CHALMERS, S2

Styrteknik PLC

Morgan Osbeck, Goran Hult

2016

Del 1

Innehall
[1o TR0 1] (=T [T oo PSSR 5
Kap 2. FUNKEIONSDESKIIVNINGANc.eiiiiiieiiisseeee e 6
2.1. Verbal funktionSheSKITVNINGccooiiiiiiieee e 6
2.2. FOLAIAGIAM. ..ot 8
2.3. FlOTESSCREMAL ... e 10
2.4, FUNKEIONSIAGIAM.eeiieieiie e st 14
Kap 3. Programmerbara styrsystem - uppbyggnad.ccccecvvveirereiieesiese e, 23
3.1. PLC-systemet — hardvarans uppbyggnad.ccccevvrvviriisssseseeeeans 26
3.1.1. StromfOrsOrjNINGSENNEL.coviieiiee e 27
3.1.2. CentralenNeteN.c..oovii e 27
3.1.3. Digitala iNgANGSENNELET.c.cviviviriiiririeeeceeee e 28
3.14. Digitala UtgANGSENNELET.c.cviviviririririiercrereeeeeeee e 30
3.15. Analoga in- 0ch UtGANGSENNETET.cccvviveiereiecee e 32
3.1.6. KommunikationSMOAUIET.ccoviieiieiieie e 33
3.2, PLC-systemets arbetsSatt - MjUKVAran...........cocevviierienreiie e 33
3.2.1. PLC-systemets signaluppséttning och beteckningsstandard. 35
3.2.2. Ladderprogrammering (LD —Ladder Diagram)........ccccocevvrenvnnnnninennen, 38
3.2.3. Funktionsblock (FBD — Function Block Diagram)ccccoevvevvveininenn. 39
3.24. Instruktionslistan (IL — InStruction LiSt)ccccoveviiieiievecic e 40
3.2.5. SFC OCN STttt reeneeeneenreas 41
Kap 4. Instruktionsuppsattning i standard IEC 61131-3.cccoviiiiiieienenesereseeeeeee 42
4.1. LOGIK. ettt ettt 42
4.2 BErAKNINGAN e 44
4.3. TYPOMVANAIINGAT ...t e 45
4.4, Block med enable-ingang (EN / ENO).......cccueueucicieeeeeeeeee e, 45
4.5. FOITIYEENINGA ... 46
4.6. Ytterligare registerNanteringcccoveoereieienenisee e 49
4.7. FIaNKAVKEANNINGAT.ooiiiiieie e 49
4.8. REKNAIE. ...t 51
4.9. LI L0 =] SR 52
4.10. A/D- och D/A-0mMvandling.cccooieiiiiiiee e 55
4.11. Datatyperna — ARRAY, REAL. ... 57
4.12. Lista 6ver vanliga IEC 61131-3 funktionsblock.............ccccooviniiiiiniiiinenn, 59
4.13. Grundlaggande datatyper IEC 61131-3.......ccooviiiiiieiieneeie e 62

4.14, Identifiers och reserverade nyckelord 1EC 61131-3.........cccccevinienivninnneniene 63

4.15. Reserverade nyckelord MitSUDISNI ... 64
Kap 5. Specifikt for PLC-fabrikat MitSUDISNI.ccooiiiiiii e 65
5.1 Mitsubishis signalbeteckningar.ccccooiiiiiiiiieeee e, 65
5.2. Logiska instruktioner — Mitsubishispecifika.cccocereiiniiniiniiniiieeeen, 66
5.3. Beréknings- och forflyttningsinstruktioner—Mitsubishispecifika. 66
5.4. Flankavkannande instruktioner — Mitsubishispecifika.ccccovoiiiinnenn, 69
5.5. Réknarinstruktioner — Mitsubishispecifika.cccovvririieniieniiseieee, 69
5.6. Timerinstruktioner — MitsubishiSpecifika............c.ccooviiiiieiiiee 69
5.7. FIFO-TEUISTEL. ..ottt 70
5.8. A/D- och D/A-omvandling i Mitsubishisystem QO2...........ccccocvvvvririvneerennnnn, 71
5.9. A/D- och D/A-omvandling i Mitsubishisystem ALS.ccccooiiininieiennn, 75
5.10. PID-regulatorn i Q02-SYSIEMEL.ccueiiiiieieiieric i 78
5.11. PID-regulatorn i ALS-SYSIEMEL.........ccererererierie st 79
5.12. REAIIASKIOCKAN.eeiieeie e 80
Kap 6. Utvecklingsmiljon enligt standard IEC 61131-3.ccocoiiiiiieieieiesereseeeeeee 81
6.1. Programstrukturen i GX IEC DeVEIOPET.ccocviiiiiieiiiesiece e 81
6.2. SKAPA PIOJECT. ..ttt 82
6.3. INAVIGATOIT. ..ttt bttt 82
6.4. GIODAIA VArTADIEL. ..o s 83
6.5. Skapa delprogram POU. ..o 84

6.5.1. Lokala variabellistan (Header).ccoooviiiiiiiiieee e, 84

6.5.2. INStrUKEIONSHISTA (1), veovveivieieeee e e 85

6.5.3. Ladderdiagram eller Relalista (LD).........ccoovririniieiiiieienc e, 86

6.5.4. FUNKEionsblOCK (FBD).coiiiiiiiiieeese e 87

6.5.5. Funktionsdiagram eller Grafcet (SFC).cocoovveviiviiieececee e 88

6.5.6. SEIUKEUFEIAd tEXL. ..ottt 95

6.5.7. Kontroll av inSKriven Kod.ccccoiiieiieeiieneee e 95
6.6. Skapa TASK och kompilera projektet.ccoouviieieiene e 95
6.7. Overforing av program och OnLine-funktioner.ccccoceeveveccveeveveccnnnns 97
6.8. SIMUIETING AV PrOGramM.oouiiieiiiieieieee e 97
6.9. KOomma igang eXEMPEL.ccooviviveuiiiiieeceec e 97
6.10. DOKUMENTALION. ..eeiiiiieicece e e 100
Kap 7. Sekvensstyrningar i LD 0Ch FBD..........cccooiiiiiiieiiiieeeee e 101
7.1. FUunktionsdiagrammet.coooiiiiieie e s 101
7.2. LOSNING SOM Ladderprogram.cc.eceeiueerieeeesieesie et 102

7.3. Losning som FunktionsbloCK-program..........ccccecveeieeveeiesieeseese e e 104

Kap 1. Inledning

Ménniskan anses av naturen vara lat och, om man drar slutsatser av den tekniska utveck-
lingen, sa soker hon i alla fall att finna losningar som befriar henne fran tunga, trakiga och
monotona arbetsuppgifter. Verksamheter runt omkring oss automatiseras i allt hogre grad
och forutsattningen for detta &r mojligheten att styra all den utrustning som skall gora
arbetet for oss. Det ar hér styrtekniken med PLC-styrningar kommer in, det kunskaps-
omrade som behandlar tekniken att styra de mer eller mindre komplicerade tekniska
processer vi har skapat runt omkring oss.

Det forsta man tanker pa i sammanhanget ar kanske automatiserade tillverkningsprocesser
som t ex hopséttning av en bilkaross i Volvos karosseriverkstad. Dar finns utgangs-
materialet i form av pressade platsjok. Dar finns fixturer som placerar de olika platsjoken i
ratt lage i forhallande till varandra. Dar finns svetsutrustning som fogar samman de olika
delarna till en hel kaross. For att sedan fa denna tillverkningsprocess att 16pa kravs en
styrning. Ett styrsystem beordrar hanteringsutrustning att lagga in platar i fixturen, kollar
via narvarogivare att platarna ligger ratt innan det beordrar robotarnas svetstanger att lagga
punktsvetsar pa 6nskade stallen m.m. Det sammanlagda antalet in - och utgangar hos det
styrsystem som styr denna del av hopséttningen ar fler tusen stycken. Utgangar &r
beordringssignalvagar fran styrsystem till processen och ingangar ar kvittenssignalvagar
fran process till styrsystem.

Men inte bara industriella tillverkningsprocesser anvander sig av PLC-teknik for att styra
och reglera. Fastigheters varme- och ventilationssystem styrs idag av PLC-system liksom
infrastrukturanlaggningar som vattendistribution med tryck- och flodesregleringar av olika
pumpstationer i natet liksom véagtunnlar med styrning av flaktar, belysning och trafik-
dvervakning. Dessa anlaggningar tar normalt upp stora geografiska omraden, ett fastighets-
bolag har fastigheter pa manga stallen i stan och vattenledningsnatet tacker hela kommuner,
vilket gor behovet stort av att kommunicera information mellan de utspridda styrsystemen
och operatorsstationer placerade i centralt kontor.

Denna forsta del av kompendiet vill ge en grund for att 16sa PLC-styrning av automa-
tiserade forlopp och att bringa struktur i dessa l6sningar. Forkunskaper som kravs for att
tillgodogora sig materialet ar grundlaggande logik och éven grunden i reglerteknik i den del
som beror PID-regulatorn. PLC-tekniken baseras idag pa en programmeringsstandard, IEC
61131-3 och de forsta kapitlen baseras helt pa denna standard. Det finns dock en uppsjo av
PLC-fabrikat pa marknaden och alla har sin programutvecklingsmiljo dar de flesta stodjer
sig pa standarden men har ocksa en del fabrikatsspecifika funktioner utéver standarden. |
denna skrift & Mitsubishis PLC-system och deras utvecklingsmiljo GX IEC Developer det
system och den utvecklingsmiljé som anvints som “referenssystem” dvs som milj6 for
programexempel och for exemplifiering av hur fabrikanternas egna funktioner kan komp-
lettera standarden. Standarden kom till efter att PLC:er funnits pa marknaden i 20-talet ar
och da &r det inte latt att enas om en heltdckande standard som alla tillverkare ar beredda att
anamma fullt ut.

Kap 2. Funktionsbeskrivningar

Infor utveckling och konstruktion av en maskin eller process ar funktionsbeskrivningen
som underlag for styrningen av maskinen eller processen en viktig del dar manga aktorer ar
inblandade. Vid upphandling av utvecklings- och konstruktionstjanster stélls en krav-
specifikation upp dar det ar mycket viktigt att vara tydlig vid kravformuleringen. En viktig
del i denna kravspecifikation ar att funktionsbeskrivningen ar entydig, att bestallaren pa ett
otvetydigt satt for utféraren kan redogora for det 6nskade beteendet hos den énskade
produkten, for att ddrmed undvika missuppfattningar, extraarbete och framtida tvister. Ju
tidigare en svaghet eller ett fel upptacks i en utvecklingsprocess desto billigare &r det att
atgarda. Om man exempelvis i funktionsbeskrivningen fér styrningen av en produktions-
anldggning for ”gosenallebjornar” har med fastnédstning av nallebjérnens vénstra 6ra men
missar proceduren att slutligen sy fast det med en rejal som. Om detta upptacks vid igang-
kdrning av anldggningen kommer detta att fororsaka en del kostnader i form av &ndrat
processflode, &ndring av programvara, &ndring av produktionsutrustning och férsenad
produktionsstart. Annu varre ar om det inte uppticks i det steget heller utan ett antal tusen
nallebjornar har hunnit ut pa marknaden och ett barn har bitit loss ett 6ra och kanske satt i
halsen med f6ljd stora tidningsrubriker och forlorad varumérkesstatus och darmed stora
ekonomiska verkningar. Viktigt ar alltsa att kravspecifikationer och i dessa ingaende
funktionsbeskrivningar blir riktiga fran borjan.

For att en funktionsbeskrivning skall bli bra och uppfylla sitt syfte krdvs det att sattet att
beskriva funktionen pa ar sadant att alla parter som har kunskap, som ar relevanta for att na
ratt funktion, ocksa skall forsta beskrivningssattet av funktionen lika val som att de som
skall realisera funktionsbeskrivningen i form av t ex utrustning och styrprogram skall
uppfatta funktionsbeskrivningen ratt dvs forsta beskrivningssattet och inte riskera miss-
tolkningar p g a beskrivningssattet.

Kravet pa en funktionsbeskrivning for styrning av en process ar saledes att:

- Den kan forstas av alla personalkategorier som ar involverade i processens styrning
sasom driftpersonal, underhallspersonal, projektansvariga, styrsystemprogrammerare,
konstruktorer.

- Den utgor ett entydigt och utrustningsneutralt underlag for utformning och program-
mering av styrutrustningen.

- Den skall kunna anvandas och aterkopplas till vid projektering, konstruktion, program-
mering, igangkorning, felsokning och underhall av processen.

- Den utgor ett underlag for anlaggningens dokumentation.

Har foljer nagra satt att beskriva funktioner hos en processtyrning med huvudvikten lagd pa
funktionsdiagrammet i avsnitt 2.4.

2.1. Verbal funktionsbeskrivning

Det mest naturliga séttet for gemene man &r att beskriva en funktion i verbal form. For
enklare och mer 6vergripande beskrivningar kan ofta den verbala formen bli mest

6

overskadlig for alla inblandade parter. Overgripande beskrivningar kan vara sakerhets-
funktioner sdsom nddstopp och skyddsutrustnings interagerande med styrningen,
underhallsfunktioner sasom drifttidsovervakningar for olika processkomponenter m m.
Dessa dvergripande funktioner maste naturligtvis noggrant integreras i styrprogrammet men
kan ofta med fordel separeras ifran beskrivningen av den grundlaggande funktionen hos
processen. En verbal beskrivning kan med fordel kompletteras med figurer for battre
forstaelse.

Att anvanda verbal beskrivning for att funktionsbeskriva komplexa styrférlopp ar inte att
rekommendera da beskrivningen blir ordrik, svarlast och ocksa svar att fa entydig och
korrekt.

Exempel 2.1:Verbal beskrivning av beteendet hos en markis.

< -
n | =

N\ g Sl RsAEL s

Figur 2.1: Markis 6ver uteplats.

Markisen bestyckas med givare och mandverdon enligt

Figur 2.2 nedan.

Bestyckning:

MAN/AUTO: Vred for val av manuell / automatisk markismandvrering.
IN/UT: Tryckknapp fér manuell kérning in / ut.

YTTRE/MITT/INRE: Givare som kanner av yttre / mittre / inre lage hos markis.
SOL: Givare som kénner av solintensitet — omslag instéllbart.

VIND Givare som kénner av vindstyrka — omslag instéllbart.

MOTOR: Motor for ut- och inkérning av markisen.

DD

VIND

Figur 2.2: Givare och manéverdon for styrautomatik till markis.

Funktion:
1. Med omkopplare valjs MAN/AUT — manuell/automatisk mandvrering.

2. | MAN-lage kors markisen in /ut med tryckknappar IN / UT. Paverkad tryckknapp
innebé&r korning av markis.

3. I AUT-lage styrs markisen enligt pkt 4-7.

4. Om solintensitet hog och vindstyrka lag kor markis till yttre lage.

5. Om solintensitet hdg och vindstyrka hog kor markis till mittlage.

6. Om solintensitet 1ag och oavsett vindstyrka kor markis till inre lage.

7. Om markis star stilla och &nda inget av inre / mitt / yttre granslage ar paverkat kor inat.

Vi stannar dar for nu ar grundfunktionen beskriven men ytterligare forreglingar behovs for
att gardera systemet mot oonskat beteende vi bortfall av ndgon givarfunktion m m.

2.2. FoOljddiagram.

Foljddiagram eller vag-tid-diagram &r ett sétt att beskriva en tidssekvens av handelser.
Framfor allt anvands det for beskrivning av forflyttningssekvenser déar traditionellt
pneumatiska cylindrar forflyttar, stoppar, haller fast osv material eller komponenter i en
behandlingskedja.

Vi betraktar ett forlopp enligt Figur 2.3, dar lador transporteras pa transportbandi,
detekteras av en givare A, lyfts av cylinder C1 till nivan for band2 (C1F) stabiliseras dar i 1
sekund varefter cylinder C2 skjuter ut ladan (C2F) pa transportband2 varefter cylindrarna
gar tillbaka till ursprungslagena (C1B resp C2B).

Cc2B 2 C2F
I R
I
[1
' .
| | 1
i i Transportband2
I
H— A
— ——
Transportband1 Q C1F
C1

—_ jC1B

Figur 2.3: Vertikalforflyttning av lador.

Foljddiagrammet nedan, Figur 2.4 beskriver styrfoljden for de tva cylindrarna da signal ges
fran givare A. Detta beskriver bara sjalva styrfoljden. Ytterligare funktioner som ar
inblandade i styrningen &r troligen att nagot driftvillkor ar uppfyllt dvs att hela
anlaggningen, dar denna del ingdr, ar i driftlage. Vidare bor framga vad som skall handa
med styrningen efter nodstopp av anlaggningen. Dessa ytterligare krav pa styrningen kan
med fordel beskrivas verbalt.

AL
-
c1 A tid
C1F---
ClB - >
! tid
c2 !
C2F |
C2B ?
1 ! >
s | .

Figur 2.4: Foljddiagram for cylinderrorelser vid vertikalforflyttning.

2.3. Flodesschema.

Flodesschema dr det klassiska séttet att beskriva programfloden och anvands ocksa i styr-
sammanhang for att beskriva férlopp som skall omséttas till program for styrsystem.

Det dnskade beteendet hos markisstyrningen i avsnitt 2.1 beskrivs i flodesschemaform i
Figur 2.5 nedan. Detta flédesschema &r beteendebeskrivande utan att beteendet rent tekniskt
skall 16sas med givare och stalldon. Denna typ av flodesschema kan alltsa tjana som
diskussionsunderlag for alla kategorier av inblandade intressenter i utvecklingen av

markisen.

(Markisstyrning '

YES — (Manuell)

Kor ut markis [~

MAN-13ge?

[Automatik)

YES
Markis till heltute | IN-knapp pav? Kérin markis |

Sol och vindstilla?

YES

sol och vind? Markis till halften ute |—

YES
Ingen sal?

Markis till heltinne —|

Figur 2.5: Flédesschema for markisstyrning - beteendebeskrivande.

NO |

For att bygga upp flodesdiagram anvénds en ett antal symboler varav de viktigaste fem ar
foljande:

C) Programstart och -stopp anges med denna symbol.

Symboliserar val eller beslut och utgérs normalt av en
fraga och har darmed mer an en utgang, vanligen tva —
’7ja” resp. ”nej”.

Symboliserar process vilket innefattar handelser och
berékningar som inte omfattas av andra symboler.

10

Input och output anges med denna symbol. Vid
flédesschema for processtyrprogram forutsatts att
kontinuerlig in- och utmatning av processignaler sker
varfor inte denna symbol anvands for detta.

Anger forbindelse till annat flodesschema. Anvands da
hela schemat inte far plats pa en A4-sida.

Vi atervander till markisstyrningen och lagger ett styrtekniskt perspektiv pa flodesschemat.
Med de signalbenamningar som framgar av Figur 2.2 kan nu styrningen beskrivas enligt
flodesdiagrammen Figur 2.6 — Figur 2.8. Lasbarheten hos flodesschemat okar om det gar att
pa ett strukturerat satt dela upp flédena i mindre delar. Har redovisas manuella kérningen
for sig i Figur 2.7, den automatiska styrningen i Figur 2.8 samt véxlingen mellan manuell
och automatik i Figur 2.6.

Markisstyrning

RetMAN

YES
MAN?

NO

Figur 2.6: Flédesschema for markisstyrning, val man/aut - styrsignalsbaserat.

Detta &r en sa kallad forreglingsstyrning, till skillnad mot féljdstyrning, vilket innebar att
om vissa villkor ar uppfyllda skall nagot specifikt handa, vid andra villkor skall nagot annat
handa o s v. Det medfor att da ett beslut gjorts som resulterar i nadgon av véagarna ut ur
beslutssymbolen kommer, efter eventuell handelse, flodet att fortsatta nedat till nasta
beslutsvillkor. Flodet stannar aldrig upp utan en loop léper runt och avfragar varje besluts-
villkor kontinuerligt. Denna typ av styrningar realiseras med logisk kombinatorik i form av
relakopplingar, logikkretsar eller program baserade pa logiska uttryck eller grindar.

11

AND NOL:II'TY'I‘I'RE? MarkisUT=1
ORYL_E)F}rEUT? MarkisUT=0
IN AND NOT INRE? m:rﬁl:bl\j;:]
|
INRE N MarkisIMN=0
OR NOT IN?

Figur 2.7: Flédesschema for markisstyrning, manuell kérning - styrsignalsbaserat.

RetAUT

SOL AMD MOT WIMND AND NOT YTTRE
MarkisUT=1

OR
SOL AND VIND AND INRE?

YTTRE

YES

SOL AND VIND AND MITT MarkisUT=0
OR

MOT SOL AMND MOT INREZ

SOL AND VIND AMD YTTRE YES

MNOT SOL AND NOT IMRE MarkisIN=1
HOT YTTRE AMD NOT MITT AND NOT INRE,
&MND MarkisIN=0 AND MarkisUT=02

INRE

SOL AND NOT VIND AMD MNOT YTTRE MarkisIN=0

OR
SOL AND VIMD AND MITT?

NO

Figur 2.8: Flédesschema for markisstyrning, automatisk styrning - styrsignalsbaserat.

12

Betraktas istéllet vertikalforflyttningen enligt avsnitt 2.2 vilket utgdr en foljdstyrning eller
sekvensstyrning sa resulterar det i foljddiagram enligt Figur 2.9. Har bromsas flodet upp
genom ett antal aterhopp sa lange en héandelse inte &r slutford. Omsétts detta flodesschema
till ett styrprogram kommer loopningen i NO-loopen normalt att innebdra ett uthopp till
andra rutiner (ej med i detta flodesschema) for att snart atervanda hit for ytterligare en
beslutskontroll. Detta for att styrsystemet troligen har mer an denna delprocess att halla
reda pa och da far inte programmet lasas i vantan pa att givare skall paverkas utan mycket
annat kan hinnas med i denna vantan. Ett annat satt att beskriva sekvenser &r med
funktionsdiagram enligt ndsta avsnitt som utgor bakgrund till ett grafiskt programmerings-
sprak for sekventiella forlopp, SFC.

Qertikalfﬁrflyttnina

NO

A aktiverad?

YES y

Plusgang C1

C1F paverkad?

YES y

Vanta

YES

Plusgang C2

C2F paverkad?

YES y

Minusgang C1
Minusgang C2

NO

C1B och C2B pawverkade?

Figur 2.9: Flodesschema for foljdstyrningen av tva cylindrar - styrsignalsbaserat.

13

2.4. Funktionsdiagram.

Funktionsdiagrammet eller F-diagrammet (eng. Sequence Function Chart) &r ett
standardiserat (IEC 848) grafiskt beskrivningssatt for styrning av processer. Ursprungligen
togs det fram av det franska foretaget Telemecanique, numera Schneider Electric, som ett
beskrivningssétt att anvanda i samband med deras pneumatiska sekvensregister.
Telemecanique monsterskyddade detta beskrivningssatt under benamningen GRAFCET.
Att det ursprungligen togs fram for sekvensstyrningar gor att det & mycket anvandbart i
den typen av styrning men &r &ven mojligt att anvanda vid beskrivning av forreglingar.
Sekvensstyrning innebar férlopp av en serie handelser dér en handelse kvitteras innan nasta
handelse tar vid.

