be used.

Large-signal analysis A method used to describe the behaviour of devices stimulated by large
signals. It describes nonlinear devices in terms of the underlying nonlinear equations.

Law of conservation of energy The fundamental law of nature. It states that energy can neither be
created nor destroyed, it can only be transformed from one state to another.

Linear network A network in which the parameters of resistance, inductance, and capacitance are
constant with respect to current or voltage, and in which the voltage or current of sources is
independent of or directly proportional to other voltages and currents, or their derivatives, in the
network.

Load A device that absorbs energy and converts it into another form.
Local oscillator (LO) An oscillator used to generate a single-tone signal that is needed for upcon-

version and downconversion operations.
Lossless A theoretical device that does not dissipate energy.
Low noise amplifier (LNA) An electronic amplifier used to amplify very weak signals captured by

an antenna.
Lumped element A self-contained and localized element that offers one particular property, for

example, resistance over a range of frequencies.
Magnetic field A field generated by magnetic energy, detected by the existence of a magnetic force

within the space surrounding a magnet.
Matching A concept of connecting two networks to enable maximum energy transfer between them.
Matching circuit A passive circuit designed to interface two networks to enable maximum energy

transfer between the two networks.
Maxwell’s equations A set of four partial differential equations that relate electric and magnetic

fields to their sources, charge density and current density. These equations can be combined to show
that light is an electromagnetic wave. Individually, the equations are known as Gauss’s law, Gauss’s
law for magnetism, Faraday’s law of induction, and Ampère’s law with Maxwell’s correction.
These four equations and the Lorentz force law make up the complete set of laws of classical
electromagnetism.

Metal-oxide semiconductor field-effect transistor (MOSFET) Originally, a sandwich of
aluminum–silicone dioxide–silicon was used to manufacture FET transistors. Although metal
is no longer used to create gates for FE transistors, the name has stuck.

Microwaves Waves in the frequency range of 1–300 GHz, i.e. with a wavelength of 300–1 mm.
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Mixer A nonlinear, three-port device used for frequency-shifting operations.
Negative resistance The resistance of a device or circuit where an increase in the current entering a

port results in a decrease in voltage across the same port.
Noise Any unwanted signal that interferes with a wanted signal.
Noise figure (NF) A measure of degradation of the signal-to-noise ratio (SNR), caused by compo-

nents in a radio frequency (RF) signal chain.
Nonlinear circuit A system that does not satisfy the superposition principle or whose output is not

directly proportional to its input.
Norton’s Theorem Any collection of voltage sources, current sources, and resistors with two

terminals is electrically equivalent to an ideal current source in parallel with a single resistor. This
is the twin of Thévenin’s theorem.

NPN transistor A transistor with a p-type base and n-type collector and emitter.
Octave The interval between any two frequencies having a ratio of 2:1.
Ohm (Ω ) Unit of resistance, as defined by Ohm’s law.
Ohm’s Law The change of current through a conductor between two points is directly proportional

to the change of voltage across the two points and inversely proportional to the resistance between
them.

One-dB gain compression point See 1 dB gain compression point.
Open-loop gain The ratio of the output signal and the input signals of an amplifier with no feedback

path present.
Oscillator An electronic device that generates a single tone (or some other regular shape) signal at

predetermined frequency.
Output Current, voltage, power, or a driving force delivered at the output terminals.
Passive device A component that does not have a gain larger than one. Compare to active device.
Phase The angular property of a wave.
Phase shifter A two-port network that provides a controllable phase shift of the RF signals.
Phasor A mathematical representation of a sine wave by a rotating vector.
Power The rate at which work is performed.
Quality factor (Q factor) A dimensionless parameter that characterizes a resonator’s bandwidth

relative to its centre frequency.
Radio frequency (RF) Any frequency at which coherent electromagnetic radiation of energy is

possible.
Reactance The opposition of a circuit element to a change of current, caused by the build-up of

electric or magnetic fields in the element.
Reactive element An inductor and capacitor.
Reflected waves The waves reflected from a discontinuity in the medium in which they are travelling.
Resistance A measure of an object’s opposition to the passage of a steady electric current.
Resistor A lumped element designed to have a certain resistance.
Resonant frequency The frequency at which a given system or circuit responds with maximum

amplitude when driven by an external single tone.
Root mean square (RMS) The square root of the arithmetic mean (average) of the squares of the

original values.
Saturation A condition in which an increase of the input signal to a circuit does not produce an

expected change at the output.
Self-resonant frequency The frequency at which all real devices or circuits start to oscillate due to

the internal parasitic inductances and capacitances.
Signal An electrical quantity containing information that is carried by a voltage or current.
Single-ended circuit A circuit operating on single-ended (as opposed to differential) signals.
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Skin effect The tendency of an alternating current (AC) to distribute itself within a conductor so that
the current density near the surface of the conductor is greater than at its core. That is, the electric
current tends to flow at the “skin” of the conductor, at an average depth called the “skin depth”.

Small signal A low-amplitude signal that occupies a very narrow region that is centred at the biasing
point. Hence, the linear model always applies.

Small-signal amplifier An amplifier that operates only in the linear region.
Space The boundless, three-dimensional extent in which objects and events occur and have relative

position and direction.
Stability The ability of a circuit to stay away from the self-resonating frequency.
Standing wave A wave that remains in a constant position. It can arise in a stationary medium as

a result of interference between two waves travelling in opposite directions. For waves of equal
amplitude travelling in opposite directions, there is no net propagation of energy on average.

Standing wave ratio (SWR) The ratio of the maximum to the minimum value of current or voltage
in a standing wave.

Thévenin’s theorem Any combination of voltage sources, current sources, and resistors with two
terminals is electrically equivalent to a single voltage source and a single series resistor. This is the
twin of Norton’s theorem.

Third-order intercept point (IP3) A measure of weakly nonlinear systems and devices, for exam-
ple, receivers, linear amplifiers, and mixers.

Time A concept used to order a sequence of events.
Transmission line Any system of conductors capable of efficiently conducting electromagnetic

energy.
Tuned circuit A circuit consisting of inductance and capacitance that can be adjusted for resonance

at a desired frequency.
Tuning The process of adjusting the resonant frequency of a tuned circuit.
Varactor A two-terminal p–n junction used as a voltage-controlled capacitor.
Volt (V) A unit of measurement for potential difference.
Voltage-controlled oscillator (VCO) An oscillator whose output frequency is controlled by a

voltage.
Voltage divider A simple linear circuit that produces an output voltage that is a fraction of its input

voltage.
Voltage follower amplifier An amplifier that provides electrical impedance transformation from one

circuit to another. Also known as a “voltage buffer amplifier”.
Voltage source A device capable of providing a constant voltage value regardless of the current at

its terminals.
Wave A disturbance that progresses from one point in space to another.
Wavefront A surface having constant phase.
Wavelength A distance in space between two consecutive points having the same phase.
Wave propagation The journey of a wave through space.
White noise A random signal that consists of all possible frequencies from zero to infinity.
Work The advancement in space of a point under application of a force.
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Solutions to Selected Problems in Chapter 1

1.1 The relative permeability μr and permittivity εr of free space are equal to unity, while free space
permeability μ0 and permittivity ε0 are measured directly, resulting in the intrinsic impedance as

Z0 =

√
μ
ε
=

√
μrμ0

εrε0
=

√
μ0

ε0
=

√
4π × 10−7

8.85× 10−12 ≈ 377Ω. (1)

The phase velocity is calculated as

νp =
1√με

=
1√μ0ε0

= 2.998× 108m/s ≈ 3× 108m/s, (2)

i.e., the phase velocity of an EM wave νp in free space is equal to the speed of light c.
The wavelength is calculated from (1.9) as

λ =
2π
β

=
2πνp

ω
=

νp

f
=

⎧⎪⎪⎨
⎪⎪⎩

30m for f1 = 10MHz

3m for f2 = 100MHz

3mm for f3 = 10GHz

. (3)

Discussion: This example shows how the wavelength becomes comparable to the sizes of the discrete
components (let alone the size of the PCB) as the signal frequency goes up. Note that for typical RF
signal frequencies used in this book (e.g. f = 10 MHz), the size of the PCB (which is of the order of
several centimetres per side) is much less than the 30 m calculated wavelength of a 10 MHz signal.
Therefore, the use of approximate Maxwell’s equations is justified.

On the other hand, for signals whose frequency is of the order of multiples of GHz, even IC designs
that typically occupy only a few millimeters per side must account for phase differences along the
signal path.

1.2 After applying Kirchhoff’s voltage law (KVL) around a circuit loop that includes V (z) and V (z+
Δz) combining the resistive and inductive impedances, and applying the limit Δz → 0,

V (z) = (R+ jωL) I(z)Δz+V(z+Δz),

∴
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−dV(z)
dz

= lim
Δ z→0

(
−V(z+Δz)−V(z)

Δz

)
,

∴

−dV(z)
dz

= (R+ jωL) I(z), (4)

similarly, applying Kirchhoff’s current law (KCL) to node a

I(z+Δz) = I(z)−V(z+Δz)(G+ jωC)Δz,

∴
dI(z)

dz
= lim

Δ z→0

(
I(z+Δz)− I(z)

Δz

)
,

∴
dI(z)

dz
=−(G+ jωC)V(z). (5)

Equations (4) and (5) are coupled first-order differential equations. A solution to this system of
equations is found by decoupling the two equations, which is accomplished by differentiating both
sides, first of (4) and then of (5). By doing this, explicit solutions for V (z) and I(z) are found.

Therefore, starting with spatial differentiation of (4) and substituting (5),

−d2V (z)
dz

= (R+ jωL)
dI(z)

dz
,

dI(z)
dz

=−(G+ jωC)V(z),

∴

d2V (z)
dz

= (R+ jωL)(G+ jωC)V(z),

d2V (z)
dz

− (R+ jωL)(G+ jωC)V(z) = 0,

d2V (z)
dz

− k2V (z) = 0, (6)

where a complex propagation constant k is defined as

k = ℜ(k)+ jℑ(k) =
√
(R+ jωL)(G+ jωC) (7)

and is a function of the transmission line geometry (keep in mind that R, L, C, and G are all distributed
parameters calculated separately for the specific shape of the conductor).

Repeating the same procedure, starting with the spatial differential of (5), a similar solution to (6)
is found for the current spatial dependence, i.e.

d2I(z)
dz

− k2 I(z) = 0. (8)
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Equations (6) and (8) show explicitly the voltage or current spatial dependence along the transmission
line. Solutions to these two decoupled equations are well known to be of the following form
(assuming, of course, that the transmission line is aligned with the z axis):

V (z) =V+e−kz +V−e+kz, (9)

I(z) = I+e−kz + I−e+kz. (10)

By convention, each of these equations is interpreted as a combination of two waveforms, one
propagating in the positive z direction and the other in the negative z direction.

The two equations (9) and (10) are correlated because they describe the same waveform, which
means that they are connected through the transmission line impedance. For example, substituting (9)
back into (4) results in an explicit relationship between the voltage V (z) and current I(z):

−dV(z)
dz

= (R+ jωL) I(z),

∴

I(z) =− 1
(R+ jωL)

dV (z)
dz

=− 1
(R+ jωL)

d(V+e−kz +V−e+kz)

dz

=
k

(R+ jωL)
(V+e−kz −V−e+kz), (11)

which is to say that the expression connecting current I(z) and voltage V (z) must be impedance.
Because it is an important parameter of a transmission line, it is named characteristic line impedance
Z0. After substituting (7)

Z0 =
(R+ jωL)

k
=

√
(R+ jωL)
(G+ jωC)

. (12)

In the ideal lossless case, i.e., there is no thermal dissipation R = G = 0, this degenerates into

Z0 =

√
L
C
. (13)

Discussion: Characteristic impedance of a lossless transmission line (13) is not a function of
frequency. That fact should be contrasted with the general definition (12), which is a complex quantity
and takes into account the always-present thermal losses (but not inter-component interference).
However, characteristic impedance is a very strong function of the line geometry (through the
distributed values L and C) and must be calculated for each type of transmission line, for example
for two-wire line, coaxial line, parallel-plate line, etc.

1.3 A straightforward implementation of Ampère’s law, (B.7) and (B.8), is repeated here for
convenience,

∮
L
H ·d l = Ifree, enc +

d
dt

∫
S
D ·ds integral form, (14)

∇×H = Jfree +
∂D
∂ t

differential form. (15)
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Fig. 1 The magnetic field
distribution inside and
outside an infinitely long
wire of radius a= 5 mm
carrying a current of 5 A

For a constant current I(t) = const and all the charges contributing to the current flow, the current
density J is uniform through any cross-section area of radius r inside the conductor, up to the radius
a at the conductor’s surface. Hence, the portion of the total current Ir flowing through any area with
radius r (0 ≤ r ≤ a) inside the conductor is determined by the ratio between the full cross-section area
πa2 and the inside area πr2, i.e., Ampère’s law can be written as

H ·2πr = I
πr2

πa2 ∴ H =
Ir

2πa2 , (16)

where 0 ≤ r ≤ a. Outside the conductor, the current density is equal to zero, which simplifies (14) or
(15) so that the magnetic field H outside the conductor is calculated as

H ·2πr = I ∴ H =
I

2πr
, (17)

where r ≥ a. The total magnetic field outside and inside the infinitely long conductive wire is

H(r) =

{
Ir

2πa2 = 31.810× 103r A/m r ≤ 5mm
I

2πr =
0.798

r A/m r ≥ 5mm
. (18)

The graph of this radial magnetic field distribution is plotted in Fig. 1.

Discussion: It is important to notice that the magnetic field increases linearly inside the conductor
because more current contributes to the magnetic field. Outside the wire, the magnetic field strength
is inversely proportional to the distance because the whole current has been accounted for and there
are no more contributors to the field. This problem is a typical application of Maxwell’s equations
without any approximations.

1.4 The voltage induced in the loop is equal to the line integral of the electric field E along the loop.
Employing Faraday’s law, (B.5) and (B.6), repeated here for convenience

∮
L
E ·d l =− d

dt

∫
S
B ·ds integral form, (19)

∇×E =−∂B
∂ t

differential form (20)
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Fig. 2 The time rate of
change of the magnetic flux
density induces a voltage

results in

V =−
∮

L
E ·d l =

d
dt

∫
S
B ·ds =

d
dt

∫
S
μ0H ·ds

=
d
dt

∫
S
μ0H0 cos(ωt)n ·ds

=
d
dt

μ0H0 cos(ωt)πa2n

=−πa2ωμ0 H0 sin(ωt)

=−0.31 sin(6.28× 108t) V,

where B= μ0H is the magnetic flux density and n is the unity vector in the same direction as magnetic
field H vector.