Funktionsdiagrammet uppfyller de krav som kan stéllas pa funktionsbeskrivningar
namligen att det skall enkelt forstas av alla personalgrupper, vara utrustningsneutralt, och
kunna anvéndas vid projektering aven anlaggning saval som vid programmering, igang-
korning, underhall, felsékning och dokumentation. Funktionsdiagrammet ar ocksa bas for
ett av de standardiserade programmeringssatten for programmerbara styrsystem.

| Figur 2.10 visas funktionsdiagrammets principiella uppbyggnad med nagra fa steg fran
borjan i en sekvens. Rutorna beskriver steg (step) eller tillstand hos sekvensen som placeras
utmed en forloppslinje som alltid ritas vertikalt men kan forgrenas horisontellt. Startsteget
utgor startpunkten vilket oftast ar processens vilolage innan forloppet startats. Startsteget
ritas med dubbel ram medan 6vriga med enkel. For att forflyttning skall ske fran ett steg till
nasta maste 6vergangsvillkoret (transition) vara uppfyllt. Overgangsvillkoret kan vara allt
fran ett enkelt villkor till ett omfattande logisk samband men oavsett omfattning kan
overgangsvillkoret endast resultera i att det ar sant eller falskt. For att ett steg skall bli aktivt
kravs att foregaende steg ar aktivt och att 6vergangsvillkoret till nasta steg ar sant. Da nasta
steg blivit aktivt avaktiveras foregaende steg. Endast ett steg kan alltsa vara aktivt vid en
tidpunkt med undantag da parallella processer genomfors, se senare. Startsteget ar aktivt
fran borjan och avaktiveras da forsta steget aktiveras. Till varje steg och dven startsteget
kan kopplas en eller flera handelser (actions). Dessa handelser kan ocksa vara villkorade
vilket framgar senare.

STARTSTEG —_|

I " o
Al o | OVERGANGSVILLKOR

(TRANSITION)

6vergang0

By 1 y(gnd/e/lse A

- 6vergéél \
STEG (STEP)
I -~
‘/

w2 —/handelse B
handelse C

HANDELSE (ACTION)

T 6vergang2

Figur 2.10: Funktionsdiagram (Funtion Chart) — principiell uppbyggnad..

14

Vi aterknyter till den vertikallyftprocess som beskrevs i avsnitt 2.2 och aterfinns i Figur
2.11 nedan. | Figur 2.12 ges ett beteendebaserat funktionsdiagram for férloppet och i Figur
2.13 ges ett styrsignalbaserat dar det forutsatts att cylindrarna styrs via dubbelt styrda
arbetsventiler med tva styrsignaler vardera, VC+ resp VC-. | Figur 2.14 aterges tva
alternativ av samma styrsignalbaserade funktionsdiagram men nu med foérutsattningen att
cylindrarna styrs via arbetsventiler med fjaderretur med en styrsignal vardera, VC for
aktivering av plusgang.

c2B Cc2 C2F
| P ﬁ
I | J
| Jr AAAAAAAAAA]
&
I ' —_—
| i i
i i Transportband2
I
— A
—
Transportbandl Q C1F
C1

— ___ jCiB

Figur 2.11: Vertikalforflyttning av lador.

al

Anléggning i drift och lad i lage

T pa liften.

1 —| Kor upp lyfteylinder

mm Lyftcylinder i 6vre lage

Fos av lada med avskjutcylinder

2 —
D efter 1 sekund

== Avskjutcylinder i framre lage

3 Sank lyftcylinder

Aterfor avskjutningscylinder

T Lyftcylinder i nedre lage OCH avskjutcylinder i utgangslage

Figur 2.12: Funktionsdiagram — beteendebaserat.

Det beteendebaserade funktionsdiagrammet foljer F-diagramstrukturen med klartext varfor
det ar tolkningsbart for stora personalkategorier och bra diskussionsunderlag vid faststéllande
av beteende.

15

== DRIFTOCHA

;

== CI1F

VC2+
2 /D D=1s
== C2F
3 | vci-

VC2-

== C1B OCHC2B

Figur 2.13: Funktionsdiagram — styrsignalbaserat for dubbelt styrda ventiler.

E)J E’J
== DRIFTOCHA == DRIFTOCHA
1 — va 1 | S|vci=1
- ch - C1F
VC2
L1 vcl |
2 2 D| i
o| Ve
== C2F D=1s == C2F
3 3 |— S |vci=0
T C1B OCH C2B T C1BOCH C2B

Figur 2.14: Funktionsdiagram — styrsignalbaserat for fjaderreturventiler.

Som framgar av de tre styrsignalbaserade funktionsdiagrammen sa &r strukturen exakt den
samma som for det beteendebaserade men nu bestyckat med processignaler. Dessutom ar
signalgivningen beroende av vilken typ av givare och stalldon som processen bestyckas
med. Observera att i vanstra alternativet i Figur 2.14 finns ingen signalgivning i steg 3
vilket innebér att fjaderreturen ser till att bada cylindrarna gar minus vilket skulle ske. Detta
leder dock till att ett styrsignalbaserat funktionsdiagram blir mer svartolkat &n
beteendebaserade.

Det har ocksa dykt upp nagra modifierare i form av D och S. D star for delay och betyder
att en tidsfordrojning skall 16pa ut innan handelsen sker. Férdrdjningens storlek anges i
handelserutan med D=x s. Modifieraren S star for stored, dvs kom ihag tillstandet hos
signalen i foljande steg. Har 1-stalls VC1 i steg 1, halls i detta tillstand, och nollstalls i steg
3. Alternativet till S &r att upprepa samma signal att vara aktiv i flera steg som i vanstra
alternativet i steg 1 och 2.

16

Hér foljer tre sidors utdrag ur standarden IEC848 hur olika handelser (actions) kan beskrivas:

No. Symbol Description
Not stored command
1 XIB._...._]_ |_
5. L COMMAND A" RN SN EY !
+c caﬂme%%%Z%%W%L_"
. Stored action
20 | START ACTION
A"
T X220, = N ES——
5. L
: ACTION .. _ 77777770707 A— .
25 L STCP ACTION - : T X20__is -
A" | xaso RN Ry EL-... o A
+k | SO— S S
i
Not stored but delayed
command
1 XS e J L.
5. g |'—' COf‘BI‘lg:D o B ...—.._J— X1SJS3 03 |COTWNO
+ 2 courwno_L___ 1A
Ss
Not stored but time limited
command
X10 = L.
xX10 { &
5 10 | o | | COFHAND “A° pli | e
' L=8s cormano PR ..
'1' b 8s

17

Description

No. » Symbol
18 || START ACTION “A
8 sD 0=Ss
+ c
5.6 :
25 L1 5| sToP ACTION “A"
EX
19 Ldps START ACTION B
D=Ss
d
5.7 :
26 }- S| STOP ACTION "B*
|
20 START ACTION C°
St L=5s
’ e
5.8 ;
27 s| sToP ACTION C"
4+ m

18

Stored and delayed action

¥ s TR B8 e U I 2 o [
X25 — i e e
ACTIONI__przA_ | A
AL N Pe—] ;
D=Ss D=10s D=15s

Delayed and stored action

s i

X26__ - s =
i & o i P
ACTION: __PZZZZA__ ¢ . : !
L 0 B g : ———— o
D=Ss ¢ D=10s ¥ 0=1Ss
\- x‘9—J Ss 0s I—— s
e | ACTION
W - la 2
Stored and time limited
action
mm4———1___§_J—__L__i.JF—“ﬁ___
ol il e
ACTINSA______ & ¢ | A
S o : i B : £ :
T=Ss L=10s T=15s
\ X20ds &
| ACTION
x27_{q 5s O3 &

No. Symbol Description
Form 1 Conditional action
= X24....... % A TR
=21 P e Se T I S
i) S I R
.......... P i T B =
Form 2 l d ACTION...__TTA_TTTA__...
6:2 24t ¢l ACTIN B
h
Form | Stored and conditional action
L
6.3 24 | {sc AC;I;]QZJ_'B" X24....... I T L. meids & ..
Th S — L .
ATION... A7 e[
Form 2 I d 4
6.4 .
241dsc| ACTION B
+h
Conditional and stored action
Form 1
65 ;4 L I¢s ACTICN B~ - X24,...... .| L ... x2a_] & s
stored if "d” i e | A
';‘h i
AC.EI_ON...M""
l d
6.6
241dcs| ACTION B
+n
Form' 2

19

Alla processer utgors inte av en enda rak sekvens som foljer en forloppslinje utan kan
forgrenas pa olika satt till alternativa eller parallella sekvenser.

Alternativa sekvenser:

7

I
I

Endast en véag ar mojlig, om a ar sant efter steg 6 foljer steg 61, om &r c aktivt foljer steg
65, om bade a och c aktivt véljs fran vanster dvs steg 61.

Hopp — en form av alternativa sekvenser:

Bakathopp - repeterad sekvens Framathopp - sekvenspassage
| |
| |
3 3 |
== g
- == q
4 |— 4 |—
== h - h
5 — 5 —
= == C
d T c
6 6
|
|

Observera att det alltid skall finnas ett och endast ett 6vergangvillkor mellan tva pa
varandra féljande steg.

20

Parallella sekvenser:

I
1

34 [—

- 3
1

35 — 65 —
-
66 [
|

- e

7

Vid parallella forlopp valjs bada vagarna, fran steg 34 och aktiv signal a aktiverar bade steg
35 och steg 65. Vid parallella forlopp ar alltsa ett steg i varje forgrening aktivt. Dérefter
genomldps var och en av grenarna i sitt tempo. Vid avslutning av parallella forlopp invantar
alla parallella grenar varandra och gar vidare via gemensamt 6vergangsvillkor. I detta fall
kravs for att komma till steg 7 att forloppet befinner sig i steg 35 och i steg 66 samt att
overgangsvillkor e ar uppfyllt.

De horisontella forloppslinjerna vid férgreningar utgors av en enkel linje vid alternativ
forgrening och av dubbellinje vid parallell férgrening.

Subsekvenser:

For att minska detaljpackningen i ett funktionsdiagram kan en héandelse i ett steg ocksa
utgdras av en sekvens, en subsekvens, vilken kan beskrivas i ett eget funktionsdiagram
Observera hur stegen anvands som évergangsvillkor fora att styra sekvensflodet.

Huvudsekvens Subsekvens
/(. .
’ 4.0 |— Vilolage
| //
7/
+ // - Steg4
a e
7/
4.1 [
4 |— Subsekv4.0-4.2
\ -
== Steg4.3 AN
AN 42 |—
5 N
\
| 3
\
\\
| \ 4.3 |— Subsekvens slut
+ Steg 5

21

Som tidigare namnts utgor funktionsdiagrammet basen for ett av de standardiserade

(IEC 61131-3) programspraken for programmerbara styrsystem, PLC. Som avslutning pa
avsnittet visas i Figur 2.15 ett utdrag ur dokumentationen for ett program skrivet i spraket
Sequence Function Chart (SFC) som utgdr en styrning av vertikalforflyttningen enligt Figur
2.13. Narmare presentation av SFC-programmering kommer i senare avsnitt men en titt i
programdokumentationen gor att programmets funktion kan anas med kunskap kring
funktionsdiagram som bakgrund.

vertikallyft [PRG] Body [SFC]

vertikalyft [PRG] Body [SFC]

vertikallyft [PRG] Action celayactiond [FBO] Network#

NT AL STEF Initd -
O _STEF

EP 5TEP1:
WA plus;
O STEP

EP STEFZ:
delzsciont;
O STEF

EP STEP3:
W minus;
W2 mins;

D STER

Metwor Z1 (1)

Label:

Timar

TRUE —

T#ls —

8=

S o

—"C2olus

Figur 2.15: Dokumentation av PLC-program skrivet i SFC-sprak.

22

Kap 3. Programmerbara styrsystem - uppbyggnad.

Fram till 1970-talet var den forharskande tekniken att astadkomma styrning av processer att
anvanda relateknik. Signalledningar fran givare ute i processen kopplades in till relaer i ett
skap dar logiken byggdes upp genom kopplingar mellan reléernas slavbrytare och resultatet
skickades via styrsignalledningar ut for att aktivera olika don sasom kontaktorer for
manovrering av elmotorer eller magnetventiler for cylindermandvrering. Anlédggningarna
var i princip uppbyggda enligt Figur 3.1 (vanster) nedan men en storre anldggning kunde
innefatta hundratals givare- och styrsignaler och tusentals relder som fyllde hela rum med
relaskap.

”Styrskap” - PLC

”Styrskap” - reldlogik
Lyft
Lyft D et upP
—2 | =, = PLC =
[H— S /j
—_r [-
GransUpp 0 :; 7D GransUpp
GransNer fi;xﬁ = NER | GransNer =
A P T . L S
4 g

Figur 3.1: Jamforelse relasystem(vanster) och PLC-styrning (hoger).

Sa kom transistorn, datorn och mikrokontrollern och darmed andra méjligheter att bygga
logik &n via reléer. | mitten av 1970-talet dok de forsta PLC-systemen upp pa markanden
vilket innebar att innehallet i styrskapen byttes ut men signalledningar ute i processen var
de samma, se Figur 3.1. Nu med ytterligare drygt 30 ars utveckling bakom sig finns mycket
kraftfulla PLC:er som kan utratta mycket mer an de gamla relasystemen och inga i de
omfattande informationssystem som kravs for dagens automationsnivaer.

Graden av automatisering av de industriella processerna gar hand i hand med tillganglig-
heten till styrutrustning som ar flexibel, latthanterlig och billig. Utvecklingen av mikro-
datorn 6ppnade vagen for det programmerbara styrsystemet, PLC, som &r ett datorbaserat
styrsystem anpassat till styrning av maskiner och processer i industriell miljo. Fran att fran
bdrjan varit utrustning som tog 6ver den logiska styrning som tidigare utférdes av rela-
system expanderade arbetsuppgifterna till att ta hand om uppgifter som tidigare utférdes av
separata instrument sasom PID-reglering av aterkopplade system och recepthantering vid
batch-processer. Idag finns allt frdn mindre PLC-system for logisk styrning av enskilda
maskiner till komplexa kraftfulla PLC:er som utéver sin styruppgift ar en spelare i fabriks-
natverk av andra PLC:er, operatorsstationer, underhallssystem och affarssystem.

Ett programmerbart styrsystem skiljer sig fran ett vanligt datorsystem genom att program-
meringsspraken ar anpassade till anvandningsomradet for att uppna hog produktivitet vid
programutveckling. Stravan har varit att utveckla ett forhallande méanniska/utrustning
baserat pa anvandarens tekniska erfarenhetsvarld dar anvandaren av styrsystem primart
skall vara processkunnig och sekundért datorspecialist. Utvecklingen har dock lett till att
PLC-systemen mer och mer integreras i datorsystem med kommunikation bade med
intelligenta givare och don ute i processen och med 6verordnade datorer och databaser for
produktionsplanering, underhallsplanering m m. Som automationsingenjor kravs idag
kunskaper kring industriella processer savéal som inom datakommunikation och
datorsystem.

23

Figur 3.2: Tva typer av PLC-system. Ett kompakt och ett moduluppbyggt expanderbart.

Utmarkande for ett programmerbart styrsystem ar ocksa att elektronik och chassi ar
dimensionerat att tala den mekaniska miljo (vibrationer, stétar), kemiska miljo (gaser, fukt)
och elektriska miljo (elektriska och magnetiska falt) som ofta ar betydligt besvarligare pa
industrigolvet an i de normala datorsystemens kontorsmiljo. Vidare ar kraven att
installation och dven utbyggnad av systemen skall vara enkel, att systemet skall kunna
kommunicera med andra PLC-system, med operatérssystem foér ménniska-maskin-
kommunikation, med decentraliserade I/O-enheter mm.

PLC &r en forkortning av Programmable Logic Controller och ar i dag den gangse
ben&mningen. En kort period i borjan av 1980-talet var den anvanda bendmningen PC-
system, Programmable Controller, men den fick ge vika da samma akronym, PC, i
betydelse Personal Computer tog 6ver och ju blev ett valkant begrepp for den stora
allmédnheten. Aven beteckningen PBS (Programmerbara Binara System) har férekommit.

Pa svenska marknaden finns idag flera tiotals system av olika modell fran ett 20-tal olika
leverantorer. Som storre tillverkare kan ndmnas ABB (Sverige), Siemens, Beckhoff
(Tyskland), Mitsubishi, Hitachi (Japan), Rockwell (Frankrike), Allen Bradley, Honeywell
(USA). Ett flertal tillverkare av styrutrustning marknadsfor ocksa system fran redan
namnda tillverkare under eget namn.

Storleken pa systemen varierar mycket. Sma mycket latthanterliga system med ett tiotal
digitala in- och utgangar ar sa prisbilliga (2-5000 kr) att de i allt hogre grad utnyttjas pa
omraden som tidigare var forbehallna mindre relasystem. De storre systemen kan hantera
flera tusen in-och utgangar, bade digital och analoga, vilket gor att de kan anvandas for att
I6sa mer omfattande styrproblem. Dessa kan ocksa klara av aritmetik, integration med
operatdrssystem med hantering av dynamiska processbilder samt kommunikation med
éver- och underordnade system. Trenden gar numera at mer och mer decentraliserade
system med natverk av ett antal PLC:er, kommunicerande via seriell faltbuss med
distribuerade sensorer och aktuatorer som hanterar var sin del i en storre process.

24

Programmerbara styrsystem har ingen langre historia bakom sig. Det forsta PLC-systemet
utvecklades i slutet av 60-talet for anvandning inom bilindustrin. Under 70-talets andra
hélft kom de sma mikrodatorbaserade PLC-systemen och &ven de hierarkiska naten av PLC
i kombination med processdatorer for styrning av hela fabriker. Pa 80-talet kom de sma
prisbilliga systemen med nagra fa in- och utgangar som konkurrerar med relasystem med
endast ett tiotal rel&er.

Det ar inte bara process- och tillverkningsindustrin som anvander PLC-styrningar utan PLC
har ocksa idag en stor marknad vad galler styrning av fastighetsinstallationer och infra-
strukturanldggningar som t ex trafikstyrning och -6vervakning, ventilation, belysning mm i
tunnlar.

De mindre systemen anvénds ofta for maskinstyrningar. De placeras ndra den maskin de
skall styra vilket gor att man far ett val avgransat system som &r latt att programmera och
l4tt att installera och felsoka i.

Exempel pa sadana styrobjekt ar:
- Transportsystem.
- Forpackningsmaskiner.
- Pumpanléggningar
- Ventilationssystem

De storre PLC-systemen anvands for att styra och dvervaka hela processer. | dessa system
ingar ofta aven hantering av analoga storheter och i systemet inbyggda regulatorer for
aterkopplad reglering av analoga storheter. Mdjlighet for operator att folja processen pa
bildskérm ar ofta mojlig i dessa system liksom att via tangentbord eller operatorspanel
kunna kommunicera med processen. En annan vanligt forekommande mojlighet &r
kommunikation med centraldator for produktionsstatistik, produktionsplanering och
rapportering.

Exempel pa anvandning av "storre" system ar:
- Kraftverk, kraftvarmeverk.
- Kemiska processer t.ex raffinaderi.
- Massatillverkning och pappersmaskiner.
- Tillverknings- och monteringsliner for bilar, kylskap m m.
- Styrning ventilation, belysning, trafik mm i vagtunnlar.
- Belysning, varme, ventilation, lassystem i fastigheter.

I vilka styrsammanhang &r det da olampligt att anvanda PLC-system? En viktig egenskap
hos PLC-system &r att de &r flexibla och darfor latt anpassningsbara till olika applikationer.
Maskiner som skall mangfaldigas i stora mangder t ex kopieringsmaskiner, bakmaskiner,
tvattmaskiner o dyl. &r ju inte i behov av ett styrsystem som &r flexibelt och darmed dyrare

25

an alternativ dar man inte lagt ner kostnader for att fa flexibilitet. | sadana applikationer ar
darfor skraddarsydda, mikrokontrollerbaserade styrenheter i stor upplaga en betydligt
billigare 16sning.

3.1. PLC-systemet — hardvarans uppbyggnad.

PLC-system &r gjorda for montage i elskap i anslutning till den process de &r satta att styra.
Ofta ar de anpassande for upphangning pa DIN-skena som &r en standardskena for upp-
hangning av olika typer av utrustning i elskap. Av Figur 3.3 framgar vad som normalt finns
I form av anslutningar, indikeringar m m for kommunikation med yttervérlden. Fel vid styr-
programexekveringen indikeras normalt med en lysdiod men inkoppling av program-
utvecklingsverktyget ar sedan nddvéndigt for att lasa av felkoder. Lysdioder for indikering
av signalstatus pa in- och utgangar ar mycket bra hjalpmedel vid felsokning. Om fel uppstar
kan man med hjélp av dessa indikeringar lokalisera felet till antingen nagon yttre koppling
eller till styrprogrammet. Genom att koppla in programutvecklingsverktyget som normalt ar
en PC-baserad programvara kan monitorering av programmet goras dar aktuell signalstatus
kan avlésas vilket ger ytterligare mojligheter till fordjupad felsdkning.

Enda manodvreringsmdjligheten &r normalt start/stopp av programexekvering samt reset
vilket innebér atergang till programstart och eventuellt nollstéllning av valda minnen /
register. Nollstallning av alla minnen /register gors med en hégre niva av reset for att
minimera risken att av misstag tomma all i PLC lagrad driftinformation.

Lysdioder indikerar Anslutningsplintar for
POWER, RUN/STOP; Switch for in- och utgangar med
ERROR ' ' RUN/STOP lysdiodsindikation.

Pl 00000
Port for kommunikation Uttag for faltbuss-
med programmerings- kommunikation.

utrustning

Figur 3.3: Schematisk bild 6ver PLC:ets yttre.

| Figur 3.4 nedan beskrivs i blockschemaform funktionella uppbyggnaden av ett PLC-
system. Som synes sa skiljer det sig inte direkt ifran ett blockschema 6ver vilket dator som
helst.

26

Strom- CPU-enhet RAM-minne / Kommunikation
férsoérjning program- med 6verordnade
ROM-minne / minne system /
operativ- operatdrssystem
system EEPROM
A A A
Intern buss
A A A A A
A 4 \ 4
Digitala Analoga Digitala Analoga Kommunikation
ingangar ingangar utgangar utgangar via faltbuss med
fran proces- till process- decentraliserade
fran proces- sensorer via till process- aktuatorer in- / ut-enheter
sensorer A/D- aktuatorer via D/A-
omvandlare omvandlare

Figur 3.4: Blockschema for PLC-system.

3.1.1. Stromforsorjningsenhet.

Stromforsorjningsenheten forsorjer all intern elektronik med Iamplig spanning, normalt

5 V. Den utnyttjas ibland ocksa till att leverera kraft for forsorjning av givarenheter m.m
som ansluts till styrsystemets ingangar. Daremot kréaver oftast aktuatorer sasom kontaktorer
och magnetventiler kopplade till utgdngarna sa hog effekt att en extern kraftkalla anvands
for detta.

3.1.2. Centralenheten.

CPU:n (Central Processing Unit) &r sjalva processorenheten som styr verksamheten i PLC-
systemet med hjalp av operativsystemet och av styrprogrammet. Det organiserar alltsa
flodet av data via en parallell kommunikationsbuss till och fran de olika anslutna enheterna,
utfor logiska och aritmetiska operationer och administrerar minnet. Figur 3.5 visar
specifikationen for nagra PLC-centralenheter.

ROM (Read Only Memory) innehaller operativsystemet som behovs for att initiera
systemet. Dessutom innehaller det Gversattaren som oversatter de PLC-instruktioner som
skrivs in till systemet till for CPU:t begripliga styrkoder. Operativsystemet ar inplanterat
vid leverans och kan endast uppdateras via tillverkarens forsorg.

RAM (Random Access Memory) anvands for att lagra de instruktioner som skrivs in till
systemet fran programmeringsenheten. RAM-minnet ar flyktigt vilket innebér att det tappar
sitt innehall vid spanningsbortfall. Ofta ar darfor detta minne forsett med batteriupp-
backning (backup).

27

Parallellt med RAM-minnet finns ofta mojlighet att brdnna in samma instruktioner som
finns i RAM-minnet i ett EPROM (Eraseable Programmable Read Only Memory). Detta
minne behaller sin information tills man raderar den med UV-ljus eller pa elektrisk vag
(EEPROM). EPROM:et ar ofta monterat i en kassett som kan pluggas in i PLC-systemet
vilket gor att man kan ha en fungerande programvara lagrad i en sadan kassett. Detta kortar
ner stalltiden nar man t.ex vill andra produktionen fran en detalj till en annan som kraver
andra styrprogram for de i produktionen inblandade PLC-systemen. Har man en gang gjort
programmen ar det bara att byta EEPROM-kassett. Idag ar ofta PLC-systemet natverks-
anslutet och programvara kan enkelt underhallas eller bytas ut genom nedladdning via
natet. Normalt &r det ett internt natverk inom foretaget med spérrad kontakt mot Internet for
att forhindra intrang fran obehdriga.

Table 2.3 Q02(H)CPU, QOBHCPU, Q12HCPU, Q25HCPU Performance
Specifications

Type
Iten Qo2 QO02H | Q06H | @12H | Q25H Remarks
cPuU CPU CPU CPU CPU
Control method Repeated operation using stored program
Direct WO is
available by
IFC control mode Refresh mode direct O
specification
(DX, DY)
Programming language Relay symbaol language, logic symbolic
(Language dedicated to sequence language, MELSAP3 (SFC), MELSAP-L, R
control Function block and structured text
Processing speed LD X0 0.079us 0034 us _
(sequence instruction) | ysoy DO D1 |0.237us 0.102u's —
Constant scan 0.5 to 2000 ms FParameter
{(Function that uniforms scan time) (can be specified in 0.5ms increments) setting
Program
- Program memory 50k 124k 252k
E:Qapamty (Drive 0) 28k step step step step -
Mermory card (RAM) Capacity of the memory card
(Dve 1) (max. 2Mbyie)
Capacity of the memory card loaded
Merm Eug}i_r;nreorzw,r}card (ROM) (Flash card: max. 4Mbyte, —
ory ATA card: max. 32Mbyte)
CAPACY Sizndard RAM (Drive 3) | 6Akbyite | 128kbyie °5 J56kbyte *3 —
. 112 240 496 1006
Standard ROM (Drive 4) kbyte kbyte | kbyte kbyte
CPU shared memory™*4 Bkbyte —
Program memory 28 [80 [124 [252%1 —
Mermory card (RAM) 256 —
Max Memory card | Flash card 288 —
. (ROM) ATA card 512 —
numkber
Only one file
of files each for file
stored | Standard RAM 2 register and local
device
Standard ROM _ 28 [60 [124 | 252 e
Mumber of standard ROM write Max. 100 thousand times

times

Figur 3.5: Teknisk specifikation for nagra av Mitsubishi-systems CPU.

3.1.3. Digitala ingangsenheter.

Ingangsenheterna for digitala signaler anpassar kommunikationssignalerna mellan PLC-
systemets buss och processens givare. PLC-systemet har interna spanningsnivan 5 V och
mycket |ag effektniva medan signaler fran processen har betydligt hogre spanningsniva
(ofta 24 V DC eller 230 V AC) och effektniva. De hogre nivaerna hos processignalerna
beror pa att de annars skulle storas i den ofta daliga elektriska miljé de skall fungera inom. |

28

processen finns t.ex. stora elektriska motorer med matarkablage som alstrar starka
magnetiska falt. Dessa falt kan i sin tur inducera spanningar i annat kablage som ingar i
samma installation t.ex signalkablar fran givare ute i processen. Skulle spannings- och
effektnivan i dessa signalvagar vara pa samma niva som datorsystemets interna signalnivaer
skulle signalerna latt kunna storas och signaloverforingen inte vara tillforlitlig. Aven med
hogre spanningsnivaer kommer stora transienta storningar att induceras i signalledningarna
varfor in- och utenheternas uppgift ocksa ar att filtrera bort transienter sa att de inte nar den
interna bussen. Figur 3.6 beskriver spadnningsdelning av 24 V DC insignaler och filtrering
via optokopplare som skiljer processignalerna galvaniskt fran interna bussens signaler.

Extemal Cannactions

— =
A
r ' Internal

- TBIS J clrcest LED

- ¥ . [— _Ei’l »
IG=k]] 2 [

TB1E

i
T

24VDC

Figur 3.6: Signalanpassning digital ingangar, PLC (Mitsubishi manual).

Av den tekniska specifikationen for en digital ingangsenhet, Figur 3.7, framgar bl a att
enheten har 16 ingangar. For 24 V ingangen galler att inspanning 6ver 19 V uppfattas som
en logisk etta medan inspanning under 11 V uppfattas som logisk nolla. Mellan 11 och 19
V ar da logiska nivan obestamd. Ingangarnas omslagstider &r installbara men grund-
installningen ar 10 ms. Korta omslagstider innebér att korta transienta storningar kan sla
igenom medan langa omslagstider ger bortfiltrering av stérningar men nackdelen att
signalomslag uppfattas efter en langre tid. Tiden 10 ms motsvarar ungeféar program-
cykeltiden hos ett normalprogram och darmed sl6ar den inte ner hela styrsystemets
svarstider men har anda en viss filterverkan.

| sammanhanget skall ocksa namnas att det finns moduler med interuptingangar och
snabbréaknaringangar. Interuptingangar anvands da en ingangssignal initierar ett snabbt
héndelseforlopp som PLC-programmets normala cykeltid inte skulle klara att observera och
styra i den takt som kravs. Att ingangen genererar ett interrupt innebéar att normala styr-
programmet avbryts tillfalligt och en kortare och darmed snabbare programrutin startar som
behandlar det snabba forloppet. Hoghastighetsraknaringangen klarar att rakna pulser fran en
pulsgivare med en frekvens som ar hogre an normala ingangarnas snabbaste omslagstid (se
nasta avsnitt om PLC-systemets arbetssétt).

29

Type DC input module (Negative commaon type)
Specifications QXB0 Appearance
Mumber of input poinis 16 points
Isolation method Photocoupler
Rated input voltage 24VDC (+20/-15%, ripple ratio within 5%)
Rated input current Approx. 4mA GECBID s34887
Input derating Mo BOABCDEF
ON voltage/ON current 19V or higher/3mA or higher
OFF voltage/OFF cument 11V or lower/1.7TmA or lower A
Input impedance Approx. 5. 6k0 A
1ms/Ams/10ms/20msi70ms or less (configured in PLC parameter) s 4 10
OFF to ON
Response (Default: 10ms) 1
time 1ms/Ams10msi20msi70ms or less (configured in PLC parameter) « 4 2
ON to OFF
(Default: 10ms) =]
Dielectric withstand voliage RE0VAC msf3 cycles (altitude 2000m (6557 38) 4
Insulation resistance 10MQ or more by insulation resistance tester 5
By noise simulator of 500Vp-p noise voltage, 145 noise width 6
Moise immunity and 256 to 60Hz noise frequency 7
First fransient noise IECE1000-4-4: 1kV 8
Protection degree IP2X 8
Common terminal arangement 16 points/common (common terminal: TB18) A
Number of occupied VO points 16 points (/O assignment is set as a 16-point input module.) B
Operation indicator ON indication (LED) c
External connections 18-point terminal block (M3 = 6 screws) D
Applicable wire size 0.3 o 0.75mm?2 core (2.8mm (0.11in.) OD max.) E
Applicable crimping terminal R1.25-3 (sleeved crimping terminals cannot be used.)
Internal curmrent consumption)
(5VDC) 50mA (TYP. all points ON)
Weight 0.16kg

Figur 3.7: Specifikation digital ingangsmodul for PLC (Mitsubishi manual).

3.14. Digitala utgangsenheter.

Digitala utgangsmoduler matas med yttre spanning som normalt &r antingen 24 V DC eller
230 V AC. | Figur 3.8 matas utgangarna via relaer och darmed ar bade DC- och AC-
matningar mojliga. Parallellt med rel&spolen ligger en diod, en s k frihjulsdiod, for att
slacka den transient som annars skapas da strémmen genom spolen bryts. Av
specifikationen, Figur 3.9, framgar bl a att varje utgang far belastas med maximala
strommen 2 A, att omslagstiden hos utgangen ligger kring 10 ms och omslagstakten ar
maximerad till 1 omslag/sekund. I Figur 3.10 visas tva andra typer av utgangar, transistor
resp. TRIAC. Transistorn mandvrerar DC-matningar medan TRIAC hanterar AC. Tittar
man i specifikationen for dessa utgangsmoduler finner man att omslagstiderna ar 10 ganger
snabbare &n relautgangarna medan de tal betydligt lagre strommar, 0,1A for transistor och
0,6 A for TRIAC.

30

J Internal
LED carguit

_<
@

!
1+

I

|
p—

!

Figur 3.8: Signalanpassning digitala relautgangar, PLC (Mitsubishi manual).

Number of occupied /O points

16 points (/O assignment is set as a 16point output module.)

Operation indicator

M indication (LED)

Extemnal connections

18-point terminal block (M3 6 screws)

Type Contact output module
Specifications 210 Appearance
MNumber of output poinds 16 points
Isolation method Relay
Rated switching voltage, 24VDC 2A (resistive load)
cuent DMOVAC DA (cos & =1§ /point, 8Aicommon
Minimum switching load 5VDC 1maA
Maximum switching load 2684VAC 1258VDC
Response QOFF to ON 10ms or less aYio _
time ON io OFF 12ms or less ScascoeEr
Mechanical 20 million times or more I_?_\
Rated switching voltagefcurrent load = —
More than 100 thousand times or more {
200VAC 1.5A, 240VAC 1A (COS <2 =0.7) 100 thousand times or more 2
Life Elactrical 200WAC 0.4A, 240VAC 0.3A (COS < =0.7) 300 thousand times or more :u"'z 0
200WAC 1A, 240VAC 0.5A (COS ¢ =0.35) 100 thousand times or more Loz 1
200VAC 0.3A, 240VAC 01584 (COS @ =0.35) 300 thousand times or more los 2
24VDC 1A, 100vDC 01A (LW'R=7ms) 100 thousand times or more o= 3
24VDC 0D_3A, 100VDC 0.03A (L'R=Fms) 300 thousand fimes or more I 1
Maximum switching frequency 3600 times/hour | &
Surge suppressor No | o7 12
Fuse MNo lo—2 &
Dielectric withstand voltage 2830VAC rmsi3 cycles (altitude 2000m (6557 _38#.)) lne 7
Insulation resistance 10MO or more by insulation resistance tester o & 8
By noise simulator of 1500Vp-p noise voltage, 1.4 s noise width lmB g
MNoise immunity and 25 to 60Hz noise frequency o & A
First transient noise IECG1000-4-4: 1kV b2 B
Protection degree IP1X L I.IF—E c
CO:;::?S;%QTM 16 points/fcommaon (commen terminal: TB17) _g_?z D
E
F

F
38

Applicable wire size

0.3 to 0.75mm?2 core (2.8mm (0.11in.) OD max.}

Applicable crimping terminal

R1.25-3 (sleeved crimping terminals cannot be used.)

Intemal current consumpdtion
(5WVDC)

430mA (TYP. all points ON)

Weight

0.22kg

Figur 3.9: Specifikation digital relautgdngsmodul for PLC (Mitsubishi manual).

31

LED FooTTTTTTT T T TolTBT
— 7 S—a

E:\-

|
=
[

¢ % 5

A

[r—=
H

Intarnal
LED circuit

TE16 Losd

nE
rat

TB17
* ila—c ")
L N 100 o 240VAC

N S U

TE1

(
)

TE1G Load

TEAT

TE1E —(|t
1

12/24¥DC

Figur 3.10: Transistor- och TRIAC- utgangar, PLC (Mitsubishi manual).

3.15. Analoga in- och utgangsenheter.

Ingangsenheter for analoga signaler innehaller A/D-omvandlare (ADC) och levererar pa
kommando fran centralenheten analoga signalvarden, ofta 0 — 10 V eller 4 — 20 mA, pa
digitaliserad form med en upplésning pa 8 till 14 bitar. Intervallen hos analoga ingangen ar
normalt instéllbara. Antag t ex att analoga omradet 0-10 VV omvandlas till digitala omradet 0
—8000. Da skulle en insignal pa 2,34 V ge ett digitalt varde pa 2,34/10-8000 = 1872 att
hantera i styrprogrammet. A/D-omvandlaren ar konfigurerbar ocksa vad géller
omvandlingstider och nar omvandling skall ske men normalt sker kontinuerlig omvandling
dar det omvandlade vérdet laggs i ett minnesregister som sedan kan lasas av PLC-
programmet.

Utgangsenheter for analoga signaler innehaller D/A-omvandlare (DAC) och levererar
utifran ett digitalt varde pa 8 till 14 bitar analoga signalvarden, ofta 0 — 10 V eller 4-20 mA
till utgangen. Intervallen hos analoga utgangen ar normalt instéllbara. Antag t ex att digitala
omradet 0 — 8000 omvandlas till analoga omradet 4-20 mA, som ar industristandard for
analoga processignaler. Da skulle ett digitalt varde 2000 ge ett varde pa 8 mA pa den
analoga utgangen. D/A-omvandlaren &r konfigurerbar ocksa vad géller omvandlingstider

32

och nér omvandling skall ske men normalt sker kontinuerlig omvandling dar det varde som
skall omvandlas laggs i ett minnesregister. VVardet i minnesregistret omvandlas
kontinuerligt och laggs ut pa utgangen.

3.1.6. Kommunikationsmoduler.

Kommunikationsmoduler mojliggor seriell kommunikation oftast via Ethernet, RS232,
RS485, fabrikatsspecifika faltbussar (slutna protokoll) eller via olika typer av generella
faltbussar (6ppna protokoll) som t ex Interbus, Profibus, Modbus, CANopen.
Kommunikation kan ske med yttre enheter sasom:

- Overordnat styrsystem eller annat PLC-system i samma néatverk.

- Operatorspanel eller operatorssystem (SCADA-system) for ménniska-maskin-
kommunikation.

- Decentraliserad in/ut-enhet (dec I/O) vilka inte &r anslutna direkt till PLC-enheten utan
placerade som noder ute i processen varifran centralenheten kan lasa in signal-
tillstanden fran/till flera in-/utgangar seriellt d v s pa en enda ledare istallet for en
ledare per in-/utsignal.

- Overforing av information fran / till fabrikens affarssystem for produktionsplanering
och underhallsplanering.

- Intelligenta givare som levererar matdata pa seriell form.
- Databas for t ex lagring av driftsdata eller hdmtning av recept.

Det forekommer alltsa en mangd kommunikationssétt, faltbussar, utgaende fran lika manga
kommunikationsprotokoll — beskrivningar av hur kommunikationen skall ga till. Vilken typ
som anvands &ar beroende av bl a typ av data som skall 6verforas, hur snabbt det skall ske,
hur sékert det skall ske samt pa tradition inom branschen. Ethernet, det kommunikationssatt
som anvands pa Internet, & dominerande framfor allt nar det géller administrativ
datadverforing. Faltbussar anvands dar kraven pa snabbhet och dataframkomlighet ar
viktig. Tendensen &r dock att Ethernetvarianter pa sikt tar éver dar tidigare en uppsjo av
olika féltbussar dominerat nar det galler snabb dverféring av processdata mellan
decentraliserade enheter, operatdrssystem och centralenhet.

Konfiguration av kommunikationsmoduler skiljer sig at mellan olika fabrikat och olika
kommunikationsprotokoll. Viss konfiguration kan vara integrerad i den PLC-program-
meringsmiljo som anvénds men ofta géller att speciell konfigurationsprogramvara ar
nodvandig.

3.2. PLC-systemets arbetssatt - mjukvaran.
En viktig egenskap hos PLC-system &r att de snabbt skall kunna l&sa in och behandla data

som behovs for att styra ett eller flera forlopp. Till de mer tidsédande operationerna i ett
datorsystem &r in- och utmatning av signaler via in/ut-enheterna.

33

For att fa sa snabbt arbetssatt som majligt tillampar man en teknik som kallas input-output-
kopiering. Vid borjan av en programcykel kopieras alla insignalerna fran in-enheterna till
ett internt minne. Darefter bearbetas instruktion for instruktion i styrprogrammet och de
resulterande utsignalerna lagras efter hand ocksa i ett internt utgdngsminne. Da alla
instruktioner genomlopts kopieras det interna utgangsminnet till utenheterna som
verkstaller styrsignalerna ut mot processen. Darmed ar en programcykel (scan-cykel)
genomford och en ny borjar direkt med att pa nytt lasa in-enheterna till interna
ingangsminnet o s v. Arbetssattet illustreras i Figur 3.11. Normalt finns ocksa mojlighet till
villkorliga hopp forbi ett antal programrader i programmet. Hoppen paverkar dock inte
cykeltiden.

Styrsystemets cykeltid ar tiden fran det att lasning av in-enheter bérjar tills utenheterna
aktiverats. Cykeltiden beror naturligtvis av processorns arbetssatt och klockfrekvens samt
av hur langt styrprogrammet ar men ligger normalt pa nagon eller nagra tiotal
millisekunder. Detta ar oftast en tillracklig snabbhet. Vid pulsrakning fran en pulsgivare for
t ex exakt positionshestamning kan dock snabbheten vara for dalig varfor man far tillgripa
in-enheter i form av en snabbréknarenhet som réknar pulser vid mycket hogre frekvens.
Styrsystemet kan fran en sadan enhet via bussen lasa av om 6nskad position har uppnatts
eller passerats. Alternativt levererar raknarenheten vid uppnatt angivet raknarvarde ett
interupt som avbryter den I6pande programexekveringen och utfor en 6nskad interuptrutin
som verkstaller vad som skall handa efter uppnatt raknarvarde varefter program-
exekveringen atervander dit dar avbrottet skedde. Ett extra utgangskort kan ocksa anvandas
som aktiveras direkt av snabbraknarenheten for att slippa tidsfordréjningen man anda far
genom att blanda in centralenheten.

/ LOAD 06

INPUT}OUTPUT,
KOPIERING

LOAD 17

Figur 3.11: Styrsystemets cykliska arbetssatt.

Arbetssattet med ingangs-utgangs-kopiering innebar att man far ta hansyn till detta vid
programmeringen. En utgang far bara anvandas en enda gang i programmet. Om t ex en
varningslampa skall tdndas antingen for villkor 1 eller for villkor 2. i programkoden och
man skriver forst att villkor 1 skall aktivera utgangen for lampan och lite senare i

34

programmet att villkor 2 skall aktivera samma utgang sa ar det endast det senare villkor 2
som kommer att gélla. Resultatet av villkor 2 kommer alltid att skriva Gver resultatet fran
villkor 1 i det interna utgangsminnet. Resultatet av villkor 1 nar alltsa aldrig utgangarna. |
stdllet maste man skriva programmet sa att om villkor 1 ”eller” villkor 2 ar uppfyllt sa
aktivera utgang for varningslampa. Utgangen anvéands da bara en gang. Det ar alltsa
vasentligt att man tar hansyn till arbetsséttet med ingangs-utgangs-kopiering vid
programmeringen annars uppstar latt logiska fel.

Det sprak som anvands for programmering av PLC-system skall vara enkelt, kraftfullt och
anpassat for typen av styrning. Tidigare var inte alla tillverkare eniga om hur ett sadant
sprak ser ut utan en flora av olika sprakvarianter finns, som dock inte vid narmare
beskadande skiljer sig sa mycket fran varandra. Pa 1990-talet arbetades en standard fram
for programmering av PLC-system (IEC 61131-3) vilken de flesta leverantdrer nu anpassat
sig till vilket gor att man i framtiden kommer att k&nna igen sig i programutvecklings-
miljoerna oavsett vilket fabrikat av PLC-system man arbetar med.

Fem olika satt att koda instruktionsprogrammen, programsprak, ar specificerade i
standarden och &r spraktyper som forekommit tidigare men nu fatt en enhetlig form. En del
tillverkare tillhandahaller alla satten medan andra har begréansat sig till nagot eller nagra.

De fem olika programmeringssatten bygger i grunden alla pa logiska (Booleska)
instruktioner dar tillstandskombinationer av ingangsvarden och tidigare mellanlagrade
tillstand resulterar i motsvarande utgangstillstdnd. Logiska grundinstruktioner som AND,
OR, ANDNOT och ORNOT uttkas med SET och RESET av vippor (minnen) samt av
réknar- och tidsfordrojningsinstruktioner. Ytterligare instruktioner finns i storre eller
mindre omfattning beroende pa styrsystemets komplexitetsgrad. De fem spraken ar
Ladderprogrammering, Funktionsblockprogrammering, Instruktionslista, Funktionsdiagram
samt Strukturerad text. Har foljer presentation av olika instruktioner och efter hand
presenteras de olika programmeringssatten enligt standard IEC 61131-3.
Programmeringsmiljon som de foljande exemplen ar programmerade i ar GX IEC
Developer som &r en IEC 61131-3 baserad programutvecklingsmiljé och endast
instruktioner enligt standarden anvands varfor det som presenteras i detta avsnitt galler
allmént for alla utvecklingsmiljoer som stddjer standarden. Men forst en presentation av de
olika signaler som skall hanteras i PLC-systemet.

3.2.1. PL C-systemets signaluppséattning och beteckningsstandard.

Kommunikation mellan PLC-system och till processen kopplade givare och don av on/off-
typ sker via digitala in- och utgangar. Via ingdngar %I1X mottar systemet signaler fran
externa switchande givare eller kontakter. De forekommer bade som slutande (NO
=normally open) och brytande kontakter (NC =normally closed) beroende bl.a pa
sakerhetsaspekter. Beteckning %I1X ar IEC-standardbeteckning pa ingangar.

Med utgangarna %QX overfor PLC-systemet styrsignaler till styr- eller indikeringsdon som
t.ex kontaktorer, magnetventiler eller indikeringslampor. Utgangsstatusen kan ocksa
anvandas internt i PLC-programmet pa samma satt som en ingang eller en minnescell. Det
finns inga begransningar pa hur manga ganger en in- eller utgang far anvandas som villkor i
ett program. Beteckning %QX ar IEC-standardbeteckning pa utgangar.