Discussion: This is a typical example of Maxwell’s equation in a form of Faraday’s law (also known
as the “transformer law”), where the time-varying field induces a voltage response in a conductive
loop (see Fig. 2).

Solutions to Selected Problems in Chapter 2

2.5 The instantaneous power exists during the times when the pulse amplitude is not zero. Because
the pulse amplitude is constant, we write

p(t) =
v2(t)

R
=

(2V )2

100
= 40mW.

Hence, the total energy is

W = Pt = 40mW× 1ms = 40 μJ.

2.6 4.4A; 6.6A; 17.5C; 3.5A.

2.7 −56 W; 16 W; −60 W; 160 W; −60 W.

2.8 3.94kΩ; 1.890 W; −30.0 mA; 46.9μS.

2.9 vR2= 32 V; vx=6 V.

2.10 −960 W; 1920 W; −1920 W; 960 W.

2.11 VTh=8 V; RTh = 10kΩ.
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2.12 a;a/
√

2;a/
√

3.

2.13 208.333 W; 6.455 A.

2.14 26 W; 2 W.

Solutions to Selected Problems in Chapter 3

3.1
(a) Sn = 1.38× 10−23× 300 = 4.14× 10−21 W/Hz.

(b) Pn = 4.14× 10−21× 106 = 4.14× 10−15 W.

(c) Ps =
1× 10−6/2

50
= 5× 10−15 W.

(d) SNR =
Ps

Pn
=

5× 10−15

4.14× 10−15 = 0.82dB.

3.3 (a) For the two resistors separately, from (3.3) it follows that

E2
n (R1) = 4× 20kΩ× 1.38× 10−23× 290K× 100kHz= 32× 10−12 V2,

E2
n (R2) = 4× 50kΩ× 1.38× 10−23× 290K× 100kHz= 80× 10−12 V2,

∴
En(R1) = 5.658μV,

En(R2) = 8.946μV.

(b) Serial resistance is Rs = 70kΩ ∴ En(Rs) = 10.59μV.
(c) Parallel resistance is Rp = 14.286kΩ ∴ En(Rs) = 4.78μV.

3.4 From (5.82), the dynamic resistance of the LC resonator at resonance is calculated as

RD =
Q

ω0C
=

30
2π ·120MHz ·25pF

= 1.59kΩ

then from (3.12)

V 2
n = 4Q2RLk TΔ f = 4RDk TΔ f = 0.254× 10−12 V2,

∴
Vn = 0.50μV.

3.5 Application of Thévenin’s theorem on the Es, Rs, and Ri network results in the following:

Rt =
Rs Ri

Rs +Ri
= 46.15Ω,
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Vt =Vs
Ri

Rs +Ri
= 0.923μV.

The equivalent noise voltage at the amplifier input is calculated for the serial combination of Rt+Rn =
446.15Ω , which after applying (3.3), results in Vn = 0.267μV.

3.9 Using (3.39) we find

In =
√

2qe IDCΔ f =
√

2× 1.602× 10−19C× 1mA× 1× 106 Hz = 17.90nA.

Voltage across the p–n junction and dynamic diode resistance rD are

VT =
kT
q

= 25.843mV,

∴

rD =
VT

IDC
= 25.843Ω.

Therefore, the noise current In through the diode resistance rD generates noise voltage Vn = In rD =
17.90nA× 25.843Ω= 462.564nV.

3.10 The shot noise current goes through the source resistance, i.e.

In =
√

2qe IDCΔ f =
√

2× 1.602× 10−19C5μA10× 106 Hz = 4nA,

∴
Vns(RS) = In ×RS = 4nA× 150Ω = 600nV,

while the noise across the amplifier resistance Rin is generated as

Vn(Rin) =
√

4RinkT Δ f =
√

4× 300× 1.38×10−23× 300× 10×106 = 7.048μV

and the thermal noise from the source is

Vnt(RS) =
√

4RSkT Δ f =
√

4× 150× 1.38×10−23× 300× 10× 106 = 4.984μV.

Therefore, the total noise at the input of the amplifier is

Vn =

√
V 2

ns(RS)+V 2
nt(RS)+V 2

n (RS) = 8.653μV,

so that the SNR(in) is calculated by definition as

SNR(in) = 20log
VS

Vn
= 20log

10× 10−6

8.653× 10−6 = 1.257dB.

3.11 First convert the dB values into the numbers, i.e., 12dB = 15.85 and 50dB = 105. Hence,
Trec = (15.85− 1)× 300= 4455K and Tsys = 90K+ 4455K

105 ≈ 90K.
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Solutions to Selected Problems in Chapter 5

5.7 First, let us determine the self-resonant frequency fL0 of this coil as

fL0 =
1

2π
√

1μH× 5pF
= 71.2MHz

and the Q factor is

Q =
2π 25MHz1μH

5Ω
= 31.4.

Hence, using (5.64), we write

Leff =
L

1−
(

f
fL0

)2 =
1μH

1− (
25MHz

71.2MHz

)2 = 1.14μH

and using (5.68), we write

Qeff = Q

[
1−

(
f

fL0

)2
]
= 31.4

[
1−

(
25MHz

71.2MHz

)2
]
= 27.5.

5.8 At f = 10 kHz, we have,

XL = 2π 10kHz 3mH = 188.5Ω,

XC =
1

2π 10kHz 100nF
= 159.2Ω,

Z =
√

R2 +(XL −XC)2 =
√

302 +(188.5− 159.2)2Ω = 41.9Ω.

We note that the serial RLC circuit looks more inductive at 10 kHz.
At f = 5 kHz, we have,

XL = 2π 5kHz 3mH = 94.2Ω,

XC =
1

2π 5kHz 100nF
= 318.3Ω,

Z =
√

R2 +(XL −XC)2 =
√

302 +(94.2− 318.3)2Ω = 226.1Ω.

We note that the serial RLC circuit looks more capacitive at 5 kHz.

5.11 The two networks must have the same Q factor, which is found by definition as

QS =
XS

RS
=

1
2π CS RS

=
1

2π 7.95pF10Ω
= 2. (21)

Using (5.77) and (5.78), we write

Rp = Rs(1+Q2) = 10Ω(1+ 22) = 50Ω,
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Xp = Xs

(
1+

1
Q2

)
=

1
2π 1GHz7.95pF

(
1+

1
22

)
= 25.024Ω ∴ CP = 6.36pF.

Solutions to Selected Problems in Chapter 7

7.11

(a) VB: VCC = 9V ⇒ VB = 1
3VCC ∴ VB = 3V.

(b) R1 and R2:

(R1 +R2) =
VCC

IR1R2

=
9V

1
10 2mA

= 45kΩ, (22)

R2

R1 +R2
=

1
3

(because VR2 = 3 V and VR1+R2 = 9 V ) (23)

∴
R1 = 30kΩ, R2 = 15kΩ.

(c) Thévenin resistance: Rth = R1||R2||Rsig = 5kΩ.
(d) RE: Let us compare calculated values for RE when we reflect Rth back to the emitter side and

when we ignore the reflected resistance.
Including the reflected base resistance, resistance at the emitter side becomes:

R
′
E = RE +

Rth

β + 1
= RE +

5kΩ
101

≈ RE + 50Ω. (24)

In any case, we calculate

IE =
VE

RE
=

VB −VBE

RE
=

2.3V
RE

≈ 2mA. (25)

From the above equation, RE = 1.15kΩ when ignoring the reflected base resistance and RE =
1.10kΩ when we include it. Use your engineering judgement . . .