Adressering av ingangskanaler gérs med beteckning %I1Xn dar n ar en I6pande numrering
av ingangarna. Om det galler ett moduluppbyggt PLC dar ett CPU placeras pa ett bakplan

35

och sedan kompletteras med de funktionsmoduler som behdvs sa sker numreringen utifran
de adressplatser som foregadende moduler upptagit. Om férsta modulen &r en ingangsmodul
med 16 ingangar adresseras dessa med %I1X0 - %IX15. Ar nasta modul en utgangsmodul
med 16 utgangar adresseras dessa %QX16 - %QX31. Ar sedan nasta en ingdngsmodul med
32 ingangar adresseras dessa %1X32 - %IX63 osv. Tva placeringsexempel finns beskrivna i
Figur 3.12 nedan. | exemplen som féljer anvands systemsammanséttning enligt den 6vre
delen i Figur 3.12 d v s ingangar %I1X0-%IXF (obs att vid modulplats 0 skrivs inte nollan
ut) och utgangar %QX10 - %QX1F.

Digital ingangs- [Digital utgangs-
modul 16 kanal |modul 16 kanal
Natdel CPU ... OSV
Adresser: Adresser:

%IX0-%IX15 %QX16 -%QX31

Digital ingangs- |Digital ingangs- Digital utgangs-

Modul 16 kanal [Modul 16 kanal modul 32 kanal osv
Natdel CPU

Adresser: Adresser: Adresser:

%IX0-%IX15 %IX16 -%IX31 %QX32 -%QX63

Figur 3.12: In- och utgangsadresser i tva olika systemsammansattningar.

Internt finns ett stort antal enbits minnesflaggor som betecknas %MX0.n dar n ar ett
I[6pnummer. Det finns ocksa enbits latchade minnesflaggor betecknade %MX8.n. Det som
skiljer ar att %MXO0-flaggorna nollstélls vid normal” reset av CPU eller spanningshortfall
medan %MX8 behaller sitt tillstand och en speciell svaratkomlig latch-resetkravs for att
nollstélla dessa.

Det finns ocksa ett antal enbits specialminnesflaggor vars beteende ar forutbestamt. De ofta
anvéanda presenteras i Figur 3.13 nedan och utgdrs dels av klocksignaler (pulstag) av olika
frekvens och dels av en flagga som ér ettstalld endast forsta exekveringscykeln och darfor
bra att anvanda vid initieringar.

Beskrivning Adress

TRUE forsta scancykel efter RUN | %MX10.402

10 Hz klockpulstag %MX10.410
5 Hz klockpulstag %MX10.411
1 Hz klockpulstag %MX10.412
0,5 Hz klockpulstag %MX10.413

36

Figur 3.13: Nagra specialminnesflaggor och dess adresser.

Alla hittills namnda variabler ar enbits och darmed av datatypen BOOL. Internt finns ocksa
ett stort antal 16-bitars minnesregister som betecknas %MWO.n. De ar i de foljande
exemplen decimalt numrerade. Det finns oftast nagot eller nagra tusental benamnda
%MWO0.0, %MWO.1,....20MW0.456, %6MWO0.457...... - %MWO.nn. Dessa register ar av
datatypen INT eller WORD. Man kan ocksa adressera dessa 16-bitars register bitvis. Vill
man t ex adressera bit nr 7 i register %MW.345 anvands adressen %MX0.345.7 vilken da

ar av typen BOOL.

Har foljer en tabell 6ver grundlaggande variabeltyper:

Variabel IEC- Datatyp | Varde Beskrivning
adress
Digitala ingang | %IXn BOOL TRUE Digitala ingangar,
FALSE n=decimalt I6pnummer
Digital utgang | %QXn BOOL | TRUE Digitala utgangar,
FALSE n=decimalt I6pnummer
Minnesflagga %MX0.n | BOOL TRUE Interna enbits minnesflaggor,
FALSE nollstélls vid CPU-reset
Minnesflagga, %MX8.n | BOOL TRUE Interna enbits minnesflaggor,
batteriuppback FALSE behaller sitt tillstdnd vid
enkel CPU-reset
Specialminne %MX10.n | BOOL TRUE Se tabell Figur 3.13
FALSE
16-bits register | %MWO0.n | INT -32768 | 16-bitars minnesregister
+32767
WORD |0....65535
32-bits register | %MWO.n | DINT 32-bitars minnesregister,
tar upp adress n och n+1
DWORD

Figur 3.14: Grundlaggande variabler i PLC-system.

Det finns ocksa datatyper DINT och DWORD dér star D for Double d v s tva 16-bitars
register slas ihop till ett samverkande 32-bitars vilket innebar att betydligt storre tal kan
hanteras. Vid typ DINT och DWORD upptas tva 16-bits registerplatser som adresseras
%MDO.n dar n &ar I1opnummer. Deklaration av adressplats gors dock till en adress men da
ockuperas ocksa adressen narmast 6ver t ex om %MDO0.35 adresseras med en DINT
kommer 16-bitars registerplatserna %MW0.35 och %MW0.36 att ockuperas.

3.2.2. Ladderprogrammering (LD —Ladder Diagram)

Fore PLC-systemens genombrott pa 70-talet byggdes i stort sett all styrutrustning som
reldsystem. En forutsattning for detta genombrott var att den nya styrutrustningen skulle
vara attraktiv for den stora stab av ingenjorer som sysslade med reldsystemskonstruktion.
For att dstadkomma detta skapades ladderprogramspraket vilket ar ett grafiskt
programmeringssprak som bygger pa en efterapning av relaschemat. Programmet byggs
upp som ett relalinjeschema dar insignalerna till de logiska operationerna ligger som
slutande eller brytande kontakter och resulterande utsignaler ligger som belastningar i
respektive krets. Programmeringssattet etablerade sig alltsa mycket tidigt och &r fortfarande
mycket vanligt forekommande. Uppskattningsvis ar 70-80 % av all hittills utvecklad PLC-
kod skriven pa ladderform. Ladderdiagrammet anses ge en mer 6verskadlig bild 6ver
styrningen an vad instruktionslista och funktionsblock gor.

Har féljer ndgra exempel pa ladderprogram.

Exempel 3.1:
Kombinatoriska villkoret %QX19 = %IX4 * %IX7 + %IX11

Ger ladderschema:

%IX4 %IX7 %QX19

1 11 0/ F—-CaC)

%IX11

t 11

Infor vi identifierare for de olika signalerna enligt globala variabellistan nedan dar
Identifier-bendmningen &r en mera processnara benamning &n ingangsbeteckningen (IEC-
Adressen) sa blir programmet mera lattolkat. (Kolumnen med MIT-adress anger adresser
specifika for fabrikatet Mitsubishi fran tiden fore standarden. Dessa ar uppbyggda efter
funktionsmodulernas placering och med hexadecimal numrering 0-F av portarna pa varje
modul. Y13 &r da utgangsport (Y) modulplats 1 och port nr 3, X4 ar ingangsport (X),
modulplats 0 (underforstatt)och port nr 4.)

BH Global Variable List

Class Identifier MIT-Addr. | IEC-Addr. Type
0|VAR_GLOBAL - [LAMPA 13 %QX19 BOOL
1\ VAR_GLOBAL - |KNAPP x4 alx4 BOOL
2|VAR_GLOBAL - [KNAPP2 *B alX11 BOOL
3|VAR_GLOBAL _~ |KNAPP3 X7 YalXT BOOL

Samma program presenteras da i editorn enligt:

1 KNAPP1 KNAPP3 LAMPA
071 €

KNAPP2

I

38

Programspraket ar alltsa analogt med relaschema dar snedstrecket i symbolen for
KNAPP3 innebar invertering av signalen.

Exempel 3.2:

Relahallkrets blir i ladderform enligt vanstra natverket nedan. Ett alternativt satt att
beskriva samma minnesfunktion i ladder visas till hger. I och med den beskrivningsformen
har man lamnat kopplingen till relaschema men far mera lattolkade SET- och RESET-
villkor. S innebér alltsa SET (1-stall) och R star for RESET (0-stall). Att resetvillkoret
placerats efter setvillkoret innebar att minnet blir reset-dominant.

STOPP START MOTOR. START MOTOR

010 € (=)
MOTC[J'J STOPP MOTOR
L — [3y

Exempel 3.3

Ett ytterligare exempel p& logiskt minne men med setvillkor A - B, resetvillkor C + D och
setdominant som visas i tva varianter.

C MEM
1 I (R)
A B MEM []D[|
0 [N[)
0 MEPHJ 11— ()
0/ -
3.2.3. Funktionsblock (FBD — Function Block Diagram)

FBD beskriver logiken som kopplade logiska funktionsblock. | foljande exempel anvands
de mest grundlaggande funktionerna men som kommer att framga av fortsattningen finns
ett stort antal funktionshlock tillgangliga i utvecklingsmiljéerna som anvands vid bade
FBD, LD och SFC-programmering. Har foljer exempel pd FBD-program som bygger pa
LD-exemplen ovan.

Exempel 3.4.
Liksom i Exempel 3.1 anvands det kombinatoriska villkoret

%0QX19 = %IX4 * %IX7 + %IX11

Ger FBD-program:

39

%IX4 - %QX19
%IXT —s %IX11

Alternativt med anvandning av deklarerade variabler med Identifier-benamningar:

AND OR
KMAPP1 — ——LAMPA
KMAPP3 — KMAPP2 —

Exempel 3.5:

FBD-program analogt med Exempel 3.2. Funktionsblocket kraver allokering av
minnesplats varfor det ges ett Instance-namn, har Minnel, som gor funktionsblocket unikt
med egen identitet. RS innebar RESET-dominant.

Minne1

RS
START—— § @1 ——MOTOR
STOPP— R1

Exempel 3.6:
FBD-program analogt med Exempel 3.3. SR innebar SET-dominant minne.
Minne2
AND SR
A—, _S1 Q1 —NEM
B—f RESET
OR F
C—
D—
3.24. Instruktionslistan (IL — Instruction List)

Instruktionslistprogram bestar av en serie av instruktioner som matas in efter varandra.
Instruktionen bestar av en operationsdel och operaranddel. Operationsdelen bestammer vad
som skall goras dvs. oftast nagon logisk operation. Operanden anger vilken signal som
operationen skall utforas pa. Har foljer pa IL-program analoga med tidigare LD- och FBD-
program, Exempel 3.1 - Exempel 3.3 respektive Exempel 3.4 - Exempel 3.6.

40

Exempel 3.7

LD
ANDM
OR
ST

Exempel 3.8:

LD
5
LD
24

Exempel 3.9:

LD
OR
R

LD
ANDN
5

KMNAPP1
KMNAPP3
KNAFPP2Z
LAMPA,

START
MOTOR.
STOPP
MOTOR.

MEM

Mindre PLC-system programmerades tidigare ofta direkt via programmeringsdosa kopplad

till PLC-systemet. Da anvands instruktionslistan som programmeringsform da en sadan

lista ar latt att knappa in via en enkel knappsats pa programmeringsdosan och programmet
kan presenteras rad for rad pa en enkel display. Med datorbaserade programmeringsmiljoer

har anvandningen av instruktionslista minskat vasentligt. IL-program kommer inte att
beroras ytterligare i denna skrift.

3.2.5. SFC och ST.

Ytterligare tva programsprak finns i standarden:

- SFC - Sequence Function Chart — Funktionsdiagramprogrammering

- ST — Structured Text — Programmering i strukturerad text, ett hdgnivasprak liknande C

SFC tas upp i senare separata avsnitt.

41

Kap 4. Instruktionsuppsattning i standard IEC 61131-3.

Foregaende avsnitt behandlade hur grundlaggande logik programmeras i de tre IEC-
standardspraken LD, FBD och IL. Nér vi nu gar vidare for att titta pa ytterligare tillgangliga
instruktioner finner man att dessa inte kan beskrivas i LD utan utgors av funktionsblock
vilka vid FBD-programmering faller in naturligt men ocksa integreras i LD-program om
man foredrar detta. Det som skiljer LD- och FBD-programmering &r alltsa hur man
beskriver grundlaggande logik och minnesfunktioner. Av den anledningen kommer nu
ytterligare funktioner att beskrivas. Nagra exempel ges bade i LD och FBD medan nagra
presenteras i FBD-program varvid det overlats till lasaren att implementera dem i LD-
program om sa énskas.

4.1. Logik.

De logiska grundfunktionerna AND, OR, NOT och XOR utgor basen fér kombinatoriska
villkor och hur de hanteras i programspraken FBD och LD ar redan exemplifierat i Kap 3.
Likasa har olika satt att implementera minnen (vippor), bade SET-dominanta och RESET-
dominanta exemplifierats dar. For fullstandighetens skull visas grundfunktionerna nedan
bade som FBD och LD:

AND A B Q
AND A —0 —)
A Q
OR A "o i D—i >
o B
_[|
R —HAD—U?E]—QIQ}
XOR B A s
—0/
A Q
NOT R L Hu—@
Instance A Q
RS . i
RS-vippa A . .
(RESET-dominant)] @)
Instance E Q
SR-vippa s—| st oo it &>

(SET-dominant)

A Q
]

Ingangar och utgangar kan inverteras vilket gor att NOT-blocket inte behdver anvandas sa
ofta. Se exempel nedan:

42

NAND

Frp—
B—I

AND

Ay
B —

A B Q
o 10O

e A,]
| . 4ﬁj——4}

B

]

Som namndes i Kap 3 finns ocksa tillgang till register d v s mojlighet att lagra och hantera
numeriska vérden. Dessa register adresseras %MWO.n och &r i de flesta PLC av storleken
16 bitar och rymmer déarmed varden mellan 0 och 65535 om registervariabeln deklareras
som typ WORD (unsigned) eller varden mellan -32768 och +32767 om den deklareras som

typ INT (signed).

Mojligheten att hantera numeriska varden innebér att behov uppstar att pa olika satt jamfora
olika registervarden med varandra varfor det finns ett antal instruktioner (funktionsblock)

for att utfora dessa jamforelser. Foljande instruktioner finns.

EQ - EQual

NE - Not Equal

GT - Greater Than

GE - Greater or Equal

LT - Less Than

LE - Less or Equal

lika med,

skiljt fran,

storre an,

storre eller lika med,

mindre &n,

mindre &n eller lika med,

A#+B

A>B

A<B

A<B

A
B—

EQ

—Q

F—
B—

NE

— |

A
B—

GT

—Q

A
B—

GE

A —
|

LT

—Q

A
B—

LE

—Q

For alla dessa funktionsblock &r ingangsvariablerna BOOL, INT, WORD, DINT, DWORD
tillatna. Ingangsvariablerna maste dock vara avsammatyp d vs om A &r av typ INT sa

maste B vara av typ INT o s v. Utgangen, Q, &r alltid en BOOL som & TRUE om
jamforelsen ar sann, i annat fall FALSE.

Jamforande instruktioner finns som jamfor ett registervarde med ett annat registervarde
enligt ovan men jamforelse kan ocksa goras med en konstant eller med ett konstant vérde,

se senare Exempel 4.1.

Dessa jamforelsegrindar kan ha fler &n tva ingangar. For nedanstaende exempel géller att
Q=TRUEOMA>B>C>D

43

GT

A —>Q

De nu introducerade grindarna ar inte realiserbara med relalogik och darmed har vi ocksa
lamnat mojligheten att beskriva dem med ladderlogik. Exempel 4.1 nedan visar tva analoga
program i LD respektive FBD dar det framgar att de tva spraken nar man kommer in pa
instruktioner utanfor grundlaggande binar logik sa anvands samma grindsprak i LD som i
FBD. Variabellistan presenteras ocksa for att visa de olika typ-deklarationerna.

Exempel 4.1:
En lampa, LAMPA, skall lysa om KNAPP1 och KNAPP2 paverkas eller om ett tal REG1 &r
mindre &n 7.
Class Identifier MIT-Addr. | IEC-Addr. Type
0[VAR_GLOBAL - [lLamPA Y13 %QX19 |BOOL
1 VAR_GLOBAL ~ |[KNAPP1 X4 %IX4 BOOL
2 VAR_GLOBAL ~ |[KNAPP2 X5 %IX5 BOOL
3 VAR_GLOBAL ~ |REG1 D34 %MW0.34 |INT
4 VAR_GLOBAL v |mem MB7 %MX0.67 |BOOL
LT meim
REG1— —)
7
AND OR

010

KNAPP1 KMNAPPZ LAMPA

I C)

mem

010

4.2, Berakningar

KNAPP1—
KNAPP2 ——

REG1——

T —

|

——LAMPA

Utover att pa olika satt jamfora olika variabler ar det ju ocksa intressant att kunna utféra
algebraiska berakningar. Darfor finns foljande funktionsblock tillgangliga.
(Samtliga dessa funktionsblock finns med Enable-ingang for villkorad exekvering)

ADD - Addera

SUB - Subtrahera

MUL - Multiplicera

44

Q=A+B A | A0
B—!

0=A—B A st |

Q=A-B af L g
B—

DIV - Dividera - Q=A=+B A ol q
MOoD
MOD - Modulus - Q = Amod B ,;.— _:H; ___q

De fyra raknesatten far anses kanda men kanske mer okanda MOD ar forknippad med
division pa det sattet att den ger den rest som inte kommer med efter en DIV-operation som
endast ger heltalsdelen av divisionen utan avrundning.

For alla variablerna A, B och Q géller att tillatna datatyper ar INT eller DINT. Alla skall
vara av samma typ. Observera att ingangsoperander som haller sig inom den deklarerade
typens tillatna intervall kan ge resultat som ligger utanfor tillatna intervallet. Om man t ex
vid multiplikation deklarerar variablerna som INT och resultatet av multiplikationen
overskrider 16 bitar s& kommer de hogre bitarna att ga forlorade och resultatet blir alltsa
felaktigt.

4.3. Typomvandlingar

| sammanhanget kan papekas att det finns ett antal tillgangliga funktionsblock for
typomvandling t ex féljande:

| BOOL_TO_INT | | INT_TO_DINT | | WORD_TO_INT |
?—| _BooOL —o2 72— INT —? ?— WORD —2

Om man vill utvinna de binara bitarna fran en en heltalvariabel t ex en INT (16-bitar) kan
man gora det med INT_TO_BITARR blocket.

Class Identifier Type
0VAR ~|VARDE |INT |
1VAR ~|Bit |ARRAY [0..15] OF BOOL |
INT_TO_EITARR
WARDE— s BitArr ——Bit[0]
16— n*

Elementen Bit[0]-Bit[15] innehaller nu bitarna i variabeln VARDE.

4.4. Block med enable-ingang (EN / ENO).

Nedan visas nagra av de ovan redan presenterade blocken men nu med ytterligare ingang
och en ytterligare utgang.

45

EQ E GT_E OR_E

7 1ENENO |- ? VENENO |- 7 IENENO -
?— IN - ?— IN — 72— IN -
7 IN 7 IN 7—1 IN

Dessa block har ett tillagg i benamningen, _E. De tva ingangarna med markning _IN &r de
tva ingangar som jamfors enligt jamforelseinstruktionen och resultatet av jamfarelsen laggs
pa nedre omarkta utgangen. Men resultatet av jamforelsen lankas endast ut till utgangen om
enable-ingangen, EN, ar aktiverad d v s matas med en BOOL som & TRUE. Om EN=
FALSE behaller utgangen det tillstand den hade senast EN=TRUE oavsett vad som darefter
hander pa ingangarna _IN. ENO-utgangen &r endast en vidarekoppling av EN-ingangen och
behover inte anslutas, darav inget ? pa ENO-utgangsbenet.

4.5. Forflyttningar

Forflyttning av varde fran en variabel eller konstant till en annan variabel utan
typomvandling utférs med MOVE och MOVE_E blocken.

| en POU skriven med FBD har blocket MOVE samma funktion som en tradforbindelse
och behdver darmed inte anvandas.

I en POU skriven med SFC har blocket MOVE funktionen att i en Action skriven i FBD
minnas tillstandet i foljande steg (Stored action).

MOVE A-Q PO v
MOWE_E
MOVE_E A — Q endast om B = TRUE P L L
Exempel 4.2:

Ett varde lagrat i INT-variabeln VARDE skall om A eller B paverkas multipliceras med 2
men om C paverkas multipliceras med 7. Resultatet lagras i INT-variabel RESULTAT.

For bada alternativen galler att om nagon av A eller B ar paverkade och C samtidigt ar
paverkad ar det C som far genomslag och darmed multiplikation med 7 eftersom koden
exekveras uppifran och ned.

Alternativ 1: Alternativ 2:
OR MOVE_E
OR VUL E A EN ENO |-
A— EN ENO |- B— 2— N L TEMP
B—] VARDE — _IN L RESULTAT
2— 17N MOVE_E
C— EN ENO [
7—1 N L TEMP
MUL_E
C—1EN ENO [MUL
VARDE — _IN ——RESULTAT VARDE — | RESULTAT
7T— N TEMP —

46

Exempel 4.3:

Ett fyra bitars tal (0-15) kommer in till ett PLC via fyra digitala ingangar kopplade till
BOOL-variablerna BIT_0, BIT_1, BIT_2 och BIT_3. Programmet skall 6verfora detta
fyrabitarsvarde till en INT-variabel, VARDE.

Losningsalternativ A:

| BOOL_TO_INT | ML
BT 0— BOOL | I— —
1 —
| BOOL_TO_INT | ML
BT 1—| BOOL R— |
2—] ADD
B L WARDE
| BOOL_TO_INT | ML
BT 2—| BOOL | I—
—
| BOOL_TO_INT | ML
BT 3—| BOOL | I— L
83—

De fyra BOOL-variablerna BIT_O, BIT_1, BIT_2 och BIT_3 typomvandlas till INT-
variabler. Darefter multipliceras respektive bit med sin vikt varefter de summeras.

Losningsalternativ B:

Har astadkoms samma sak med hjalp av bitadresseringsmojligheten i ett register (se avsnitt

3.2.1). VARDE ar adresserat enligt variabellistan nedan, till %MWO0.0 och d& nar man

respektive bit i detta INT-register med bitadresserna %MX0.0.0 , %MX0.0.10sv. Varje

ingangsbit (BIT_0 osv) 1-staller eller O-stéller sin bit i VARDE. Observera den lilla
inversringen pa ingangen till nedre MOVE-grinden i varje natverksruta. INT-variableln
VARDE syns alltsa inte i koden men far sitt varde via adresseringen i variabellistan.

Observera att denna bitvisa adressering inte ar mojlig i alla PLC:er (t ex inte i Mitsubishi

Al1S men i Q02)

Class Identifier |MIT-Addr| IEC-Addr. Type
EI|‘-IAR_G LOBAL BIT_O X0 %10 BOOL
1|WAR_GLOBAL BIT_1 X1 %131 BOOL
2|WAR_GLOBAL BIT_2 X2 BalX2 BOOL
3VAR_GLOBAL BIT_3 X3 SalX3 BOOL
4|VAR_GLOBAL VARDE Do BahWO.0 INT

5/ VAR_GLOBAL
6 VAR_GLOBAL
7 VAR_GLOBAL
8/ VAR_GLOBAL

WVARDE_BITO|DO.0 SaMX0.0.0 BOOL
VARDE_BIT1|D0.1 SaMx0.0.1 BOOL
VARDE_BIT2|D0.2 SaM0.0.2 BOOL
WVARDE_BIT3|D0.3 SaMx0.0.3 BOOL

[a]4]afala]afalq]H

47

48

BIT_0—

NARDE_BITO

NARDE_BITO

BIT_1 —s

WARDE_BIT1

WARDE_BIT1

NARDE_BIT2

NARDE_BITZ

BIT_2—

ol 13 2

NARDE_BIT3

NARDE_BIT3

4.6. Ytterligare registerhantering

Har foljer ytterligare nagra funktionsblock for registerhantering.