The closest 10% standard value is RE = 1kΩ.
(e) IC: For β = 100, it follows that α = β/(β + 1) = 0.99 and IC = α IE=1.98 mA. Again, use your

engineering judgement to decide if you would use IC ≈ IE instead.
(f) gm:

gm =
IC

VT
≈ 2mA

25mV
= 80

mA
V

= 80mS. (26)

(g) re:

re =
1

gm
=

VT

IC
≈ 1

80mS
= 12.5Ω. (27)

(h) RC: Because of the capacitance in parallel with RE, the voltage gain is set as
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Av =−RC

re
⇒ RC =−(−8)80Ω = 640Ω. (28)

What is RC if you use RE||re instead? Again, use your engineering judgement . . . .

7.12 DC setup:

(a) When output voltage equals 1/2 of the power supply voltage, we have:

Vout =
1
2

VCC = 5V,

∴

RC =
VCC −Vout

IC
= 5kΩ.

(b) To set VE=1 V we need:

IE ≈ IC ⇒ RE =
VE

IE
= 1kΩ.

(c) After setting VE, it follows that

VB =VE +VBE = 1.6V.

(d) Resistance Rin looking into the base is

Rin ≈ (β + 1)RE = 100kΩ.

(e) Voltage across the R2 resistor is VR2 =VB, while voltage across the R1 resistor is VR1 =VCC −VB,
or by writing full equations we have:

VR2 = IR2 R2 =
VCC

R1 +R2
R2 ⇒ VB

VCC −VB
=

R2

R1
=

1
5.25

.

Acceptable solutions for setting the bias resistors and still meeting the requirement for VB are
achieved by any combination of R1 and R2 resistors with a ratio of 5.25. For example, one possible
way is to say that Rth ≤ R1||R2 = 0.1Rin, which leads to

Rth ≤ R1||R2 = 0.1Rin ≤ 10kΩ.

One good choice is R2 = 10kΩ, which leads to R1 = 5.25R2 = 52.5kΩ.
(f) The small emitter resistor is, by definition

re =
VT

IC
= 25Ω.
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AC setup:

(g) For the required A, we have

A =
RC

RE||(re +R0)
⇒ R0 = 27.63Ω. (29)

(h) Output 3 dB point is set by CE and (R0 + re), so

CE =
1

2π f3dB (R0 + re)
⇒ CE = 151.2μF.

(i) At the input side, the high-pass filter is set by C and Rth||(β + 1)(re +R0). Note that for small
signal analysis, the relevant resistance is different from DC, i.e., the relevant resistance is

Req = Rth||(β + 1)(re +R0) = R1||R2||(β + 1)(re +R0) = 3.236kΩ,

which leads to

C =
1

2π f3dB Req
⇒ C = 4.919μF.

(j) When output voltage drops to Vout=2.5 V the collector resistor current changes as

IC =
VRC

RC
=

VCC −Vout

RC
= 1.5mA.

Consequently, for the new collector current we have

re =
VT

IC
= 16.67Ω,

which means that, using gain equation (29), for the new value of re, we have A = −117.9 V/V =
41.43 dB.

7.13 The assumption that β = ∞ means that IB = 0 and IC = IE, so we write:

(a) Collector voltage is VRC below VCC, i.e.,

IC = I = 0.5mA, (30)

VC =VCC −RC IC = 5V− 7.5kΩ0.5mA = 1.25V. (31)

(b) By definition,

gm =
IC

VT
=

0.5mA
25mV

= 20mS. (32)

(c) We need to recognize that VBE = −vi. (The base is at ground, input is at the emitter, output is at
the collector—this is a CB configuration.)

vC = RC iC =−RC gmVBE = RC gm vi, (33)
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∴

A =
vC

vi
= gm RC = 20

mA
V

7.5kΩ = 150
V
V

= 43.52dB. (34)

7.14 From the emitter side, we see 100Ω = Rb/(β + 1).
From the base side, we see 100kΩ = (β + 1)Re.
Then, Rb = 10kΩ and Re = 1kΩ.

7.17 The resonant LC frequency is set as

f0 =
1

2π
√

LCM
. (35)

In this case, capacitor C is reflected back to the input stage as Miller capacitance, which is
calculated as

CM = (A+ 1)C = 100pF.

Since there are no other capacitances, from (35) we get: L = 1μH.

Solutions to Selected Problems in Chapter 8

8.1 Following the signal through the loop, first along the forward path through the amplifier and then
back through the feedback network, the loop equations are written by inspection as

Vout = A(Vin +Vfb),

Vfb = β Vout,

∴
Vout = A(Vin +β Vout),

∴
Vout

Vin
=

A
1−Aβ

, (36)

which implies that, for Aβ = 1, the loop gain becomes infinite, i.e., the loop is unstable and starts to
oscillate.

Note: for the case of an oscillator, the role of the input voltage Vin is taken by the internal noise,
which is sufficient to start the oscillations.

8.2 A common-emitter amplifier is inverting, therefore, by inspection, the total loading resistance Ro

and output voltage vout are

Ro = RC

vout =−Ro ic =−Ro β ib.
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Fig. 3 Simplified
schematic of a phase
oscillator for Solution 8.2

From the perspective of the feedback network, the CE amplifier behaves as a voltage source with Ro

source resistance, while the feedback loop is maintained through the branch with current ib. Therefore,
the circuit equations are set in accordance with the equivalent circuit in Fig. 3. The voltage loop
equations are:

−Roβ ib =

(
Ro +R− j

ωC

)
i1 −Ri2, (37)

0 =−Ri1 +

(
R+R− j

ωC

)
i2 −Rib, (38)

0 =−Ri2 +

(
R+R− j

ωC

)
ib. (39)

The system (37) to (39) can be solved in number of ways. One possible approach is to introduce
substitution Z = R− j/ωC and eliminate the three currents to arrive at

(Ro +Z)(Z2 + 2RZ)−R(R2+RZ−β RRo) = 0, (40)

which, after a bit of straightforward algebra, results in the polynomial

Z3 +(2R+Ro)Z
2 +(2RRo −R2)Z +β R2Ro −R3 = 0. (41)

A complex number equals zero if both its real and complex parts are zero, which is to say that the real
and complex parts of (41) are

ℜ :

[
R3 − 3R

(ωC)2

]
+(2R+Ro)

(
R2 − 1

(ωC)2

)
+(2RRo −R2)R+β R2Ro −R3 = 0, (42)

ℑ : j

{
−3R2

ωC
+

1
(ωC)3 − (2R+Ro)

2R
ωC

− (2RRo −R2)
1

ωC

}
= 0. (43)

Solving the imaginary part (43), after removing the substitution, delivers the formula for the resonant
frequency as

ω =
1

RC
√

4 Ro
R + 6

. (44)

At the same time, the real part (42) is solved for β as

β = 23+ 4
Ro

R
+ 29

R
Ro

. (45)
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Fig. 4 Plot of β (x) and
β ′(x) functions for
Solution 8.2

Equation (45) solves for β as a function of the resistor ratio x = Ro/R (see Fig. 4). The minimum of
this function is found easily by setting its first derivative to zero as

β (x) =
29
x
+ 4x+ 23,

∴

β ′(x) =−29
x2 + 4,

∴
x ≈±2.6926.