MIN
MIN minsta vardet A,B,C till Q AN
C—_IN
AKX
.)] A—1 N @
MAX storsta vardet A,B,C,D till Q S
OD—__IN
om Amin < A < Amax s& Q=A T
LIMIT om A < Amin sd Q = Amin Amin—) MR —a
om A > Amax sa Q = Amax Amax —{ WX
ABS Q=1A Al | a

Blocken nedan &r for forskjutning av innehallet i ett register deklarerat som WORD eller
DWORD. Skiftning SHL och SHR innebér att bitinnehallet i registret skiftas vanster
respektive hoger s& manga steg som anges med konstanten n. De bitar som skiftas ut
forsvinner och de som tdms blir nollstéllda.

. SHL SHR
SHL, SHR - shiftning av A (se text) A—] 'lr?* —Q A— _:21* —a
N — N —

Rotation ROL och ROR innebar att bitinnehallet i registret roteras at vanster respektive at
hoger sa manga steg som anges med konstanten n. Den bit som skiftas ut laggs i andra
anden i den bit som téms.

_ ROL ROR
ROL; ROR - rotation av A (se text) A— N —QA— N —aQ
n—i K n—i K

For alla ovan presenterade registerhanteringsinstruktioner finns for var och en ocksa
varianten med enable-ingang vilken gor att utforandet av instruktionen ar villkorad.

4.7. Flankavkanningar.

Inte sa sallan &r det intressant att trigga vissa instruktioner att utféras endast vid positiv eller
negativ flank hos den signal som anvénds som enablesignal. Positiv flank (rising edge) &r
nar en binar signal (BOOL) slar om fran lag till h6g, FALSE till TRUE. Negativ flank
(falling edge) ar nar en binar signal (BOOL) slar om fran hog till 1ag. IEC-standarden

49

anvander sig av ett flankavk&nnande block som kopplas till efterféljande blocks
enableingang.

Instance Instance

R_TRIG F TRIG
7— CLK Q—7? 77— CLK Q—7?

Instance Instance

R_TRIG_E F TRIG_E
T—EN ENO — 7—EN ENO
7— CLK Q—? ?— ClK Qi —7?

Exempel 4.4.

Register VARDE skall 6ka sitt varde med 7 varje gang det kommer en positiv flank pa
ingang A. Register VARDE skall minska sitt varde med 56 vid negativ flank pa ingang B
under forutsattning att flagga C ar aktiv.

Kod:
trig

R_TRIG ADD_E

A— CLK Q EN EMNO
VARDE —— _IN —VARDE
7T—_IN
trig2

F_TRIG_E
C—— EN ENO — SUB_E
B— CLK Q EM ENO [~

VARDE —— _IN1 —VARDE
56— _IN2
Variabellista:
Class Identifier Type

0|VAR - |A BOOL
1/ VAR - |B BOOL
2\VAR - |C BOOL
3|VAR - [VARDE INT
4 VAR - |trig1 R TRIG
5VAR - |trig2 F TRIG E

Beteckningarna trigl och trig2 &r Instance for de tva Function Blocks som anvands i
Exempel 4.4. Som tidigare ndmnts &r en del funktionsblock (kallade Function Block)
uppbyggda av flera instruktioner med interna variabler. For att ett Function Block skall bli
unikt skapas en kopia med unika interna variabler genom att ge blocket ett namn, Instance.
Denna Instance maste deklareras i variabellistan. Identifierarna trigl och trig2 deklareras
alltsa som R_Trig respektive F_Trig_E i variabellistan eftersom triggningen med A var
ovillkorlig men triggningen med B var under villkor att C var paverkad.

50

Observera att om inte triggning hade anvénts i Exempel 4.2 dar VARDE réknas upp skulle
upprakning ske varje exekveringsvarv som EN-ingangen var aktiverad vilket skulle
innebara att VARDE 6kade med nagot tusental per sekunds paverkan av EN.

4.8. Raknare.

Att rakna pulser fran pulsgivare for att bestimma antal passerade paket pa en transportbana,
varvtal pa en axel e dyl ar naturligtvis intressant i styrsammanhang. Med hjélp av de
funktionsblock som redan &r presenterade kan en raknarfunktion byggas och ett visst antal
hos raknaren avkodas. Detta illustreras med foljande Exempel 4.5:

Exempel 4.5

Varje positiv flank pa ingang A okar register RAKNARE med ett. Varje positiv flank pa
ingang B minskar register RAKNARE med ett. Om innehallet i register RAKNARE é&r storre
an 14 aktiveras utgang Q. Register RAKNARE nollstalls av ingang NOLLST.

1 trig1
R TRIG ADD_E
A—{CK @ |EN ENO[-

RAKMARE — _IN ——RAKNARE
1—_IN

trig2
R_TRIG SUB_E
B—LCK Q@ EN ENO-
RAKNARE — _IN1 ——RAKNARE
1— N2
3 GT
RAKNARE — —Q
14—
4 trig3
R_TRIG MOVE_E
MOLLST— CLK Q@ ———EN ENO [~
00— _IN ——RAKNARE

Triggningen av nollstallningssignalen, NOLLST, &r inte nédvandig men kan goras for att
forhindra att en langre paverkan pa NOLLST fororsakar att raknepulser gar forlorade.

| standard IEC 61131-3 finns ocksa fardiga raknefunktionsblock, CTU, CTD och CTUD
vilket star for Counter Triggered Upward, Counter Triggered Downward respektive
Counter Triggered Upward / Downward.

Instance Instance Instance

TU CTD CTUD
7—— CU Q—7? ?7—CD Q —7 ?7— CU Qu —?
?7— RESET CV —7? ?7— LOADCV ——7? ?— CD Qo —7?
7— PV 77— PV ?—— RESET CV —7?
?—— LOAD
?7— PV

PV star for Preset Value (installt varde), CV star for Current Value (aktuellt varde), Q &r en
boolesk utsignal.

For CTU galler att om RESET=TRUE sa nollstalls CV, Q=FALSE och ingen upprakning ar
mojlig. DA RESET=FALSE 06kas CV med 1 for varje positiv flank in pa CU, da CV=>PV
satts Q=TRUE.

51

For CTD galler att om LOAD=TRUE sa satts CV=PV, Q=FALSE och ingen nedrakning ar
mojlig. D& LOAD=FALSE minskas CV med 1 for varje positiv flank in pa CD, da CV<0
sétts Q=TRUE.

CTUD &r en kombination av CTU och CTD med gemensamt PV. Utgang QU=TRUE da
CV=PV och QD=TRUE d& CV<0.

For alla ovan presenterade raknarfunktionsblock finns for var och en ocksa varianten med
enable-ingang vilken gor att utforandet av instruktionen &r villkorad.

Exempel 4.6

Har foljer en l1osning pa samma problem som i Exempel 4.5 men utan mojlighet till
nedrakning, nu I6st med tillgangliga raknarfunktionsblock. (Med ett CTUD-block kunde
ocksa nedrakningsfunktionen I6sts.)

Counter1
CTu
A- Ccu Q Q
NOLLST—— RESET CV ——RAKNARE

15 PV

4.9, Tidskretsar.

Att ta tid och skapa tidsfordrojningar for att bl a skapa tidsutrymme for handelser att ske i
processen ar en nodvandig funktion att ha tillgang till. Ett PLC innehaller ett antal timers
som adresseras via Instance-bendmningen hos foljande tidsfunktionsblock. I standard IEC
61131-3 finns fardiga tidsfunktionsblock, TON, TOF och TP vilket star for Timer On
Delay, Timer Off Delay respektive Timer Pulse.

Instance Instance Instance
TOM TOF T
77— 1IN Qi —? F— N Qi —7? PN Q—?
?7— PT ET —7 ?— PT ET [—7 ?—PT EIT [—7

PT star for Preset Time (installd tid) vilken anges i datatyp TIME. Formen pa tids-
angivelsen ser exempelvis ut enlig T#2h34m45s700ms eller T#7s. ET ar ocksa typ TIME
och ger hittills forfluten tid (Elapsed Time).

For TON galler att om IN=FALSE sa nollstalls ET, Q satts omedelbart FALSE och timern
raknar inte. Da IN=TRUE raknas tiden upp i ET och dd ET>PT satts Q=TRUE. Tillslaget
hos IN fordrojs alltsa tiden PT innan den laggs pa Q.

For TOF galler att om IN=TRUE sa satts Q omedelbart TRUE. Da IN=FALSE fortsatter Q
att ligga TRUE ytterligare tiden PT varefter Q=FALSE. IN laggs alltsa ut pa Q och
franslaget hos Q fordrojs tiden PT efter det att IN=FALSE.

For TP galler att vid positiv flank pa IN laggs Q=TRUE under tiden PT oavsett om signalen
pa IN &r kortare eller langre &n PT. ET visar hur Iang tid som forflutit av pulsens langd.

For alla ovan presenterade timerfunktionsblock finns for var och en ocksa varianten med
enable-ingang vilken gor att utforandet av instruktionen &r villkorad.

52

Exempel 4.7

Da ingangen LIUSKNAPP aktiveras tands TRAPPBELYSNING och fortsatter lysa

2 minuter. For att forhindra ofrivilliga nuddningar av ljusknappen har en tidsfordréjning
pa 0,5 sekunder lagts in innan den reagerar med att tanda ljuset.

Losningsalternativ A:

Observera att utsignalen TRAPPBEL kan aterkopplas till ingangen pa timer2 och dérmed
via RS-vippan “slicka sig sjilv” efter 2 minuter.

ET-utgangen behover inte anslutas. Den kan vara intressant att ansluta till en variabel av
typ TIME for visning i ett operatdrssystem.

Detta alternativ innebar att om LJUSKNAPP ar aktiverad langre &n 2 minuter kommer en
ny 2-minutersperiod att starta utan att TRAPPBEL slacks.

timer vippal

TOM RS
LJUSKNAPP — IN Q _S Q1 ——TRAPPBEL

T#600ms—— PT _ ET R1
timer2
TOM
TRAPPBEL—— IN Q

T#2m— PT ET =

Losningsalternativ B:
LD-16sning analog med FBD-l6sningen i alternativ A.

timer1

LJUSKMAPP TON mem1
| N a—(qC)
T#500ms — PT__ ET |~
timer2
TRAPPBEL TON mem2
I N ar—(D
T#2m— PT ET i~
mem2 mem1 TRAPPBEL
071 01 ®)
TRAPPBEL

Ldsningsalternativ C:
Har utnyttjas ett tidsfordrojt franslag vilket gor att belysningsperioden blir 2 minuter
ytterligare efter det att ljusknappen slapps.

timer3 timerd
TON TOF
LJUSKNAPP —— IN Q IN Q ——TRAPPBEL

T#500ms—— PT ET T#2m— PT ET i~

L

53

Lésningsalternativ D:
Detta alternativ ger alltid en 2 minuter lang belysning varefter ljusknappen maste slappas
och ater paverkas for att en ny 2-minutersperiod skall paborjas.

timerh timerb
TOM TP
LJUSKMNAPP — IN Q IN Q ——TRAPPBEL
T#500ms— PT ET i~ T#m— PT ET [~

Nar insignalen, IN, pa ovan presenterade TON-timer nollstalls sa nollstélls ocksa ET.
Onskar man mata totala tiden for ett diskontinuerligt forlopp, en handelse som dyker upp da
och da, kan nagot av de interna klockpulstagen utnyttjas for att skapa en tidtagning av ett
diskontinuerligt forlopp enligt foljande exempel.

Exempel 4.8

Den samlade tiden som tva ingangar, A och B, bada ar aktiverade méts. Nar den samlade
tiden overstiger 240 sekunder aktiveras utsignal Q. Da insignal NOLLST paverkas
nollstélls tidtagningen och Q avaktiveras. Nollstéallning &r inte mgjlig om inte avkodade
tiden uppnatts och Q darmed &r aktiv.

trig1

AND AND | R TRIG | ADD_E
A Gk Qy————EN ENO -~
B— TIDPULS — sum_tid— _IN ——sum_tid
1—1 N
GE
sum_tid —— Q
240 —]
AND MOVE_E
EN ENO |-
NOLLST— 0—1 N —sum_tid

Global variabellista:

Class ldentifier MIT |[EC-Addr. Type
0[VAR_GLOBAL - A X1 YalX1 BOOL
1|VAR_GLOBAL -|B X0 YalX0 BOOL
2/\VAR_GLOBAL - |Q 10 %aQX16 BOOL
3|VAR_GLOBAL - |TIDPULS SM412 [%MX10.412 |BOOL
4/VAR_GLOBAL v |NOLLST X2 YalX2 BOOL

Header — Lokal variabellista:

Class | ldentifier Type
o[VAR =]ltrigt [R_TRIG
VAR ~]sum_tid [INT

Med denna typ av tidtagning kan ocksa flera olika tider avkodas om sa 6nskas.

54

| variabellistan framgar att TIDPULS ar kopplad till adress %MX10.412som enligt Figur
3.13 ar en 1 Hz pulstag som da ger en positiv flank per sekund. Rakningen av pulser sker i
en INT-variabel (men kunde ocksa goras i TIME-variabel).

Som synes anvénds tva olika variabellistor. Globala variabellistan tar upp variabler dar
man som programmerare valjer destinationsadress vilket ar nddvandigt for bl a fysiska in-
och utsignaler samt i detta fall val av klockpuls. For arbetsvariablerna sum_tid och trigl
kan systemet sjalv vélja adress. Mera om detta kommer att behandlas i senare avsnitt.

Noggrannheten pa denna klockning kan bli dalig. Till- och franslag fran A och B kan ju
komma nar som hels under sekunden och ett fel pa upp till narmare en sekund ar mojlig for
varje tillslag. Ett alternativ ar att anvanda klockpulssignalen %MX10.410 som jobbar med
10 Hz samt koda av bade positiv och negativ flank. Da fas istéllet upprakning av sum_tid
med 20 ggr/sekund och darmed battre noggrannhet. Avkodningen av 240 sekunder far da
ske med 20-240=4800. Se modifierad kod nedan.

trig1
AND AND | R_TRIG | OR ADD_E

A cLK Q EN EMNO -
B— TIDPULS_10— sum_tid— _IN ——sum_tid
trig2 1— _IN
F_TRIG
CLK Q
GE
sum_tid — Q

4800 ——

AND MOVE_E

EN ENO —
NOLLST — 0— N ——sum_tid

Denna losning kraver dock en programcykeltid pa mindre dn 5 ms for att tidrakningen skall
hanga med. Inga varningar ges fér detta men PLC:ts operativsystem kan via
monitoreringsfunktion i utvecklingsmiljén ge besked om programcykeltiden.

4.10. A/D- och D/A-omvandling.

Kodning av A/D-omvandling (ADC) och D/A-omvandling (DAC) skiljer sig mellan olika
PLC-fabrikat och ingar alltsa inte i ndgon standard. En A/D-omvandling resulterar dock
alltid i att det A/D-omvandlade vérdet hamnar i ett register av typ INT eller WORD och
kan darefter hanteras som vilket register som helst. ADC- och DAC-enheterna &r ofta
konfigurerbara med avseende pa insignalsomfang och utsignalsomfang.

Insignal till en ADC kan vara bade strom och spanningssignal dar strémsignalering med
industristandarden 4-20 mA &r vanlig men aven t ex spanningssignalering 0-10V m fl
forekommer. Utsignal ar da ett digitalt siffervéarde t ex 0-255 (8-bitars omvandlare), 0-1023
(10-bitars) eller 0-4095 (12-bitars) men skalan kan ocksa justeras till jamna vérden och
darmed inte utnyttja hela omvandlarens upplésning som t ex 0-4000.

Exempel 4.9:
En temperaturgivare ar kalibrerad att for temperaturintervallet -40 till 100 °C ge en
utsignal 4-20mA. Denna stromsignal kopplas till en ADC-ingang hos ett PLC dar

55

insignalsintervall 4-20 mA omvandlas till utsignalsintervall 0-4000. | ett register, benamnt
gradC, skall temperaturen i hela °C ligga. Det A/D-omvandlade vardet fran temperatur-
givaren ligger i register benamnt ADCres. Bada registren antas vara av typ INT.

Losning:
Sambandet mellan gradC och ADCres kan beskrivas grafiskt enligt

} ADCres
1] 4000

Med tvapunktformeln kan ekvationen for den rata linjen bestammas:

100 — (—40)

gradC — (—40) = 2000 =0

- (ADCres — 0)
vilket tillsnyggat ger:

7
gradC = 200" ADCres — 40

En variabel typ INT bestar av 16 bitar varav en teckenbit och kan darmed hantera tal
mellan -32768 och +32767. | den berakningskedja som skall programmeras far alltsa inte
nagot varde riskera att hamna utanfor detta intervall. Vidare skall man strava efter att ha
sa stora intervall for mellanresultat som majligt for att inte tappa noggrannhet. Vi borjar
med en dalig 16sning:

MUL suB
DI ADCres —— ——qgradC

T — 40—
200 —

Detta dr kanske den mest “'rakt pa” losningen utifran det matematiska uttrycket ovan men
man inser snart att resultatet av forsta divisionen alltid <1 vilket innebar att resultatet av
denna heltalsdivision &r noll. Detta gor att gradC = -40 oavsett vad ADCres ar.

Ny och battre 16sning:

MUL DIv SuUB
ADCres —— ——agradC
7— 200 — 40—

Med denna l6sning blir resultatet i forsta mellanled i intervallet 0 — 28000 vilket ryms i 16
bitar. | denna l6sning finns ett avrundningsfel kvar. Resulterade gradC &r heltalsdelen av
den temperatur som beréknas d v s om temperaturen var t ex 72,8 °C sa blir resultatet har
72 °C.

56

Exempel 4.10:

En DAC ér kalibrerad sa att det digitala vardet, lagrat i DACut, med omfang 0-4000 ger en
utsignal 0-10V. Nar en digital insignal OKA aktiveras skall analoga utsignalen 6ka med
0,1 V/sekund vilket motsvarar att DACut skall 6ka med 40 enheter/sekund. Nar en digital
insignal MINSKA paverkas skall utsignalen minska i samma takt. DACut far inte ga utanfor
granserna 0-4000.

LAsning:
trig1
AND R_TRIG ADD_E
OKA— —1CLK Q——————EN ENO~
PULS 10HZ — DACut — _IN L—DACut
LT 4— N
DACuUt ——]
4000—
trig2
AND R_TRIG SUB_E
MINSKA —— — 1 ClK Q}——EN ENO|
PULS 10HZ— DACut — _IN1 —DACut
GT 4 N2
DACuUt ——]

0 —

4.11. Datatyperna—- ARRAY, REAL.

Utover datatyperna BOOL, INT, DINT, WORD, DWORD, och TIME som presenterats
tidigare finns i standarden ocksa typerna REAL och ARRAY. Typen REAL innebér
hantering av ett flyttal och darmed anvandbart enbart nar PLC-processorn kan hantera
flyttal (Mitsubishi Q02 men inte A1S). De hittills presenterade funktionsblocken fungerar i
de flesta fall inte mot REAL. Denna datatyp &r mest anvand vid mer omfattande
berékningar som da normalt utfors i programspraket Structured Text (ST) som presenteras i
senare avsnitt.

Datatypen ARRAY innebar att vektorer i upp till 3 dimensioner kan hanteras.
Typdeklarationen gors i variabellistan och en ARRAY deklareras t ex som

Class |[dentifier Type
0|VAR - [VEKTOE_A ARFAY [0..3] OF INT
1/ VAR ~ |VEKTOR_B ARRAY [0..3,0..4] OF BOOL
2VMAR ~|VEKTOR_C ARRAY [0..1.0..3.0..2] OF WORD

I listan & VEKTOR_A endimensionell med 4 element av typen INT. VEKTOR_B é&r
tvadimensionell med 4x5 element av typen BOOL medan VEKTOR_C &r tredimensionell
med 2x4x3 element av typen WORD

57

Exempel 4.11:

Array LAGER[LAGERPLATS] skall halla reda pa vilken typ av produkt som lagras in pa
lagrets fyra platser. Typen av produkt som lagras in finns i WORD-variabeln PROD_NR
och ar ett artikelnummer som ryms inom WORD-variabelns 16 bitar. Pa nagot satt har
artikelnumret hamnat i PROD_NR for den artikel som star i tur att lagras. En BOOL-
flagga LAGRA aktiveras da lagring skall ske. Lagret fylls pa fran lagerplats 0 och i
nummerordning uppat. Hur det sedan tdms o s v lamnar vi darhan.

Ldsning:

B Global Variable List

Class Identifier MIT IEC-Addr. Type
0/VAR_GLOBAL ~ |FIRST_SCAN SM402 |%MX10.402 |BOOL
1 VAR_GLOBAL v [LAGRA X5 %IX5 BOOL
2 VAR_GLOBAL v [LAGER DO %MW0.0 ARRAY [0..3] OF WORD
3|VAR_GLOBAL v |LAGERPLATS |D30 %MW0.30 [WORD
4|VAR_GLOBAL ~ |PROD_NR D40 %MW0.40 |WORD
1 MOVE_E
FIRST_SCAN—— EN ENO |~
0—1_IN —LAGERPLATS
2
Instance
R_TRIG MOVE_E
LAGRA—{ _CLK Q EN ENO [
PROD_NR—_IN —LAGER[LAGERPLATS]
ADD_E
EN ENO -
LAGERPLATS — _IN —LAGERPLATS
1—1_IN

LAGER-vektorn har i variabellistan fatt destinationsadress %MWO.0 vilket ar
startadressen for vektorn. De fyra elementen (artikelnumren) kommer alltsa att hamna i de
fyra adresserna %MWO0.0 till %MWO.3.

Hur lagras da en tvadimensionell array? Antag att arrayen TVARR[0..2,0..3] dvs 3x4
element deklareras med startdestinationsadress %MW2100.0. De olika elementen hamnar da
enligt foljande i PLC:ets registerarea:

TVARR[0,0] i TVARRI[L,0] i TVARR[2,0] i
%MW100.0 %MW100.4 %MW100.8
TVARR[0,1] i TVARR[L,1] i TVARR[2,1] i
%MW100.1 %MW100.5 %MW100.9
TVARR[0,2] i TVARR[L,2] i TVARR[2,2]i
%MW100.2 %MW100.6 %MW100.10
TVARR[0,3] i TVARRI[L,3] i TVARR[2,3] i
%MW100.3 %MW100.7 %MW100.11

58

4.12. Lista 6ver vanliga IEC 61131-3 funktionsblock.

Nedanstaende tabell visar de vanligaste funktionsblocken som finns tillgangliga i IEC 61131-3.
De flesta blocken finns ocksa med enablefunktion dvs EN-ingang och ENO-utgang. In- och
utgangar kan inverteras genom att klicka alldeles innanfor anslutningen till blocket.

| tabellen visas GX IEC Developers grafiska symboler.

Funktion | GX IEC Dev. Kort forklaring
AND a0 Den logiska funktionen "OCH” jamfor bit for bit av
- 7 ingangarna och lagger resultatet pa utgangen till héger.

In- och utgangar kan inverteras genom att klicka
alldeles innanfor anslutningen till blocket. Fler
ingangar kan laggas till genom att ”dra” i blockets
nederkant

OR o Den logiska funktionen "ELLER” jamfor bit for bit. In-

- — och utgangar kan inverteras. Fler ingangar kan laggas
till genom att ’dra” i blockets nederkant.

XOR \ XOR , Den logiska funktionen JEXCLUSIVT ELLER”
- :
NOT , | or) Den logiska funktionen "NOT”. Utsignalen &r inversen

av insignalen. Eftersom in- och utgangar pa de flesta
block kan férses med inverteringsringar behdver detta
block sallan anvéndas.

RS nstence RS-vippan sétter TRUE pa utgangen nar SET ar TRUE,
o = och FALSE pa utgangen nar RESET1 & TRUE. Om

bada ingangarna ar TRUE samtidigt dominerar
RESET1 (1:an betyder dominans).

SR 'nstsa;ce SR-vippan fungerar som ovanstaende, men om bada
o = -l ingangarna ar TRUE samtidigt dominerar SET1.
ADD oD Blocket ADD adderar ingangarnas vérde och lagger
- — resultatet pa utgangen till hoger. Antalet ingangar &r
valfritt.
SUB SUB Utgangen &r har vérdet av det den 6vre ingdngen minus
i 7 den nedre.

59

MUL o Utgangen &r produkten av ingangarna. Antalet ingangar
- 7 ar valfritt.
DIV = Det Ovre talet divideras med det nedre och resultatet
- 7 laggs pa utgangen. Operationen &r en heltalsdivision,
d.v.s. eventuella decimaler i resultatet klipps bort. Om
man &r intresserad av resten som bildas vid en
heltalsdivision finns blocket MOD.
EQ i EQ i Utgangen far vardet TRUE om ingangarna har samma
- ' vérde, annars FALSE.
NE e “Not Equal”-blocket ger inversen av ovanstanende,
- #? d.v.s. FALSE nér ingangarna ér lika och TRUE nar de
ar olika.
LT ,] , ”Less Than” ger TRUE om den dvre ingéngen ar
?7—] ' mindre &n den nedre.
LE , LE , ”Less or Equal than” ger TRUE om den dvre ingangen
7| ' ar mindre &n eller lika med den nedre.
GT . T , Ger pa motsvarande satt TRUE om den dvre ingangen
| ' 4r storre &n den nedre.
GE e Utgangen ar TRUE om den 6vre ingangen ar storre an
o 7 eller lika med den nedre.
SEL =1 Blocket véljer mellan INO och IN1. Om ingangen G &r
- _ffiu ﬁ? FALSE kopplas vardet vid INO till utgangen. Om G ar
L TRUE kopplas i stallet IN1 vidare.
LIMIT LInIT Insignalen IN skickas vidare till utgangen om den
p— 4 . . . Q
o | :mN ' ligger inom intervallet MN<IN<MX. Annars far
PLMK utgangen vérdet MN respektive MX i stéllet.
Typkonv- [BooLTOINT | Typkonverteringsblock finns i en méngd varianter.
. - _BOoOL
ertering a
MOVE MOVE Vardet flyttas fran ingangen till utgangen pa blocket.

In

Kan anvandas i actions (I SFC) for att minnas
tillstandet hos variabler i efterfoljande steg. (Stored
action)

60

MOVE_E wovEE| Som namnet antyder flyttas vardet fran ingangen till
e utgangen pa blocket nir “Enable” (EN) ér TRUE.

R_TRIG rsance Utgangen Q blir TRUE néar ingangen just fatt vardet

»— K ap— TRUE (positiv flank). Sedan atervander utgangen till
FALSE vid nésta ”scan-cycle”. Alla funktionsblock
som har ett minne, d.v.s. utgangen beror inte enbart pa
ingangarnas momentana varde, maste ha ett
instansnamn.

F_TRIG Instance Fungerar motsvarande for negativ flank. Utgangen blir
— ek al TRUE precis nar ingangen véxlat till FALSE, men

atervander ndsta “scan-cycle” till FALSE.

TON Instance Blocket ”Timer On delay” ger ett fordrojt tillslag pd Q
o |NTONQ l_? nar IN slas till. PT anger tidsfordréjningen. Om PT ar
7— -7 T#2s kommer Q att bli TRUE tva sekunder efter att IN

blir TRUE (men bli FALSE samtidigt som IN). PAET
visas tiden som har gatt fran tillslaget. ET maste inte
anvandas.

TOF '”?F‘SV;CE ‘ Blocket "Timer Off delay” ger ett fordrojt franslag pa
- Q nér IN slas fran. P4 ET visas tiden som har gatt fran
e franslaget. Om fordrojning onskas pa bade positiv och

negativ flank kan TON och TOF seriekopplas.

TOF Instance Blocket ”Timer Pulse” ger en puls av ldngd PT nér IN
- — aktiveras oberoende av varaktighet av IN. P4 ET visas
PP EL— tiden som har gatt fran tillslaget.

CTU Instance CTU réknar positiva flanker pa CU och antalet syns pa

o' a !_? CV. Om man har ett "mal” for antalet 1dggs detta pa

e 17 | PV.N&rCV > PV skickas en TRUE-signal ut pa Q.
Réaknaren nollstélls nar RESET=TRUE.

CTD Instance CTD réknar pa samma satt, men i motsatt riktning, fran

CTD |
7—CD Ql—2
> LoADGY |2
7 PV

PV ner till noll, i stéllet for tvartom. Raknarvéardet
ligger pa CV och Q blir TRUE nar Cv=0. LOAD
anvands for att aterstalla CV till startvardet PV.

61

4.13. Grundlaggande datatyper IEC 61131-3

Datatyp | Vardeomrade Exempel pa konstanter
BOOL FALSE TRUE FALSE TRUE

INT -32768 +32767 0 -23 876

WORD 0....65535 0 4567

DINT -2147483648.... 2147483647 0 -456789 779544
DWORD | 0.... 4294967295 0 680777

TIME T#-24h T#24h T#2h34m45s25ms T#200ms
REAL 3.4E+38 0.0 254 -7.865E4
STRING | Max 50 tecken "HELLO”

ARRAY | Max 3 dimensioner

62

4.14. ldentifiers och reserverade nyckelord IEC 61131-3

Identifiers (variabelnamn, funktionsnamn, programnamn mm) &r “’case insensitive” d v s det
gors ingen skillnad pa versaler och gemener.

2

- Identifiers far bestd av bokstéver (EJ 4, 4 ,0), siffror och “underscores
- Identifiers maste borja med en bokstav eller “underscore

Foljande ord &r reserverade nyckelord i IEC 61131-3 och far inte anvandas som identifiers:

ABS ACOS ACTION ADD AND ANDN ANY ANY_BIT ANY_DATE
ANY_INT ANY_NUM ANY_REAL ARRAY ASIN AT ATAN

BOOL BY BYTE

CAL CALC CALCN CASE CD CDT CLK CONCAT CONFIGURATION
CONSTANT COS CTD CTU CTuD CU CV

DATE DATE_AND_TIME DELETE DINT DIV DO DS DT DWORD
ELSE ESIF END_ACTION END_CASE END_CONFIGURATION END_FOR
END_FUNCTION END_FUNCTION_BLOCK END_IF END_PROGRAM
END_REPEAT END_RESOURCE END_STEP END_STRUCT
END_TRANSITION END_TYPE END_VAR END_WHILE EN ENO EQ ET
EXIT EXP EXPT

FALSE F_EDGE F_TRIG FIND FOR FROM FUNCTION
FUNCTION_BLOCK

GE GT
IF IN INITIAL_STEP INSERT INT INTERVAL
JMP JMPC JMPCN

L LD LDN LE LEFT LEN LIMIT LINT LN LOG LREAL LT
LWORD

MAX MID MIN MOD MOVE MUL MUX
NE NEG NOT

OF ON OR ORN

P PRIORITY PROGRAM PT PV

Q Q1 QU Qb

R R1 R_TRIG READ_ONLY READ_WRITE REAL RELEASE REPEAT
REPLACE RESOURCE RET RETAIN RETC RETCN RETURN RIGHT

63

ROL ROR RS RTC R_EDGE

S S1 SD SEL SEMA SHL SHR SIN SINGLE SINT SL SQRT SR ST
STEP STN STRING STRUCT SUB

TAN TASK THEN TIME TIME_OF_DAY TO TOD TOF TON TP
TRANS TRUE TYPE

UDINT UINT ULINT UNTIL USINT

VAR VAR ACCESS VAR EXTERNAL VAR GLOBAL VAR _INPUT
VAR_IN_OUT VAR _OUTPUT

WHILE WITH WORD

XOR XORN

4.15. Reserverade nyckelord Mitsubishi

Foljande ord &r reserverade och specifika for Mitsubishi och far inte anvandas som identifiers:

BO Bl B2 ...
CO C1 C2...
CCO CC1 cCcC2...
CNO CN1 CN2...
DO D1 D2 ...
FO F1 F2 ...
JO J1 J2....
LO L1 L2 ..
MO M1 M2 ...
PO P1 P2 ...
SO S1 S2 ...
SBO SB1 SB2 ...
STO ST1 ST2 ...
SWO SwW1 Sw2...
T0 T1 T2 ...
TCO TC1 TC2...
uo Ul U2...
VO V1 V2 ...
WO w1 W2 ...
X0 X1 X2 ...
YO0 Y1 Y2 ...
Z0 Z1 72 ...

64

Kap 5. Specifikt for PLC-fabrikat Mitsubishi.

| Kap 4 presenterades tillgangliga instruktioner och variabler for PLC-programmering
enligt standard 61131-3. Programutvecklingsmiljén enligt samma standard beskrivs senare i
Kap 6 och illustreras med utvecklingsmiljon GX IEC Developer vars utvecklingsmiljo ar
riktad till PLC av fabrikat Mitsubishi men stodjer standarden.

Tillverkare av PLC-system har ansvar gentemot sina gamla kunder och anvéndare fran fore
standardens tillkomst. De kompletterar darfor sina utvecklingsmiljoer med instruktioner
och variabelbeteckningssatt som gallde for fabrikatet fore standardens tillkomst och som
kunderna ar vana vid att anvanda. Eftersom detta skrivna material i forsta hand vénder sig
till studenter som moter PLC-fabrikatet Mitsubishi i sin utbildning presenteras i detta
avsnitt fabrikatets specifika instruktioner som finns med i utvecklingsmiljon GX IEC
Developer och darfor kan vara motiverat att kédnna till vid anvandandet av denna
programmeringsmiljo. Manga av dessa instruktioner kan ocksa visa sig praktiska och
smidiga att anvanda. Att de inte & med som standardinstruktioner beror pa att
framtagningen av en standard efter att manga aktorer ar etablerade pa marknaden &r ett
tagande och givande och ett passande sa att ingen aktor skall fa konkurrensfordel.

5.1. Mitsubishis signalbeteckningar.

Mitsubishis ursprungliga adresseringssétt skiljer sig ifran IEC-standardens vilket beskrivs i
nedanstaende tabell dar exempeladresser angivits. I utvecklingsmiljon GX IEC kan man
valja vilken adressering man vill anvéanda, IEC eller MIT.

En fordel med MIT-adressering jamfort med IEC-adressering ar att MIT har hexadecimal
numrering och da varje modul (ingangsmodul, utgdngsmodul osv) har 16 och ibland 32
adressplatser innebéar det att t ex 1 i adressen Y16 pekar pa att adressen pekar mot modul
nr 2 efter CPU-modulen pé bakplanet. Standard IEC tillampar decimal numrering varvid
denna koppling till modulposition faller bort.

Variabel Datatyp IEC-adress MIT-adress | MIT-adress
Q02_CPU AlS_CPU
Digital ingang BOOL %I1X10 XB XB
Digital utgang BOOL %QX21 Y16 Y16
Minnesflagga BOOL %MX0.238 M238 M238
Minnesflagga, BOOL %MX8.124 L124 L124
batteriuppbackad
Specialminne BOOL %MX10.402 SM402 M9032
16-bits register INT, WORD %MWO0.324 D324 D324
32-bits register DINT, DWORD | %MW0.34+%MW0.35 | D34+D35 D34+D35
Specialregister WORD %MD10.210 SM210 D9025

65

Det finns ett antal specialminnesflaggor varav nagra anvandbara redovisas i tabell nedan
med adresser. For klockpulstagen i tabellen anges periodtid for pulstagen som Tsv.

Beskrivning IEC-adress MIT-adress MIT-adress
Q02 AlS

TRUE forsta scan-cykeln efter RUN | %MX10.402 SM402 M9038

10 Hz klockpulstag , Tsv 0,1s %MX10.410 SM410 M9030

5 Hz klockpulstag, Tsv 0,2s %MX10.411 SM411 M9031

1 Hz klockpulstag, Tsv 1s %MX10.412 SM412 M9032

0,5 Hz klockpulstag, Tsv 2s %MX10.413 SM413 M9033

Klockpulstag %MX10.415 SM415 _

Tsv i sekunder skrivs i register %MD10.415 SD415

5.2. Logiska instruktioner — Mitsubishispecifika.

Vad galler minnesfunktioner har IEC-standard RS- och SR-funktionsblocken redan
presenterats. Mitsubishi har tva fristaende block, ett for SET och ett for RST vilket gor att
set och reset kan separeras till olika platser i koden. Dessa block motsvarar —(S)- och —(R)-
vid ladderprogrammering. Det ar framfor allt anvandbart i SFC-programmering dar man da
i ett steg kan ettstélla en signal for att sedan i nagot senare steg nollstalla variabeln. Figur
5.1 nedan visar de bada blocken och med den inbdrdes placeringen ér de bada blocken
analoga med ett RS-block d v s reset-dominant vippa. Med omvand ordning, RST 6verst,
blir det SR-funktion. Andelsen M i SET_M och RST_M &r den andelse som kannetecknar
alla Mitsubishispecifika funktionsblock.

1 SET M
A—1EN ENO -
dl—a
2 RST M
B—EN ENO |-
d—a

Figur 5.1: Mitsubishispecifika SET- och RST-block

Det kan namnas att vid kompilering av kod i GX IEC Developer dversétts forst till Melsec-
kod som ar Mitsubishis egna utvecklingsmiljé med den ursprungliga instruktions-
uppséttningen. Melsec-koden 6versétts i nasta steg till maskinkod for PLC-processorn. Det
innebar att t ex RS- och SR-blocken ar SET_M- och RST_M- block paketerade pa lampligt
satt. Mojligheten att gora sadana “paketeringar” och pa det viset skapa egna funktionsblock
ar centralt i IEC-standarden och ar viktig for rationell programutveckling.

5.3. Beraknings- och forflyttningsinstruktioner—
Mitsubishispecifika.
Nér det galler algebraiska operationer finns ett flertal Mitsubishi-specifika funktionsblock

som kan rationalisera programutvecklingen. Nar det galler addition finns foljande
additionsrelaterade block:

66

PLUS 3 M FLUS M FLUSP M
77— EN ENO — ?7— EN ENO — ?7— EN ENO
?—s1 dl —7 ?7—s d—*7 ?—1s d—?
?—52

Den forsta, PLUS_3_M ér identisk med IEC-blocket ADD_E dvs da EN aktiv utfors

dl =sl1+s2. Block nr 2, PLUS_M, innebér att destinationsregistret vid d 6kas med vardet
(register eller konstant) kopplat till s dd EN=TRUE. For bada dessa géller att operationen
utfor varje programcykel som EN=TRUE. I det tredje blocket, PLUSP_M, &r en positiv
flanktriggning inbyggd i EN-ingangen vilket innebar att destinationsregistret 6kas endast
vid positiv flank in till EN.

Motsvarande block finns for de dvriga réknesatten bendmnda MINUS_3_M,
MINUSP_3_M, MINUS_M, MINUSP_M, MULTI_3_M, DIVIDP_3 M ..0sV,

Utover dessa finns tva block for att vid positiv flank 6ka respektive minska ett register med
1.

INCP_M DECP_M
ENO |- EN ENO |-

d —7? d

EM

-

Forflyttning av registervérden eller konstanter gjordes med IEC-instruktionerna MOVE
eller MOVE_E. Mitsubishispecifika block med motsvarande funktion ses nedan déar som
synes ocksa inbyggd positiv flanktriggning finns med.

I
I

MOV _M

EM
5

ENO

L

—

I
I

MOWP_M

EM
5

EMOD

—

En finess ar ocksa att med dessa block kan bitinformation dverforas till 16-bitars register
enligt foljande exempel.

Exempel 5.1:

Vi tittar pa en alternativ 16sning till Exempel 4.3 som var formulerat som foljer. Ett fyra
bitars tal (0-15) kommer in till ett PLC via fyra digitala ingangar kopplade till BOOL-
variablerna BIT_O, BIT_1, BIT_2 och BIT_3. Programmet skall 6verféra detta
fyrabitarsvarde till en INT-variabel, VARDE.

Ldsning:

Med foljande l6sningssatt maste tilldelningen av ingangsvariablerna vara kand och
utnyttjas i koden. Antag tilldelning enligt:

EEH Global Variable List

Class Identifier MIT IEC-Addr. Type
0[VAR_GLOBAL « [BIT_D *0 %alX0 BOOL
1/VAR_GLOBAL = |BIT_1 *1 Yalx1 BOOL
2\VAR_GLOBAL - [BIT_2 2 Yal¥2 BOOL
3VAR_GLOBAL - [BIT_3 *3 Yal¥3 BOOL
4|VAR_GLOBAL » |VARDE Do %aW0.0 INT

Nu kan overforing av de 4 bitarna géras med en enda instruktion:

MOV_M
TRUE—EN ENO |-

K10 —s d —VARDE

K1XO0 innebar att med bdrjan fran X0 och uppat tas 4 bitar. X0 laggs da i lagsta biten, X1 i
nast lagsta o s v. Dessa overfors ovillkorlig (TRUE) varje exekveringsvarv till registret
VARDE. (For att ge ytterligare ett exempel s& innebar K3M8 att med borjan fran
interminne M8 och uppat éverfors 12 bitar (3x4)dar M8 blir lagsta bit o s v.)

Vissa moduler i Mitsubishi-systemet kallas ”intelligenta moduler”. En "intelligent modul”
kan vara A/D- , D/A-omvandlarmoduler, kommunikationsmoduler for seriell
kommunikation eller motorstyrningsmoduler.. Dessa intelligenta moduler innehaller en
egen registeruppsattning med egna adresser.

For forflyttning av registervarden mellan CPU-delens minne till en ”intelligent modul” hos
PLC:t anvands foljande tva instruktioner.

TO M FROM_M
SKICKA—— EN EMO HAMTA — EN ENO —
REG 1— s fE——nl d —REG 2
3——n1 2——n2
7——n2 3——n3
1——n3

Modulerna adresserad’s efter den ordning till hdger om CPU-modulen som de &r placerade
pa PLC:ts monteringsunderlag, det sa kallade bakplanet.

TO_M forflyttar, dd SKICKA=TRUE, registervardet REG_1 till modul pa adressplats 3 pa
bakplanet och till registeradress 7 i denna modul. Adressplats pa bakplanet ar normalt
samma som positionen pa bakplanet raknat fran CPU-modulen och med bérjan plats 0. Men
en modul kan ta upp tva adressmodulplatser. Modulnumrering for aktuellt styrsystem fas
genom uppkoppling av systemet mot GX IEC Developer och kommendera Debug — System
Monitor.

FROM_M innebér att, dd HAMTA=TRUE, hamtas registervarde fran modulplats 5, adress
2 till REG_2. Men eftersom det i detta fall star 3 vid n3 sa innebér det att 3 register hamtas,
adress 2 till REG_2, adress 3 till CPU-minnesadress ovanfor REG_2s tilldelade adress och
adress 3 till CPU-minnesadress tva steg ovanfor REG_2s tilldelade adress. Normalt lases ett
register i taget dvs n3 sétts normalt till 1.

68

5.4. Flankavkannande instruktioner — Mitsubishispecifika.

Utdver de integrerade flanktriggningar som beskrivits i foregaende avsnitt finns ett block
for positiv flanktriggning, PLS_M vilket helt motsvarar R_TRIG.

PLS_M
7 {EN ENO

L

5.5. Ré&knarinstruktioner — Mitsubishispecifika.

Basblocket for alla IEC-réaknarfunktionsblock i Mitsubishisystem &r blocket
COUNTER_M. Systemet innehaller ett antal raknare (counters), olika antal beroende pa
CPU-typ. For varje positiv flank pa EN-ingangen kommer ett till blocket kopplat register
CNpn att rdknas upp med ett dar n &r raknarens I6pnummer. | figuren har raknare nummer 4

anvants.

COUNTER_M

A— EN ENO [~
CC4 —— CCoil

14 —— CValue
CC4— AKT

RST M

MOLLST—— EN ENO —
d ——CM4

Nar vardet kopplat till ingadng CValue uppnatts hos CNn kommer en flagga CCn att tandas.
Pa COUNTER_M-blocket & CCn kopplat till en ingang CCoil som inte & majlig att
koppla vidare. Istéllet anropas CCn for att aktivera den hédndelse som skall aktiveras av
réknaren. | figur nedan aktiverar CC4 signalen AKT. CN4 nollstélls av NOLLST och
darmed nollstélls &ven CC4.

5.6. Timerinstruktioner — Mitsubishispecifika.

Basblocket for alla IEC-timerfunktionsblock i Mitsubishisystem &r blocket COUNTER_M.
Systemet innehaller ett antal timers, CCn, olika antal beroende pa CPU-typ. Da insignal A
till EN-ingangen &r aktiv pagar en tidtagning med uppl6sning 100 ms eller 10 ms. Da
antalet intervall har uppnatt TValue, i detta fall 100 aktiveras TCoil, i detta fall TC7. Da
EN-ingangen gar Iag nollstélls tidrakningen och TCoil gar 1ag, i detta fall TC7. TC0-TC199
réknar i 100 ms-intervall och TC200-TC255 i 10 ms-intervall.

69

TIMER_M
A- EN ENO

TC7 TColl

100- TValue

TC7 ———AKT

Pa TIMER_M-blocket ar TCn kopplat till en ingang TCoil som inte & majlig att koppla
vidare. Istallet anropas TCn, i detta fall TC7 for att aktivera den handelse som skall
aktiveras av timern, i detta fall AKT.

5.7. FIFO-register.

FIFO-register (first in - first out) anvéands for buffring av data t ex vid lagring av
komponentidentiteter i en buffert eller for att halla reda pa bestallningskoer. Med hjalp av
instruktionerna FIFW, FIFWP och FIFR, FIFRP kan man skriva till respektive lasa fran ett
sadant register. Nar ett varde skrivs till ett FIFO -register laggs det langst ner i bufferten
och da man laser ur registret sa tas vardet langst upp i bufferten och alla kvarvarande
varden stegar upp ett steg. FIFO-registret adresseras till en adress t ex D200 i vilken lagras
antalet varden som finns i registret. D200 rékas alltsa upp med ett da skrivning sker till
registret och raknas ner med ett da Iasning sker ur registret. | nasta D-register, har D201,
finns det véarde som befinner sig hogst upp i bufferten, D202 det nést langst upp osv.
Observera att hér ar det oftast nddvandigt att anvanda FIFWP_M resp FIFRP_M dvs
positiv flanktriggning for annars ar risken stor att varden bara rasar in eller ut da enable-
villkoret ar uppfyllt. Nedan féljer ett exempel med kommentarer. Observera den nagot
konstiga anvandningen av source (s) och destination (d) i FIFR instruktionen.