There are two possible solutions for x. In this case, the positive value is taken to calculate the resistors,
hence Ro/R ≈ 2.6926; after being substituted in (45), that produces

βmin ≈ 44.5. (46)

It should be noted that the β value does not depend upon specific values of Ro and R, only on their
ratio.

From (46) and Ro = RC = 10kΩ, it follows that R = Ro/2.6926= 3.714kΩ. At f = 10 MHz from
(44), it follows that C ≈ 1 pF.

8.3 The circulating resonant current ic in a tapped L, centre-grounded network perceives the L1, L2,
and C components in series, therefore Leff = L1 +L2 = 2μH. The resonant frequency is calculated as

f0 =
1

2π
√

LeffC
= 10MHz.

8.4 By inspection, the input voltage is distributed across the L2 inductor, while the output voltage
is distributed across the L1 inductor. Since the same resonating current ic is circulating through both
components, it is straightforward to write

vin = ic jωL2,

vout =−ic jωL1,
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Fig. 5 Simplified
schematic transformation
of LC oscillator for
Solution 8.7

∴

β =
vout

vin
=− ic jωL1

ic jωL2
=−L1

L2
=−0.5μH

1.5μH
=−0.333. (47)

8.5 Using the formula provided in the textbook and knowing that the RL resistor of the feedback
network (Fig. 8.5) is in fact the input resistance of the amplifier, a straightforward implementation of
the formula yields

Reff = RL

(
L2

L1

)2

||Qω0L2
2

L1 +L2

= 10kΩ
(

1.5μH
0.5μH

)2

|| 50× 2π× 10MHz× (1.5μH)2

2μH

= 90kΩ || 3.534kΩ = 3.4kΩ. (48)

8.7 Although, by now we already know how to estimate the resonant frequency of this circuit, let
us take the opportunity to develop a possible methodology to solve this kind of circuit in a more
general way.

First, let us rearrange the circuit network so that it becomes more obvious how the network
equations are going to be written. Figure 5 (left) shows two paths, p1 and p2, from the collector
node through the feedback network to ground. Following the components on each of the two paths, it
is straightforward to redraw the equivalent circuit diagram to look like Fig. 5 (right).

It then becomes easy to generalize components in each branch of the circuit and to introduce the
equivalent subnetwork that represents the amplifier itself (grey box that contains BJT and RC), whose
function is to be a voltage-controlled current source, i.e., collector current iC = f (V1).

By inspection, the equivalent resistance Ro at the collector node �A is

Ro = RC||rC||RD, (49)

where RC is the given real resistor (looking up into the RC from node �A ), rC is the output resistance of
BJT at its biasing point (looking down into the collector), and RD (looking left into the LC resonator)
is the dynamic resistance at resonant frequency. From the signal perspective, the three resistances are
in parallel, i.e., connected between node �A and signal ground. In addition, the condition Q → ∞
implies that RD = f (Q2)→ ∞, i.e., it has no influence on Ro and can be ignored in (49).

The BJT amplifier (the grey box in Fig. 5) is then replaced with its equivalent current source whose
current is gmv1 and output resistance is Ro, Fig. 6 (left). Note that the feedback loop is maintained
through the controlling voltage v1.
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Fig. 6 Simplified
schematic transformation
of LC oscillator for
Solution 8.7

Finally, in order to simplify the incoming analytical expressions, the last step in this network
transformation is to substitute the real RLC components with general Z1, Z2, and Z3 impedances,
Fig. 6 (right), where

Z1 =−j
1

ωC1
,

Z2 = Ro ||
(
−j

1
ωC2

)
,

Z3 = jωL.

With this last substitution and transformation, it becomes straightforward to write the KCL current
equation at node �A , after recognizing that the same current flows through Z1 and Z3, as

−gmv1 =
v2

Z2
+

v2 − v1

Z3
, (50)

v1

Z1
=

v2

Z1 +Z3
, (51)

which leads to

−gmv1 =
v2

Z2
+

v2

Z3
− v1

Z3
, (52)

v1 =
Z1

Z1 +Z3
v2. (53)

By substituting (53) into (52), it follows that

−gm
Z1

Z1 +Z3
v2 = v2

(
1
Z2

+
1
Z3

)
− Z1

Z1 +Z3
v2,

∴

−gmZ1 =
Z1 +Z3

Z2
+

Z1 +Z3

Z3
− Z1

Z3

Z1 +Z3

Z1 +Z3
,

−gmZ1 =
Z1

Z2
+

Z3

Z2
+

Z1

Z3
+ 1− Z1

Z3
,

−gmZ1Z2 = Z1 +Z2 +Z3. (54)
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The resulting (54) is general, in the sense that the three impedances Z1, Z2, and Z3 may be any
combination of RLC components, not necessarily the ones we started with in this problem. Indeed,
CE amplifiers that use the other feedback networks studied in this course could be solved by applying
the same methodology as in this example.

In this particular example, it is easier to switch to admittances for the reactive components (of
course, the final result must be the same). Following up (54), we write

−gm =
Z1 +Z2

Z1Z2
+

Z3

Z1Z2
=

1
Z1

+
1
Z2

+
1
Z1

1
Z2

Z3 = Y1 +Y2 +Y1Y2Z3,

∴

−gm = jωC1 +

(
1

Ro
+ jωC2

)
+(jωC1)

(
1

Ro
+ jωC2

)
jωL

=

{
1

Ro
− ω2LC1

Ro

}
+ jω

{
(C1 +C2)−ω2LC1C2

}
. (55)

A condition of resonance is that the imaginary part of (55) equals zero, which directly leads to the
expression for the resonant frequency as,

C1 +C2 = ω2LC1C2,

∴

ω2
0 =

1

L C1C2
C1+C2

=
1

LCs
, (56)

where Cs is the equivalent series capacitance of C1 and C2. Expression (56) is what we have already
seen by inspection of the resonant loop in Fig. 8.6; it is merely reconfirmed by this derivation. For the
given data, from (56) it follows that f0 = 10 MHz.

Under the condition of oscillation, (55) is left only with its real part, i.e., after substituting ω0 from
(56), we write

−gm =
1

Ro
− ω2

0 LC1

Ro
,

∴

gm =
1

Ro

C1

C2
. (57)

Therefore, from (57) for the given data, Ro = RC||rc = 5kΩ, hence gm = 1/5kΩ× 1 = 200μS.
The case of finite Q = 50 is worked out by using Z3 = r + jωL all along, where r = ωL/Q =

2.513Ω. Since the expressions become a bit more complicated, it may be beneficial to use analytical
software tools, for example, MAPLE.

It is also recommended that the same problem is solved for other types of LC feedback network
using the same methodology.

8.8 The capacitance of a biased varicap diode is calculated as

CD =
C0√

1+ |VD|
0.5

=
20pF√

1+ |−0.7|
0.5

= 5.16pF.
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(a) The three capacitances, C1, C2, and CD are perceived by the resonating loop as being in series,
hence the total loop capacitance C at zero bias is,

1
C

=
1

C1
+

1
C2

+
1

C0
= 0.05671/pF ∴ C = 17.65pF,

which means that the zero biasing frequency is

f0 =
1

2π
√

17.65pF× 100μH
≈ 3.789MHz.

(b) At VD =−7V, the total loop capacitance is

1
C

=
1

C1
+

1
C2

+
1

CD
∴ C = 4.998pF,

which means that the zero biasing frequency is

f0 =
1

2π
√

4.998pF× 100μH
≈ 7.126MHz.

Solutions to Selected Problems in Chapter 9

9.1 Once the product of the two signals is overlapped with the required single-tone signals, note that
the low-frequency tone was embedded into the high-frequency tone as its envelope. This property of
multiplied signals is fundamental for wireless communications.

9.2 The trigonometric identity sinx× siny = 1/2[cos(|x− y|)− cos(x+ y)] shows that the frequency
spectrum of two multiplied tones contains another two tones (and not the original ones): a low-
frequency tone with frequency fLF = | f1 − f2| and a high-frequency tone fHF = f1 + f2.

In order to find the frequency of the unknown signals that, after multiplication with a 10 MHz tone
produces a 1 kHz signal, we need to look at two possible differences, i.e., 10.001MHz−10.000MHz
= 1 kHz and |9.999MHz−10.000MHz| = 1 kHz. Hence, multiplication of a 10 MHz tone with these
two tones, i.e., 9.999 MHz and 10.001 MHz, results in two overlapping 1 kHz LF tones in the output
frequency spectrum. (Note: the HF tones in the output spectrum are not identical: one is at 20.001 MHz
and the other is at 19.999 MHz—their difference is double the LF tone.)

9.3

(a) The received signal and LO frequencies are mixed at the receiver’s mixer, therefore the output is
the sum and the difference of the two:

sum: 1435kHz+ 980kHz = 2415kHz,

difference: 1435kHz− 980kHz = 455kHz.

(b) The receiver is supposed to down-convert the incoming waveform, so IF is fIF = 455 kHz.
(c) Working backwards from the mixer output, it is straightforward to find the frequencies with the

same fIF for the given local oscillator fLO:

sum: 1435kHz+ 455kHz = 1890kHz,

difference: 1435kHz− 455kHz = 980kHz.
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Fig. 7 Graph
for Solution 9.3

In other words, a station operating at 1890 kHz will result in the same IF as the wanted station
operating at 980 kHz. It would not be possible to separate the two, which means that the other
frequency is the image of the wanted frequency.

A practical solution to this problem is to simultaneously tune the tuned RF amplifier at the
receiver’s input to the same frequency as the wanted frequency.

(d) A graphical representation for the case in which fLO > fRF is shown in Fig. 7.

9.4 The formula for relative amplitudes Ar of LC tank frequencies is:

Ar =
1√

1+Q2
(

f
f0
− f0

f

)2
.

Therefore, for Q= 20, f/ f0 = 1.1/1 = 1.1 and f0/ f = 1/1.1=0.9090. . . . We find that Ar =
0.253 = −11.93 dB. For comparison, if Q = 200, then Ar =−31.64 dB.

Solutions to Selected Problems in Chapter 10

10.1 From (10.17), we have

KR =
ω3dB

KPD KVCO
=

0.73Mrad/s
1.27 V/rad× 2Mrad/s/V

= 0.287.

The voltage divider obviously has gain

KR =
1

1+ R1
R2

∴ R1

R2
= 2.5,

which has two unknowns. We pick arbitrary values, for example, if R2 = 10kΩ, then it follows that
R1 = 25kΩ. We just note that there are additional constraints needed to reach a unique solution.

10.2 The first capture happened at 100 kHz from the centre frequency. Hence, we conclude that the
capture range is 10MHz±100kHz. Similarly, once in lock, the PLL stays locked as long as the input
frequency is within 10MHz± 500kHz, which is to say that its lock range is 1 MHz around the centre
frequency.



376 Solutions

Solutions to Selected Problems in Chapter 11

11.1

(a) Use any plotting tool, if needed.
(b) The AM signal is

S = [60+ 15cos(2π1500t)] cos(2π100000t).

The modulated signal has maximum amplitude of 60+15 = 75 and minimum amplitude of 60−
15 = 45.

(c) The modulation factor m (also known as percentage modulation or modulation index) is the ratio
of the maximum frequency of the modulated signal to the amplitude of the carrier. Here,

m =
15
60

= 0.25 or 25%.

(d) The carrier is at fc =100 kHz and the signal is at fs =1.5 kHz.
(e) Three frequencies would show at the output in a spectrum analysis: the carrier fc =100 kHz,

the lower-sideband frequency fc − fs = (100− 1.5) kHz = 98.51,kHz and the upper-sideband
frequency fc + fs = (100+ 1.5)kHz = 101.5 kHz.

11.2
The AM signal occupies two times the signal frequency (the distance between the upper-sideband

and lower-sideband frequencies), i.e., 10 kHz. Therefore only 10 stations can fit into a 100 kHz space.

11.3

(a) The received signal and LO frequencies are mixed at the receiver’s mixer, therefore the output is
the sum and the difference of the two:

sum: 1435kHz+ 980kHz = 2415kHz,

difference: 1435kHz− 980kHz = 455kHz.

(b) The receiver is supposed to down-convert the incoming waveform, so IF is fIF = 455 kHz.
(c) Working backwards from the mixer output, it is straightforward to find the frequencies with the

same fIF for the given local oscillator fLO:

sum: 1435kHz+ 455kHz = 1890kHz,

difference: 1435kHz− 455kHz = 980kHz.

In other words, a station operating at 1890 kHz will result in the same IF as the wanted station
operating at 980 kHz. It would not be possible to separate the two, which means that the other
frequency is the image of the wanted frequency.

A practical solution to this problem is to simultaneously tune the tuned RF amplifier at the
receiver’s input to the same frequency as the wanted frequency.

(d) A graphical representation for the case in which fLO > fRF is shown in Fig. 7.

11.5 For the phase modulator described here, the phase deviation constant is

K =− Q
(1+ 2V0)(1+ n)

,

where C = nCd0 and Cd0 is the varicap diode capacitance for the biasing voltage V0. A straightforward
calculation gives K =−0.2 rad/V.
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11.6

(a) Using Carson’s rule, we write:

BFM = 2(mf + 1) fb = 2(1.5+ 1)10kHz= 50kHz.

(b) Using Bessel’s function (see Table 11.1), we write:

PT

Pc
= J2

0 + 2(J2
1 + J2

2 + J2
3 + J2

4 + J2
5)

= 0.5122+ 2(0.5582+ 0.2322+ 0.0612+ 0.0122+ 0.0022)

= 1.000258. (58)

In other words, the total power is constant, just redistributed between the carrier and sidebands.
(c) According to Table 11.1, for mf = 1.5, the first sideband frequency signal has the highest

amplitude, J1 = 0.558 relative to the amplitude of the unmodulated signal.

11.7 Using the equation that relates total power to carrier power, it is straightforward to write:

PT = Pc

(
1+

m2

2

)
,

1200W = Pc

(
1+

0.852

2

)
,

∴
Pc = 881.5W.

The sum of the carrier power and the power in the two sidebands PSB equals the total power, therefore,

PSB = PT −Pc = 318.5W.

One half of the total sideband power PSB is in the upper sideband (USB) and one half in the lower
sideband (LSB), i.e.

PUSB = PLSB =
PSB

2
= 159.25W.

11.9 Using the equation that relates total power and the carrier power, the expression for power in
one sideband is

(a) m = 0.7:

PUSB = PLSB =
m2Pc

4
=

0.72 1500W
4

= 183.75W.

(b) m = 0.5: The Carrier power is same for all modulation indexes, however the sideband powers are:

PUSB = PLSB =
m2Pc

4
=

0.52 1500W
4

= 93.75W.
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11.10 The IF is the difference between the carrier and the local oscillator frequencies, i.e.,

(a) for fLO > fc

fIF = fLO − fc,

∴
fLO = 995kHz.