FIF C-registrets destinationsadress D200. Om FIFO innehaller farre &n 13
objekt och flank kommer p& ingang =0 s3 farflyttas vardet hos DO till [agsta
positionen i FIFO-bufferten.

LE AND FIFWWE_
D200 — EN END —
12— Hl— D0—s d —0200

Om det finns minst ett objekt i FIFO-bufferten och positiv flank kommer pa
ingang %3 =3 las ut higsta positionen i registret till D40, Observera den
konstiga anvandningen av s och d.

GT AND FIFRP_M
D200 — EN END —
0— AI— D40 — 5 d —0200

70

5.8. A/D- och D/A-omvandling i Mitsubishisystem QO02.

For att kommunicera med omvarlden med analoga signaler utrustas PLC-systemet med
moduler for just analoga signaler in och ut. Dessa moduler innehaller da A/D- och D/A-
omvandlare och kommunikation med PLC:t sker via ett antal fran CPU las- eller skrivbara
register i modulen. Till system Q02 finns nagra alternativa moduler tillgangliga. Har
presenteras dock A/D-modul Q64AD som har 4 analoga ingangar med valbarhet vad galler
signaltyp (strom eller spanning), signalomfang och uppldsning enligt tabell nedan.

Signaltyp _ NO]'I}'.IEI] up J]iisnin;._.z i __ Hiig_upp]iisning _

Digitalt viirde Upplisning Digitalt viirde Upplisning

0 till 10V 2.5 mv 0 till 16 000 0.625 mV

oullsv O till 4 000 1.25 mV 0.416 mV

Spdnning LG5 v L0 mV O till 12 000 0.333 mV

- 106l +10V 2.5 mVv -16 000 tll 16 000 | 0.625 mV

Egen signaltyp |+ 000400014 205 v | 212 000 611 12 000 | 0.333 mv

O till 20ma SpA 1.66 pA

Strdm 4 il 20 mA O till 4 D00 4pA O till 12 000 1.33 pA

Egen signaltyp | -4 000 till 4 000 137 pA -12 000 Hll 12 000 1.33 pA

Vidare presenteras en D/A-modul Q64DA med 4 analoga utgangar och med samma
egenskaper som ingangarna vad géller omfang, uppl6sning och omvandlingstid. Modulerna
har ocksa mer avancerade funktioner i form av medelvardesbildning mm.

Arbetsomradet hos in- och utgangarna &r instéllbart. (Hos de vi anvander i labbet ar bade in
och utgangar normalt kalibrerade for digitalt 0 - 4000 motsvarande analogt 0 - 5V.)
Kommunikationen med modulen kraver att modulens placering pa bakplanet ar kand. Pa
labsystemen sitter modulen i ordning CPU — 1 st digital in — 1 st digital ut — AD — DA
vilket medfor att AD-modulen upptar modulplats 2 och DA modulplats 3. For det enklaste
anvéndarfallet géller att de kanaler som skall anvéndas enablas samt att analoga signaler
som A/D-omvandlats kan lasas till systemet i digital form och att digitala varden kan l&sas
ut for D/A-omvandling och placeras pa analoga utgangen.

Installning av signaltyp och omfang for de fyra kanalerna bade for Q64DA och Q64AD
stalls med en sa kallad switch enligt:

Signaltyp Hex-varde i Switch 1
4 —20 mA
0-20mA
1-5V
0-5V

-10V till 10V
0-10V

OB WINF| O

71

Switcharna stélls in via GX IEC Developer — Parameter — PLC — 1/O assignment och sedan
Switch. Kommunikationen med modulen kréver att modulens placering pa bakplanet &r
kénd. Pa labsystemen sitter modulerna i ordning CPU — X80 (16 digitala in) — Y10 (16
digitala ut) — Q64AD — Q64DA vilket medfor att A/D-modulen upptar modulplats 2 och
D/A modulplats 3.

Med samma konfiguration foér bade Q64AD- och Q64DA-modul:

CH1 0-5V = Switch 1=3,
CH2 -10till 10V = Switch 1=4
CH3 0 CH4 4-20mA = Switch 1=0

Konfigurationen ser ut enligt nedan:

i) parameter setting

PLC name | PLC system | PLC file | PLC R4S | Device | Program | Bootfle | SFC 140 assignment |

10 Azsignment[*]

Slat Type todel name Paitts Starky] =
0_|PLC PLC hd - Switch&ettingl
1 0000 Input - 1Epoints =
A T TBpoints = Detailed setting|
3 202 Inkelli. ~ |JE44D 1Bpaints =
4 |3[0-3) Intell. ~ |QB4DA 1Bpoints =
5 |4[0-4] Ikl - Fpainty -
Switch setting for I/0 and intelligent function module x|
Input format
Slot Type Madel name Switch 1 [Switch 2] Switch 3] Switch 4 [Switch 5]«
0 |PLC PLC
1 |0[0-0) Input
2 1181] Cutput
3 |200-2) Intelli. [E4aD 0043 0000
4 |30-3) Intelli. QE4DA 0043 0ooa 0000
5 [404] el

Switch 4 som ar satt till 0000 innebar att normalt omvandlingslage och normal upplésning
valts.

For att denna konfigurering skall sla igenom maste PLC:ts CPU resetas efter det att
konfigurationen laddats ver till PLC:t.

Maojlighet finns att medelvérdesbilda Gver viss tid eller for ett visst antal omvandlingar men
for detta hanvisas till manual. For det enklaste anvéandarfallet med direkt avlasning av A/D-
omvandlade vérdet resp. direkt utldsning av varde for D/A-omvandling géller att de kanaler
som skall anvéndas enablas samt att analoga signaler som A/D-omvandlats kan l&sas till
systemet i digital form och att digitala vérden kan lasas ut for D/A-omvandling och
placering pa den fysiska analoga utgangen.

Som namnts ovan har modulerna ett antal fran CPU:t las- och/eller skrivbara register.
Skrivning till register gérs med instruktionen TO_M medan lasning fran gors med
FROM_M. De register som presenteras har &r for att aktivera (enable) olika kanaler samt att

72

lasa in A/D-omvandlat varde samt skicka ut varde for D/A-omvandling. Utdver detta finns
en del konfigurationsregister som forbises har.

I Q64AD-modulens register nr 0 anvands endast de fyra lagsta bitarna. Dessa har foljande
funktion:

- Bit0-0/1 = enable / disable analog inkanal CH1
- Bit1-0/1= enable/ disable analog inkanal CH2
- Bit2-0/1 = enable / disable analog inkanal CH3
- Bit3-0/1 = enable / disable analog inkanal CH4

For att 6verfora till Q64AD-modulen vilka kanaler som skall 6ppnas ges varden till TO_M-
instruktionen enligt:

s — decimala vardet som motsvarar de kanaler som skall enablas enligt ovan.

nl — positionsvardet pa den plats modulen &r placera pa bakplanet.

n2 — det register nr som informationen skall laggas i (har 0)
- n3 — hur manga register som skall dverforas.

| register 11 i Q64AD-modulen finns det A/D-omvandlade vardet fran CH1 att hamta, i
register 12 hamtas CH2 osv. Instruktion for att hdmta detta varde sker med FROM_M-
funktion.

d — Benamningen pa D-register dar det A/D-omvandlade resultatet laggs.

nl — positionsvardet pa den plats modulen ar placera pa bakplanet.

n2 — det register nr som informationen skall hamtas fran.
- n3 — hur manga register som skall 6verforas.

I register 1 1 Q64DA-modulen placeras det varde som skall D/A-omvandlas och hamnar
som analogt utvarde CH1. Register 2 till CH2 osv. Instruktion for att 1agga ut detta varde
sker med TO_M-funktion.

- s—Benamningen pa D-register som innehaller vardet for D/A-omvandling.

nl — positionsvardet pa den plats modulen &r placera pa bakplanet.

n2 — det register nr som informationen skall l&ggas i .
- n3 — hur manga register som skall dverforas.

En ytterligare funktion hos Q64DA-modulen &r att ytterligare en flagga maste aktiveras for
att analoga utsignalen skall slappas ut pa plinten. Denna flagga ar Yx1 for CH1, Yx2 for
CH2 osv. dar x ar modulens placering pa bakplanet. Om denna flagga ar nollstalld kommer
signalen 0 V alt 0 A ligga ut. Anledningen till detta &r att man med sékerhetslogik enkelt

73

skall kunna nolla utsignalen som kan innebdra t ex stoppa varvtalsstyrda fléakten, stdnga
ventilen e dyl.

Har foljer ett exempel pa detta.

Exempel 5.2:

Instruktionerna nedan galler adressering av Q64AD-modul med 4 analoga kanaler in pa
modulplats 2 och en Q64DA med 4 analoga kanaler ut med placering modulplats pa
bakplanet.

nl, n2 och n3 i instruktionerna nedan anger modulplats, buffertadress i modulens minne
respektive antal 16-bitars register som sands alt. hdmtas. Kommentarrutorna i respektive
Network anger vad de olika blocken har for uppgift. Endast kanal 1 utnyttjas pa de tva
modulerna.

Analoga ingangsmodulen

PLS M [X20 indikerar modul i drift och en
| pulsigenereras som anvands for
e EN -ENE; [—puls1 verkstallan av installning.
ulst . ELOEMO) | Enable A/D channel 1 av
P 16#E— s [QB4AD-modul placerad pa
5. g bakplansplats 2 genom att O-stalla
0—In2 bitD i reg 0.
1—in3 Ettstaller Y29 for verkstallning av
e | installningen.
SET_M
EN ENO -
d —Y29
o B B %29 indikerar att instalining utford -
29— \ 49 Y29 nollstalls.
x20 a2 | ENFROM-éﬂNO | A/D-omvandlade vardet
YOE P 4 from ADC chi | CHI lases frén register
- 11—In2 i 11 1 A/D-modul till
1 n3 “from_ADC_ch1" (INT).

)Q_E hég innebar

74

Analoga utgéngsmodulen

s [%30 indikerar modul i drift och en
%30 EI\TL _E’vl’\lO) puls2 genereras som anvands for
verkstallan av installning

d —puls2
uls2 Z E.tr\lOE?\JAO - Enable D/A channel 1 av
P QB4DA-modul placerad pa
16#FE s o .
3. nl a plansplats 3 genom att O-stalla
0. n2 bit0 i reg 0.
Ettstaller Y39 for verkstallning av
1 n3 e el
instaliningen.
SET_M
EN ENO ~
d —Y39
— AND | E ﬁST‘g\J G [%39 indikerar att installning utford -
‘ Y39 nollstalls.
Y39 d —Y39
X39
to_DAC —— CE | o E-IKJOENO Kontrall av att vardet fill

DA omy ligger inom 0 -

e GE T— e DA T 4000, Vardet skickas il
to_DAC— 1— n2 register 1§ DéA-modulen for
S0 1—n3 DiA-omvandling till utgang

CH1.

f31=1 innebar Enable output av
analoga vardet pd CH1.
f31=0 innebar alltid 0% ut.

TRUE———¥31

5.9. A/D- och D/A-omvandling i Mitsubishisystem A1S.

For att kommunicera med omvarlden med analoga signaler utrustas PLC-systemet med
moduler for just analoga signaler in och ut. Dessa moduler innehaller da A/D- och D/A-
omvandlare och kommunikation med PLC:t sker via ett antal fran CPU las- eller skrivbara
register i modulen. Till system A1S finns nagra alternativa moduler tillgangliga. Har
presenteras dock modul ADA som har 2 analoga ingangar -10 till 10 V alternativt -20 till
20 mA med en maximal uppldsning pa 0,83 mV alternativt 3,33 pA. Vid denna upplésning
ar omvandlingstiden 3 ms/kanal. Upplosningen ar installbar om man vill ha snabbare
omvandlingstid. Vidare har ADA-modulen en analog utgang med samma egenskaper som
ingangarna vad galler omfang, upplosning och omvandlingstid. Modulen har ocksa mer
avancerade funktioner i form av medelvardesbildning och funktionsfoljning. Det senare
innebar att analoga utsignalen fas som funktion av de bada analoga ingangsvardena.

Arbetsomradet hos in- och utgangarna ar installbart. (Hos de vi anvander i labbet ar bade in
och utgangar normalt kalibrerade for digitalt 0 - 4000 motsvarar analogt 0 - 10 V.)
Kommunikationen med modulen kraver att modulens placering pa bakplanet ar kand.
Fysiskt tar modulen upp en plats men adressmassigt tar den tva modulplatser. (Pa
labsystemen sitter modulerna i ordning CPU — 1 st digital in — 1 st digital ut - ADA vilket
medfor att ADA-modulen upptar modulplats 2.) For det enklaste anvéndarfallet galler att de

75

kanaler som skall anvéndas enablas samt att analoga signaler som A/D-omvandlats kan
lasas till systemet i digital form och att digitala varden kan lasas ut for D/A-omvandling och
placeras pa analoga utgangen.

Som namnts ovan har ADA-modulen ett antal fran CPU:t las- och/eller skrivbara register.
Skrivning till register gors med instruktionen TO_M medan lasning fran gors med
FROM_M. De register som presenteras har &r for att aktivera (enable) olika kanaler samt att
lasa in A/D-omvandlat varde samt skicka ut varde for D/A-omvandling. Utdver detta finns
en del konfigurationsregister som forbises har.

I ADA-modulens register nr 0 anvands endast de tre lagsta bitarna. Dessa har féljande
funktion:

- Bit 0 —enable / disable analog inkanal CH1
- Bit1—enable / disable analog inkanal CH2
- Bit 2 —enable / disable analog utkanal CH3

For att 6verfora till ADA-modulen vilka kanaler som skall 6ppnas ges varden till TO_M-
instruktionen enligt:

- s—decimala vardet som motsvarar de kanaler som skall enablas enligt ovan.
- nl - positionsvardet pa den plats modulen ar placera pa bakplanet. (har 2)

- n2 —det register nr som informationen skall laggas i (hér 0)

- n3 — hur manga register som skall dverforas.

Register 10 i ADA-modulen &r det register dar varde laggs for D/A-omvandling och sedan
laggas ut som analog signal pa analoga utgangen, CH3. Instruktion for dverféring av detta
varde sker ocksd med TO_Me-instrutionen enligt:

- s—Benamningen pa D-register som innehaller vardet for D/A-omvandling.
- nl - positionsvardet pa den plats modulen ar placera pa bakplanet.(har 2)
- n2 —det register nr som informationen skall 1&ggas i (har 10)

- n3 — hur manga register som skall 6verforas.

En ytterligare funktion hos ADA-modulen ar att ytterligare en flagga maste aktiveras for att
analoga utsignalen skall slappas ut pa plinten. Denna flagga &r Y30 om modulen &r placerad
pa plats 2 (Y70 om placerad plats 6 osv). Om denna flagga nollstalld kommer signalen 0 V
alt 0 A ligga ut. Anledningen till detta ar att man med sakerhetslogik enkelt skall kunna
nolla utsignalen som kan innebdra t ex stoppa varvtalsstyrda flakten, stanga ventilen e dyl.

76

Register 11 &r det register i ADA-modulen dar det A/D-omvandlade vardet for analoga
inkanalen CH1. Register 12 & motsvarande fér CH2. A/D-omvandlingen sker kontinuerligt
(konfigurerbart). A/D-conversion ready-flaggan ar X21 (tvaan anger modulplats). Dessa
register kan sedan lasas in till CPU:et med FROM_M-instruktion dar :

- d—Benamningen pa D-register dar det A/D-omvandlade resultatet laggs.
- nl - positionsvardet pa den plats modulen &r placera pa bakplanet.
- n2 —det register nr som informationen skall hamtas fran (har 11 alt 12)

- n3 - hur manga register som skall 6verforas.

Har foljer ett exempel pa detta.

Exempel 5.3
Instruktionerna nedan galler adressering av ADA-modul med tva analoga inkanaler och en
analog utkanal med placering pa modulplats 2 pa bakplanet.

nl, n2 och n3 i instruktionerna nedan anger modulplats, buffertadress i modulens minne
respektive antal 16-bitars register som sands alt. hdmtas. Kommentarrutorna i respektive
Network anger vad de olika blocken har for uppgift.

1 TO_M
M0 R Enable AD CH1 och D/A CH3. 5=7 enablar aven A/D CH2
2 ADA modul pa position 2 pa bakplanet.
0— n2
1—n3
= X2 —— ENFROM_QNO | Analoga spanningen pa CH1 AD-omvandlas kontinuerligt och
3 m d |_' am ADC resultatet |aggs i register "from_ADC" (INT)
M n2 - X21=TRUE da AD-modulen ar redo far omvandlingar.
1—n3

LE AND TO_M Kontroll att "to_DAC" (INT) ligger i intenvallet 0-2000 vilket
to_DAC — — ————————— EN ENO E 5 :
2000 — to DAC—— s motsvarar 0- 5V pa VA onwandlarens _utgang_ Om inom
R intervall sker D/A-omvandling av vardet i "to_DAC"
GE 10— n2
to_DAC— 1—nd
i p—
4 — - = — :
TRUE Y30 ¥30=TRUE innebér att den D/A -onwandlade spanningen laggs ut

pa CH3. Y30=FALSE innebar att 0 V |aggs ut pd CH3.

77

5.10. PID-regulatorn i Q02-systemet.

For Q-systemen finns foljande funktionsblock for PID-reglering tillgangligt. PID-
regulatorns allmanna funktion anses vara kand och darmed de olika ingangs- och
utgangsparametrarna hos blocket.

LoopMo1
PIDControlQHighD
1—— LoopNo ManipulatedValue ——OutputValueLoop1
Offset QD —— DOffset ParamError ——ParamErrorLoop1
SetPointValueLoop!—— SetpointValue
ProcessValueLoop!—— ProcessValue
KplLoop1— Kp_1proc
TiLoop1—— Ti_100ms
TdLoop1—— Td_10ms
1—— ControlDirection
100 — Ts_10ms
25— InputFilter
32000 — MvLimitHigh
0—— MvLimitLow
ManAutoLoop1—— ManAuto
ManOutputLoop! — MvMan
SetPointValue — Borvarde
ProcessValue — Arvérde — hamtas normalt fran A/D-omvandlare
Kp — proportionell forstarkning 1 %
Ti — integrationstid i antal 100 ms
Td — deriveringstid i antal 10ms
ControlDirection — 1=omvand, O=direkt — dar omvénd innebé&r 6kande styrsignal
vid dkande reglerfel (borvérde — arvarde)
Ts — samplingstid i antal 10 ms
MvLimit — begransning av styrsignal
ManAuto — 1=manuell O=automatik
MvMan — styrvérde vid manuell installning
ManipulatedValue — styrsignal — skickas normalt till D/A-omvandling

78

5.11. PID-regulatorn i A1S-systemet.
| GX IEC Developer finns majligheten att utveckla egna funktionsblock. Ett exempel pa

sadana ar PID-regulatorblocket i A1S-systemet for reglering av aterkopplade analoga
processer.

PID' mo

-?—— EM T ENO —

- ?—— Puls —7

- ?—— Loop

- ?—— Borvarde

-7 —— Ararde

-7 —— Ormw_Dir

- ?—— Kp lproc

-7 —— Ti_10ms

- ?—— Td_10m=

- ?—— Ts_10ms=

- —— It max

- ?—— Llt_min

- ?—— Man_Auto

-7 —— It Man

In-/utgang Typ Funktion

Puls BOOL Flanktriggad signal var 100:e ms, exekv.

Loop INT Lopnummer pa reglerloop (1-30)

Borvarde INT Borvérde regulator (0-12000)

Arvarde INT Arvarde regulator (0-12000)

Omv_Dir DINT Direkt(0) / Omvand(1) funktion @

Kp_1proc DINT P-konstant i % ex. 100 %=1ggr; (1-100000 %)

Ti_100ms DINT Integr.tid ex. 100=10s; (0.1-3000s) @

Td_10ms DINT Deriv.tid ex. 100= 1s; (0.00-300s)

Ts_10ms DINT Samplingstid ex. 100 = 1s; (0.01-60 s)
(Dock, 0.1s minsta tekniskt mojligal)

Ut_max DINT Hogst 6nskade utsignal (0-12000)

Ut_min DINT Minst 6nskade utsignal (0-12000)

Man_Auto INT Manuell(1) / Auto(0) utsignal

Ut_Man DINT Manuell utsignal (0-12000)

Ut INT Utsignal (0-12000)

1 Vid omvand funktion okar utsignalen vid 6kande reglerfel (borvarde — arvarde)
2 Om ingen I-verkan 6nskas, skriv ett varde > 100000s.
3 Om ingen D-verkan énskas, skriv varde Os.

OBS!

1. Sétt av 2k filregister i parametrarna. RO-R1050 anvénds av regulatorernal! Stéll in
detta i Navigatorns PLC_Parameters — MemoryParam...

2. For ingangen Puls ovan, gor exempelvis ett program enligt nedan och anslut variabeln
Exekvera till namnda ingang!

EExekvera_PID [PRG] Body [FBD]

PLS_M
mS030—— EM EMO —
d ——Exekvera

5.12. Realtidsklockan.

For att kunna gora tidsstyrningar, dvs. starta en aktivitet ett visst klockslag, en viss dag eller
en viss veckodag finns en inbyggd realtidsklocka som haller reda pa ar, manad, dag, timme,
minut, sekund och veckodag. Klockan finns integrerad i PLC-systemets processor och kan
l&sas och stallas av PLC-programmet via féljande register i Q02 (inom parantes i A1S).

SD210 (D9025) - ar och manad
SD211 (D9026) - dag och timma
SD212 (D9027) - minut och sekund
SD213 (D9028) - veckodag

| de register som innehaller dubbel information t.ex D9025 ligger ar i de 8 hdgsta bitarna
och manad i de 8 lagsta bitarna i registret. Data &r lagrade i BCD-kod (Binary Coded
Decimal) vilket gors for att latt kunna lagga ut dem till t.ex en display. Skall de anvandas
for tidsstyrning i programmet ar det dock lampligt att ha vardena som heltal varfor
omvandling till INT-typ &r att foredra. Stod for detta finns i instruktioner som
BCD_TO_INT respektive INT_TO_BCD.

Vad géller veckodag &r de numrerade enligt 0=s6ndag, ...6=l6rdag. Veckodagen ges med
fyra siffror dar de tva hogsta avser arhundrade. Exemelvis vardet 2005 innebér en fredag pa
2000-talet.

Tva stycken specialminnesceller anvands for att kommunicera SD210-SD213 (D9025 -
D9028) med realtidsklockan. SM210 (M9025) anvénds for att lagga in data i
realtidsklockan dvs for att stalla den. SM213 (M9028) anvands for att Iasa klockan dvs nér
denna flagga aktiveras kommer aktuella tidsdata att laggas i SD210-SD213 (D9025 -
D9028).

80

Kap 6. Utvecklingsmiljon enligt standard IEC 61131-3.

Som redan namnts finns numera en standard, IEC 61131, som skall gora tillvaron lattare
nar det galler att programmera PLC av olika fabrikat. Mitsubishi i Tyskland har utvecklat
en editor, GX IEC Developer som stodjer denna standard men ocksa kompletterat den med
en mangd instruktioner utdver standarden vilka har sitt ursprung i Mitsubishis tidigare
programeditor.