(b) for fc > fLO

fIF = fc − fLO,

∴
fLO = 85kHz.

11.11

(a) The given frequency deviation is Δ f =50 kHz, so the carrier swing is 100 kHz, (i.e., “deviating”
on both sides of the carrier frequency).

(b) The highest frequency is one deviation above the carrier, i.e., 107.65 MHz, and the lowest
frequency is one deviation below the carrier, i.e., 107.66 MHz.

(c) By definition,

mf =
Δ f
fm

=
50kHz
7kHz

= 7.143.

11.12
For an unmodulated FM signal, the total power is equal to the carrier power, PT = Pc, (i.e., for

m = 0). Also, the total power does not change for various modulation indexes—it is only redistributed.
The carrier power (which starts at 100 W) is reduced by the appropriate J0 coefficient and the rest of
the power is “assigned” to the sideband signals.

(a) Using the equation for FM power and Table 11.1 (for mf = 2.0), it follows that:

PT = Pc
(
J2

0 + 2
(
J2

1 + J2
2 + J2

3 + J2
4 + J2

5 + J2
6

))
,

and

J0 = 0.224,J1 = 0.577,J2 = 0.353,

J3 = 0.129,J4 = 0.034,J5 = 0.007,J6 = 0.001.

In other words,

P0 = 100W× 0.2242 = 5.0176W,

P1 = 100W× 2× 0.5772 = 66.5858W,

P2 = 100W× 2× 0.3532 = 24.9218W,

P3 = 100W× 2× 0.1292 = 3.3282W,

P4 = 100W× 2× 0.0342 = 0.2312W,
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P5 = 100W× 2× 0.0072 = 0.0098W,

P6 = 100W× 2× 0.0012 = 0.0002W,

which gives, again, a total power of 100 W.
(b) Using Carson’s rule, the estimated bandwidth (for mf = 2) is

BFM = 2(mf + 1) fm = 6× 1.0kHz= 6kHz.

11.13 The circuit attached to the LTCT resonator is known as a reactance modulator. For a MOS
transistor implementation, its equivalent capacitance at node �1 is given as Ceq = gmRC.

Therefore, for the given data, the resonant frequency is set by:

fout =
1

2π
√

LT(CT +Ceq)
,

∴
CT +Ceq = 103.4nF, (59)

∴
Ceq = 20nF. (60)

Solutions to Selected Problems in Chapter 12

12.1

(a) For the envelope detector, Zin = R/2, therefore Zin = 1kΩ.
(b) The amplitude of the unmodulated input signal (i.e., carrier amplitude vc(pk)) is the same as the

average of the AM waveform envelope. From the data, we write vi(avg) = (1.5V+ 0.5V)/2 =
1.0V = vc(pk). By definition, the RMS power of the carrier is

Pc =
v2

c(pk)
2Zin

= 0.5mW.

From the same data, we can find the modulation index as

m =
1.5− 0.5
1.5+ 0.5

= 0.5.

Therefore,

Pt = [1+(0.5)2/2](0.5mW) = 562.5μW.

(c) Output of the envelope detector should be the same as the envelope of the input waveform, except
for the diode voltage drop. From the data (Fig. 12.18 (right)) we see that the envelope is shifted
by 0.2 V from the diode voltage drop.

Therefore, the maximum value of the envelope is v0(max) = 1.3 V, the minimum value of the
envelope is v0(min)= 0.3 V, so the average (DC) output is v0(DC)= (1.3 V+ 0.3 V)/2 = 0.8 V.
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(d) Knowing the average (DC) current and output resistance (R), the output current must be I0(DC) =
0.8V/2kΩ = 400μA.

(e) For the capacitor, we write

C =

√
(1/ma)2 − 1

2πR fm(max)
= 7.7nF.

12.2

(a) The output signal spectrum, at RL, is due to the nonlinear characteristics of the diode. Both the
carrier and the signal are being processed by the diode and, therefore, producing side tones.

With the stated assumption of the problem, the incoming IF signal has a carrier at 665 kHz
which was modulated by a 5 kHz signal. As a result, the incoming IF signal contains 665 kHz,
as well as the sidetones 660 kHz and 670 kHz, note the relative amplitudes. These three tones are
processed, i.e., multiplied again, by the diode nonlinear characteristics producing the following
tones:

Sum frequencies: 660+ 665 = 1325 kHz,
660+ 670 = 1330 kHz,
665+ 670 = 1335 kHz.

Difference frequencies: 670− 665 = 5 kHz,
665− 660 = 5 kHz,
670− 660 = 10 kHz.

Note that the 10 kHz tone can be easily filtered out.
(b) The fast-changing signal is the carrier; the slow-changing signal is the signal envelope. Note that,

because of the diode orientation, the negative amplitude signal envelope is recovered. The last
stage serves the purpose of removing the DC offset in the signal envelope by using the blocking
capacitor C.

(c) The capacitors have resistors with the following values: ZC1 = 1/(2π ∗ 5kHz ∗ 220pF) =
144.68kΩ≈ 145kΩ, ZC2 = 1/(2π ∗ 5kHz ∗ 22pF) = 1.4468MΩ ≈ 1.45MΩ, and diode resis-
tance is RD = ΔV/Δ I = 0.7V/7mA = 100Ω (from the diode transfer characteristics graph).
The transformer is just an ideal voltage element. Hence, the equivalent voltage divider consists of
RD = 100Ω and R= ZC1||(R1+(ZC2||R2||RL))= 4.6kΩ. That means that the voltage amplitude at
node �3 , relative to the voltage amplitude of the input signal, is the same ratio as A =V (3)/Vin =
R/(R+RD) = 0.978, i.e., the 5 kHz signal is almost not attenuated at all.

(d) The capacitors have resistors with the following values: ZC1 = 1/(2π ∗ 665kHz ∗ 220pF) =
1087.86Ω≈ 1.1kΩ, ZC2 = 1/(2π ∗665kHz∗22pF) = 10.878kΩ ≈ 11kΩ, and diode resistance
is again RD = ΔV/Δ I = 0.7V/7mA= 100Ω (from the diode transfer characteristics graph). The
transformer is an ideal voltage element. The equivalent circuit is the same as the one in part (c),
however this time R = 840Ω and A = 0.894, i.e., the 665 kHz carrier is attenuated a bit more than
the 5 kHz signal.

By choosing appropriate component sizes, a designer has control over how much the carrier
tone is attenuated relative to the envelope signal.

Note: Try repeating the exercise using the same components, except that C2 =22 nF.

12.3

(a) Input power is calculated by definition as

Pin =
V 2

R
=

(8μV)2

50Ω
= 1.28pW,
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∴

Pin ≡ 10log
1.28pW
1mW

=−88.9dBm =−118.9dBW.

(b) Simple addition in dB along the system chain gives (note that we can add dB and dBm because
of the definition of the units):

Pout =− 88.9dBm+ 8dB+ 3dB+ 24dB+ 26dB

+ 26dB− 2dB+ 34dB = 30.1dBm,

∴
Pout ≡ 1W.

12.4

Vmax =VC +
Vb

2
= 3V; Vmin =VC − Vb

2
= 1V;

m = 0.5.

We keep in mind that the longer side b of the trapezoidal pattern is proportional to Vmax, while the
shorter side a is proportional to Vmin, hence b/a = 3/1 = 3.

12.5

m =

√√√√2

[(
1.1A
1A

)2

− 1

]
= 0.648.

Solutions to Selected Problems in Chapter 13

13.4 By inspection of the graph, we conclude that in the linear part of the transfer characteristic for
an input of −50 dBm, the output power is −30 dBm, hence the gain is 20 dB. The linear part of the
characteristics extends to approximately−20 dBm of the input power, when the output power becomes
−1 dBm instead of the expected 0 dBm. Therefore the 1 dB compression point is at −20 dBm of the
input power. The-third order harmonics power is extrapolated until it intersects with the extrapolated
linear part of the characteristics, and the crossing point is found at the output power of approximately
+9.6 dBm, which is only the extrapolated point, not the real measurement point. Keep in mind that
the amplifier output never reaches that level of output power, it has already saturated close to the 1 dB
compression point level.
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noiseless, 61
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Diode detector
ripple factor, 298

Displacement current, 23
DSB, see modulation, double-sideband
DSB–FC

modulation, double-sideband–full carrier, 270
dynamic range, 17
dynamic resistance, 57, 58, 143, 145–147, 150, 151, 210,

211, 213, 227, 248, 290

E
Einstein, 1, 3
energy, 1, 8

compensating, 133
conservation law, 1, 128
displacement, 13
dissipation, 6, 226
electrical, 3, 4, 73
electrostatic, 127
flow, 3
heat, 40, 73
injected, 134
kinetic, 6, 32, 68
loss, 100, 129, 140, 158
magnetic, 86, 127
noise, 53, 209
packet, 1
potential, 32
redistribution, 285
source, 67, 84, 107, 127
storage, 78, 84, 91, 127, 140, 206
total, 141
transfer, 3, 76, 157
transport, 210

Euler
formula, 341

F
Faraday, Michael, 6
Feynman, 1
Fleming, Sir John Ambrose, 4
Fourier

transform, 15
Fourier, Joseph, 15
frequency

angular, 128
bandwidth, 54, 58, 270, 274, 332
carrier, 271, 272, 285, 296, 330
centre, 271
characteristic, 307, 308
deviation, 237, 282
ghost, 249, 251
IF, 173, 312, 320, 331
image, 249–251, 330, 331
instantaneous, 282, 311
modulation, 330
natural, 129
resonant, 128, 210, 225, 232, 236

self-resonating, 75
spectrum, 15, 100, 101, 103, 168, 231, 232, 260, 270,

274, 280, 285, 295, 299, 330, 331
synthesizer, 260
tuning, 259

I
Intermodulation, 325

J
Jitter

clock recovery, 261
Johnson’s law, 54

K
Kilby, Jack, 5

L
Linear system, 321

M
Marconi, Guglielmo, 3, 4
Maxwell

equations, 7, 20
quasi-static approximation, 24

Maxwell, James Clerk, 3, 6, 7, 18, 28
Meucci, Antonio Santi Giuseppe, 4
Modulation

sideband, 270
modulation, 11, 263, 265

AM, 265
circuit, 20
double-sideband, 270
double-sideband–full carrier, 270
FM, 265
peak frequency deviation, 282
phase modulation, 287
PM, 265
techniques, 263

modulation index, 266
modulator

balanced, 270, 272, 277, 280
circuit, 260, 288, 315
nonlinear, 267
reactance, 288

Morse
code, 3, 4

Morse, Samuel Finley Breese, 4
MOSFET

threshold voltage, 120
multiplexing

quadrature, 274



Index 385

N
Nipkow, Paul Julius Gottlieb, 5
noise, 168, 238

background, 332
bandwidth, 56
budget, 332
electrical, 68
energy, 53, 209
figure, 332
floor, 16, 332
generator, 53
generator., 55
margins, 316
numerical, 17
phase, 238
power, 333
SNR, 332
spectrum, 53, 56
spectrum density, 54
thermal, 43, 53, 222
voltage, 55
white, 53

O
oscillation, 8, 127–129

damped, 130
decaying, 131
frequency, 130
harmonic, 131
loop, 222
maintaing, 133
self, 258
start, 130, 222

oscillator
Clapp, 236
crystal, 253, 260, 272, 290
harmonic, 129
HF, 235
LC, 127
LO, 248, 249, 295, 330
phase shift, 225
realistic, 129
RF, 225
ring, 223
sinusoidal, 221
VCO, 236
voltage controlled (VCO), 287

P
peak detector, 296
period, 9
physics, 1

classical, 13
Feynman, 1

PLL
Clock synthesis unit, 254

potential
absolute, 49

built in, 109
contact, 235
difference, 23
equipotential, 68
gate, 113
ground, 49
zero, 49

power
conjugate matching, 159
factor, 48
flow, 161
matching, 161
maximum transfer, 162
reflectionless match, 160
transfer, 157, 159

R
reactance modulator, 288
receiver

dynamic range, 331
heterodyne, 319
radio, 319
sensitivity, 332, 333
TRF, 319

reflection coefficient, 160
resistance, 77

internal, 68
wire, 67

resonance, 20, 128
self-resonance, 86

resonant frequency, 128
right hand rule, 89

S
shot noise

temperature-limited diode, 64
signal, 43

AC, 43
DC, 43

signal-to-noise ratio (SNR), 58
slope detector

dual, 308

T
Tesla

coil, 3
patents, 3
radio, 3
radio patent, 4
remote control, 4
US Supreme Court, 4

Tesla, Nikola, 3
transceiver, 2
transformer, 89, 162

coupling coefficient, 90
critical coupling, 98
ideal, 93
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transformer (cont.)
impedance scaling, 94
loaded, 92
mutual inductance, 91
reflected impedance, 93

transmission line, 25, 26
characteristic impedance, 359

tuning, 20

V
voltage divider, 57, 67, 99, 100, 107, 137, 158, 159, 161,

176–179, 183, 226, 258, 259, 298, 313
HP filter, 104
RC, 101
RL, 103
RR, 101

W
wave, 3, 5–10

AM, 268, 269, 274, 279, 295, 298
AM model, 274
amplitude, 9
bandwidth, 285
baseband, 299
carrier, 273, 282, 285, 295, 298, 305
component, 269
differential, 44
electromagnetic, 3, 7, 39, 70
EM, 264, 319
envelope, 265, 297, 304, 315
expansion, 6
eye diagram, 239
FM, 282, 283, 306, 310
function, 8
light, 6
microwave, 112

nature of, 5
oscillating, 7
PLL, 257
PM, 287
polarized, 3
power, 160
propagation speed, 17
quarter, 264
radio, 3, 4
SAW, 271
sawtooth, 41
single-tone, 11
sound, 6, 9
square, 41, 223, 278, 315
SSB, 273
VCO, 253, 254
water, 6
waveform, 9, 10, 41–44, 77, 81, 82, 87, 88, 128, 135,

139, 221, 234, 273, 287
wavefront, 17
wavelength, 7, 13, 14, 17, 24, 25, 28, 174, 264, 319

wireless
channel, 331
communication, 2–4, 20, 27, 28, 33, 39, 40, 48, 127,

134, 221, 233, 234, 241, 249, 253, 261, 263,
274

data transmission, 4
device, 149, 275, 276
electronic system, 105
electronics, 215
energy transfer, 3
radio, 169, 171
RF design, 84
RF signal, 157
standard, 281
system, 2, 19, 264, 292
transmission, 2, 3, 75, 263, 265
transmitter and receiver, 3
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