Av IEC 61131:s fem alternativa programmeringssatt &r alla tillgangliga i nuvarande version
av GX IEC Developer ndmligen ladderdiagram (LD), funktionsblock (FBD),
funktionsdiagram (SFC=Sequential Function Chart), strukturerad text (ST) samt
instruktionslista (IL). Programmeringssattet enligt denna standard haller alltsa dérrarna
oppna for alla de satt som PLC programmerats pa genom tiderna. Miljon vill dock
uppmuntra till ett strukturerat satt att programmera varfor vi har innan vi gar in pa de olika
instruktionssatten forst bekantar oss med hur ett projekt struktureras.

6.1. Programstrukturen i GX IEC Developer.

PROJECT

Pa TASK-nivan satts villkor och prioritets-
ordning for exekvering av de under tasket
liggande underprogrammen (POU)

\

TASK_1 TASK_2 TASK_3

U

POU_1 POU_2 POU_3 POU_4 POU_5 POU_6

Underprogrammen (POU) kan
skrivas i nagot av de tillgéngliga
programspraken.

I'L SFC FBD LD FBD L

Figur 6.1: Programstrukturen i GX IEC Developer.

Hela styrlésningen samlas under ett project och arbetar med ett bibliotek for varje project.
Sjélva programfilen heter detsamma i alla project (softctrl.pro) varfor uppmarksamhet krévs
vid backup av project. Strukturen hos ett project framgar av Figur 6.1 ovan.

Som framgar av Figur 6.1 ovan sa kan ett projekt delas upp i en eller flera delar som
bendmns TASK. For dessa olika Task kan man styra under vilket villkor och med vilken
prioritet de skall exekveras. De olika exekveringsvillkor (event) som kan anvéndas &r:

81

- kontinuerlig exekvering — d v s sa fort processorn hinner.

- héandelse (dvs yttre handelse som kommer in via ingang eller handelse som
upptécks via exekvering av annat task)

- med jamna tidsintervall

- interrupth&ndelse som genereras via de olika interruptpekarna 11-131.(se
nedan)

Exekveringsvillkoret stélls in genom att markera aktuellt Task i Navigator och ga till Object
— Information.

Om olika Task har samma exekveringsvillkor kan exekveringsordningen styras via prioritet
0 - 31 dar 0 innebér hogsta prioritet. Mera om exekveringsordning finns i avsnitt 6.6.

Varje Task bestar i sin tur av ett eller flera POU (Program Organisation Unit) som skrivs i

nagot av de fyra tillgangliga programmeringssétten instruktionslista (IL), ladderdiagram
(LD), funktionsblock (FBD) eller funktionsdiagram (SFC).

6.2. Skapa project.

Vélj New under menyn Project. Da kommer detta fonster upp:

x
E -
PLC type Cancel |

002H)

Valj enligt figur om Q02-system skall anvéndas eller AnS — A1S om A1S-system skall
anvandas. Valj destination var projektet skall sparas. Valj Empty Project for att fa borja
med ett helt tomt projekt. Menyn for hantering av editorn ligger nu pa en list i 6verkant
medan Project Navigator dyker nu upp vid vansterkanten. Resten ar arbetsyta for
programskapande.

6.3. Navigatorn.
| Project Navigator laggs nu gangen upp hur man tar fram en styrlésning. I navigator enligt

figur nedan ar redan inlagt tva stycken Tasks och tva stycken POU i Task_Pool respektive
POU_Pool.

82

@(Project [xM\A_A_AA_omarbetningarinytt]
=& Parameter

G PLC

-,l"’ Metwork

..l Module Configuration

-« Task_Pool

D" TEST_Task_1 (Prio = 31, Event = TRUE)
- {§" ITTEST Task_2 (Prio = 31, Event = TRUE);

[+]

1

...... g Global Vars

=@ POU_Pool

=@ TEST_POU_L [PRG]
. Header

. .m0 Body [FED]
=@ TEST_POU_2 [PRG]

.40} Body [LD]

Library_Pool innehaller biblioteket av instruktioner och funktionsblock som finns
tillgangliga i systemet. Det ar dock lattare att soka dem pa andra vagar vilket framgar
senare. Har kan ocksa egenutvecklade funktionsblock placeras, vilket behandlas senare.

DUT_Pool (Data Unit Type) kan utnyttjas for att deklarera en global variabelgrupp som
gors for forenklad upprepad anvandning vid styrning av flera likadant uppbyggda
processdelar. For narmare forklaring hanvisas till manual.

Nu aterstar tre nivaer att presentera i navigatorn namligen Global_Vars, POU_Pool och
Task_Pool. Dessa ar de centrala for att man efter deklaration av systemet skall kunna
astadkomma ett styrprogram.

6.4. Globala variabler.

De globala variablerna deklareras alltid som VAR_GLOBAL och en bendmning ges mot en
absolut adress i PLC-minnet eller mot en in- eller utgang till systemet. De globala
variablerna galler for hela projektet och kan nas fran olika POU (underprogram) och gor det
mojligt att utbyta data mellan olika POU och TASK.

Ett exempel pa global variabellista visas nedan. | IEC-standarden har man foreskrivit att in-
och utgangar, minnen, register m.m skall ha en viss adressbenamning. Anvandare av olika
fabrikat ar dock inarbetade pa andra fabrikatsspecifika adressbenamningar varfor man i
denna editor kan anvéanda IEC-adress alternativt Mitsubishi-adress. Skriver man den ena sa
ges den andra. Tidigare i denna skrift &r det IEC-adresser som presenterats i beskrivningen
av operanderna i avsnitt 3.2.1. Variabler, bade lokala och globala, kan skapas lI6pande
under programkonstruktionen och placeras da in i dessa listor.

83

Er e

Class dentifier MIT-Add | IEC-Addr. | Type Initial Cormment =

0: WAR_GLOBAL ﬂ Ingang_0 A Sl BOOL ﬂ FALSE Andlage transportdr
1| WAR_GLOBAL ﬂ Utgang 5 Y15 Y21 BOOL ﬂ FALSE Matorkontaktor
2| WAR_GLOBAL ﬂ Temperatur_1 D230 b0, 230 £ INT ﬂ 0 Oljetemperatur

il o

Typ av variabel deklareras i Type dar man kan vélja mellan BOOL, INT, DINT, WORD,

DWORD, REAL och ARRAY dar en array kan besta av 1, 2 eller 3 dimensioner av data.

INT &r ett 16-bitars register som kan anta varden fran -32768 till +32767. DINT ar ett 32-
bitars dito. WORD é&r en 16-bitars strang som kan anta vérden O till 65535. Observera att

manga registerhanterande instruktioner bara klarar datatyperna INT och DINT.

I Initial skall man enligt standarden kunna ge ett initialvarde for de olika variablerna vid
programladdning. GX IEC stddjer dock inte denna facilitet. Initialvarden &r alltsa alltid
FALSE for boolska variabler och 0 for register. Vill man tilldela andra initialvarden kan
detta goras med hjélp av %MX10.402 eller SM402 (Q02) alt. M9038 (A1S) som é&r en
specialflagga som ér ettstalld endast forsta scan-cykeln efter exekveringsstart.

Det finns i GX IEC mdjlighet att smita forbi den globala variabellistan. De adresser, som
inte &r lamnade till systemet, ar globala och kan anropas direkt utan att vara upptagna i
globala variabellistan. Vilka adresser som finns tillgangliga gar att finna under PLC i
Navigatorn. Med adresser menas IEC-adresser av typ %MX0.89, %1X12, %QX23,
%MWO0.567 eller som motsvarande MIT-adresser av typ M89, XC, Y18, D567. Detta ar
dock inte att rekommendera da globala variabellistans syfte ar att ge mer processnara namn
till de olika variablerna for att darmed géra programkoden mera lattolkad och i mindre
behov av kommentarer.

6.5. Skapa delprogram POU.

Under menyraden finns en rad med verktygsikoner varav en ar méarkt POU. For att skapa ett
nytt POU tryck pa denna och en dialogruta kommer fram dar man anger vad man vill dopa
POU:t till och sedan vélja i vilken form av de fyra mojliga man vill skriva underprogramet
(Body). Det upptrader nu tva underrubriker till POU i navigatorn namligen Header och
Body.

6.5.1. Lokala variabellistan (Header).

Lokalt anvanda variabler i detta POU skall vara deklarerade i dess Header-lista.
Dubbelklicka pa Header under aktuellt POU i Navigatorn for att skapa denna lista for
lokala variabler. Dessa skall inte knytas till ndgon adress utan systemet véljer sjalv ur de
variabler som &r lamnade till systemet enligt tidigare beskrivning. Variabler, bade lokala
och globala, kan skapas I6pande under programkonstruktionen och placeras da in i dessa
listor.

84

6.5.2. Instruktionslista (IL).

Gar man sedan in i Body under aktuellt POU hamnar man i en fri editor vilket innebér att
man kan skriva in 6nskad kod i vilken Windowseditor som helst och sedan kopiera in
programmet via Klippbordet.

Det morka féltet langst till véanster indikerar nagot som kallas Network. Nér man skriver
instruktionslista kan man skriva hela programmet i ett Network. Nytt Network krévs bara
vid hopp i programmet da hoppet sker till ett nytt Network forsett med Label som utgor
aktuell pekare. Dubbelklicka pa Network och skriv in aktuell pekare.

Sjalva programmet utgors av tva kolumner. Den forsta utgor instruktioner foljt av andra
kolumnens operander som finns deklarerade i headern. Med F2 far man upp en lista med
tillatna instruktioner. Hjalpfunktionen i denna dialogruta ar lite konstig varfor det ar béttre
att ga in i hjalp via Help och Overview i huvudmenyn. I hjalpen finner man bl.a alla
instruktioner forklarade med hur de fungerar och vilka variabeltyper som kan anvéndas.
Exempel visas nedan.

. MELSEC MEDOC plus

fukiv Bedigera Bokmarke Reference Alemativ Hidlp

brehdl | Sk | Bokét [Skivut| <« [2 | selecton|
£F GE Function IEC)
El See also Data types Example

Greater than | equal to sequential comparison (>=)

GE

GE_E With Boolean input (EN) and output (ENO)
GE(with Jeft parenthesis (only supported in it)
Description

Cornpares the walues of input variables (IND) ta (IWn).

[f the comparison condition is satisfied the output variable is setto 1; if it is not satisfied the output variable is set to 0. The comparison condition is as follows:
[(IMT) == (IN2)] & [(IM2) == (N3] & .. & [(INA)-1 == (Inn)]

ES° Note

The Ieft parenthesis modifier (open parenthesis) defers evaluation of the operator until the right
parenthesis (close parenthesis) is encountered

Same data types
The input variables must be of the same data type

Programmet exekverar som en bit-ackumulator vilket innebér att resultatet av en instruktion
lagras direkt efter exekvering i ackumulatorn. I ackumulatorn finns alltsa alltid resultatet av
foregaende instruktion.

| programlistan kan kommentarer skrivas in antingen i tredje kolumnen eller pa ny rad.
Kommentarerna skall bérja med (* och sluta med *).

En instruktionslista kan se ut som foljer. Observera att alla anvanda operatorer inte ar
deklarerade i Headern avsnittet ovan.

85

@ UNDER_1 [PRG] Body [IL]

("OB%! Alla operanderna &r inte deklarerade | Heademn i avsnitt 11.5.5.1)
LD ~Ingang_0 ~ ("Logiskt villkor *

AND ~Minne_1 ~ (Utgang_5=Ingang_0 and Minne_1)
al ~Utgang 5

LD Ingang_1 (* Ingang_1 and invers Ingang 2 *)
AR ~Ingang_2 _
=) ~Minne_b " sétter Minne_B "

LD Ingang_ 7 (* Ingang_7 and (Minne_1 or Utgang 8) ™
ANDI ~Minne_1
OR ~Utgang_3

) _ :
K Minne_f { resetar Minne &)

Instruktionslistan ar anvandbar och snabb for att skriva in enkel logik. D& man kommer in
pa funktioner som timers, raknare, jamforare osv ar det enklare och klarare att anvanda
ladderdiagram eller funktionsblock.

De vanligaste tillgédngliga instruktionerna ar LD, AND, ANI, OR, ORI, ST, STN, S, R.

6.5.3. Ladderdiagram eller Rel&lista (LD).

Ladderdiagrammet eller reldlistan ar en grafisk beskrivning av styrlogiken som ar
uppbyggd enligt elschemaritning av reldlogik. Reldlogik var det s&tt man I6ste styrningar
med fore elektronikens intrade pa omradet. Eftersom traditionen och yrkeskunskapen fran
relatiden har flyttats Gver pa moderna programmerbara system har detta resulterat i att man
raknar med att 70 % - 80 % av all PLC-kod som finns &r skriven i ladderform. Med nya
kanske mer tilltalande satt att programmera sa ar det anda viktigt att kanna till ladderkoden
och kunna tolka den da man skall gé in i redan befintlig programdokumentation.

Som framgar av exemplet nedan kan man nu lagga in mer avancerade funktioner i ladder-
koden an vad man kunde realisera med relateknik tidigare. | ladderdiagrammet kan man
enligt IEC 61131 lagga in samma funktionsblock som vid programmering just med
funktionsblock (FBD), se nésta avsnitt.

Laddereditorn &r en grafisk editor dar kontakter och spolar fritt kan placeras, flyttas och
kopieras mellan olika Networks. Observera att endast en krets far finnas i varje
Network. Ett nytt Network 6ppnas ovanfor eller under det aktiverade med tva alternativa
ikoner i verktygsfaltet.

For att negera en kontakt dvs andra fran NO till NC dubbelklicka pa kontakten for att fa
dialogruta. For att vilja funktionsblock sa vilj verktygsikon med ”IC-Kkrets-symbol”.

Forbindelser mellan komponenterna fas genom att hogerklicka och vélja Interconnect
Mode. Klicka pa utgang, flytta musmarkor till ingang och klicka. For att ansluta signal till
funktionsblock anvand verktygsikon VAR- och -VAR beroende pa in- eller utgang.
Kommentarer 1&ggs in genom att aktivera verktygsikon med pratbubbla och rita
kommentarruta.

86

Il LADDER [PRG] Body [LD]

1

[Samma funktion sam i instruktionslistan |
Ingang 0 Minne_1 Utgang 5
T r—¢»

[Hillkrets
Stopp 1 Start_1 Ut 1

1)
"
_[|

[Samma logiska funktion sam hillkrets avan

RS minne
Start 2 RS Ut 2

5 o I

R1
Stopp 2
1 M

[Timer med 5 sekunders tillslagsfardrajning |

Tirmer 1
Ingang 1 TOK tidutgang
i] —)
T#s—— PT_ ET i~

6.5.4. Funktionsblock (FBD).

Funktionsblockeditorn ar uppbyggd och anvéands pa samma satt som ladderdiagrameditorn.
Skillnaden &r att booleska logiken byggs upp med logiska block istallet for tradade
kontakter och enskilda ingdngar och utgangar ansluts med enbart signalbeteckning i stallet
for med kontaktsymbol respektive spolsymbol. For 6vrigt galler alltsa en krets per
Network, funktionsblockval med IC-kretsikon, anslutning med VAR-ikon, pratbubbla for
kommentarruta. Forbindelser mellan komponenterna fas genom att hogerklicka och valja
Interconnect Mode.

Invertering av in- eller utgang gors genom att dubbelklicka pa anslutningen till blocket.

Vissa functions, som har benamning som slutar _E, har langst upp en ingang méarkt EN
(enable). Detta block exekveras endast om signalen till EN & TRUE. P4 dessa block finns
ocksa en utgang ENO vilken slaviskt foljer signalen till EN. Denna utsignal kan anvéandas
till eventuellt efterféljande blocks EN-ingang.

I biblioteket dver functions finns dels Standard_Lib och dels Manufacturers_Lib.
Standard_Lib innehaller de funktioner som skall finnas enligt IEC-standarden. Tillverkaren
(i detta fall Mitsubishi) &r dock intresserad att ha kvar sina ”gamla” funktioner som dess
programmerare ar vana att hantera varfor man har kompletterat med ett Manufacturers_L.ib.
Dessa funktioner kan ofta vara anvandbara och ar val dokumenterade i Help-manualer. En
del av dem presenteras i avsnitt 5.2.

Har nagra exempel pa kretsar i funktionsblockform vilka utgér ett POU:

87

[Boaolsk logik

AND OR
Ingang_0 — ——Utgang_3
Ingang_1—— Utgang 5 ——

[Ar register] + register < register3 s tand lampa___ |

ADD LT
register! —— ——lampa
registerd —— registerd ——

[Om inD eller in1 eller in2 &r aktiva 58 flytta kanstanten 395 till regB0 |

OR MOWE_E
ind —— EN ENO
int —— 395 — N ——regd0
N2 —

Observera att exekveringen av Networken sker uppifran och ner, stannar aldrig upp och
vantar pa nagot, utan upprepas cykliskt i den takt som styrs av exekveringsvillkoret for det
Task som POU:et tillhor.

6.5.5. Funktionsdiagram eller Grafcet (SFC).

For att beskriva sekventiella forlopp finns numera en standardiserad form (IEC 848) kallad
funktionsdiagram som &r beskriven tidigare i kapitlet ”Funktionsbeskrivningar”.
Funktionsdiagramformen gar ocksa under namnet Grafcet.

Det ar naturligt att funktionsdiagrammets lattbegripliga presentation av en problemldsning
ar lamplig att anvénda for att programmera styrlsningar till sekventiella forlopp. Darfor
blev en av de standardiserade programmeringsformerna for PLC just funktionsdiagrammet.
Benamningen pa detta sprak ar Sequence Function Chart (SFC) och en programeditor for
detta sprak finns i GX IEC Developer. Denna editor ar en fast grafisk editor som foljer ett
visst fast monster. Nar ett POU skapas som skall programmeras i SFC finner man att i
Navigatorn upptrader tre underrubriker, Header och Body &r kanda sedan tidigare men nu
finns ocksa Action. | Body bygger man upp sjalva funktionsdiagramstrukturen medan man i
olika Actions lagrar de handelser som skall ske i de olika stegen.

Nedan visas en SFC-body dar namn har satts pa de olika stegen och dvergangsvillkoren.
Grafiskt byggs diagrammet upp med musen genom att aktivera grunddiagrammet pa “rétt”
stalle och sedan lagga till steg, 6vergangsvillkor, parallella och alternativa férgreningar med
hjalp av verktygsikonerna. Béttre an att forsoka forklara varje steg ar att uppmana
anvandaren att testa sig fram. Avslutningen med ett tvarstreck efter OVERGG60 innebér
aterhopp till startsteget (Initial).

I SFC-programexemplet nedan visas dels en parallellférgrening och senare i sekvensen en
alternativforgrening. Majligheter finns ocksa till aterhopp uppat i funktionsstegen som
framgar av hopp” 1 figuren.

88

Initial

_LJOVER601
STEG1
_fJOVERGlz
STEG12 STEG22
| OVERG121 | OVERG222
-3 '3
STEG13 STEG23
I
—JOVERG34
i
hopp
STEG4 |
_rJOVER6415 _LJOVER6425
STEG15 STEG25 |
_LJOVERGISG _}JOVERGZSG
STEG6
_ _10OVERG6E0 _}JOVERGﬁd
=
hopp

OVERG46

SFC-programmet dversitts till en vanlig instruktionslista vid kompileringen. Det innebér att
ett SFC-POU exekveras pa samma sétt som andra. Att forloppet befinner sig i ett visst steg
innebar inte att exekveringen stannar upp i vantan pa att aktuellt 6vergangsvillkor skall
uppfyllas utan exekveringen av alla andra i projektet ingadende POU:n fortl6per
kontinuerligt.

Som synes i funktionsdiagramexemplet ovan kan ocksa hopp utféras i forloppet. Undvik
dock enligt god programmeringssed att gor hopp eftersom det ofta minskar programmets

lasbarhet.

89

Handelser:

Varje steg i programmet har tilldelats ett namn som inte skall deklareras i den lokala
variabellistan. Till varje steg kan man knyta handelser eller om héndelsen &r villkorad ett
PLC-program som kan skrivas i valfri editor. Det gors pa foljande sétt:

3 Klicka t ex pa STEG1 vilket gor den rutan aktiverad vilket visas genom att en svart
ram upptrader kring STEG1. Tryck den ikon som visas har intill. Da framtrader Action-
rutan enligt nedan dér tre rader skrivs in sa att direktaktiveringen av en handelse (variabler),
Utgang_1 sker samt aktivering av tva PLC-program, Timer_4 och Handelseprogl .

P Utgang 5
Tirmer_4
Handelseprog?

-

Med markoren placerad pa Handelseprogl i Action-rutan aktiveras ikon som visas har
intill. D& ges majlighet att vélja PLC-editor och skriva in sin villkorade handelse for stegl.
Denna handelse kan se ut enligt nedan. Tittar man i Navigatorn upptécker man nu att
Handelseprogl har hamnat i Action Pool i POU:t Grafcet. Observera att for att i detta fall
Utgang_9 skall aktiveras maste det logiska villkoret Action Handelseprogl vara uppfyllt
samt forloppet befinna sig i STEG1 som denna Action ar kopplad (associerad) till.
Héndelserna som &r deklarerade i ett steg exekveras endast om forloppet befinner sig i det
steget.

EZ GRAFCET [PRG] Action Handelseprog1 [FBD]

AND OR
Ingang_1—— ——Lltgang 9
Ingang_4 —— Ingang_2 —4
Ingang_3——

Nér det galler hdandelser som &r bestyckade med modifierare av typ D och S d v s Delay av
handelse resp ”Stored” handelse kan de hanteras pa olika satt. Vi betraktar nagra olika
I6sningar i foljande exempel.

90

Exempel 6.1
Skriv SFC-programlésning for foljande handelser som har beskrivs pa
funktionsdiagramform.

1 — S |UT1=1
FLAG3

+ D D=5s

8 |— S |UT1=0

Losning alternativ 1:

Losning med IEC-standardinstruktioner dar Actions skrivs i FBD. Notera att i detta fall
behovs ett steg 2 som foljer direkt pa steg 1. Forklaring till detta foljer efter figurerna. For
minnesfunktionen anvands instruktionen MOVE for att till UT1 lagga vardet TRUE i stegl
respektive FALSE i steg 8.

Foljande Actions deklareras i stegl, steg 2 respektive steg 8.

Action steg 1:
il srtest [PRG] Action Action_stegl [FED]

WOWE

TRUE—{ N |—uUTI

2 Tirnerl
TOM
TRUE — [N Q ——FLAG3
T#s— PT ET ~

Action steg 2:

Tirnerl
TOM
FALSE —— [N Q
- PT ET

L

L

Action steg 8:

WOWE

FALSE—{ N |—UT1

Respektive Action exekveras forst nar man befinner sig i steget vilket innebar att UT1
ettstalls da steg 1 nas och forblir ettstéllt tills steg 8 nas da den nollstélls. | steg 1 aktiveras
Timerl. Om forloppet drojer kvar i steg 1 mer an 5 sekunder kommer FLAG3 att ettstallas.
Lamnas nu steg 1 kommer Timer1 inte att exekveras mer men for ratt funktion kravs att
Timer1 nollstalls i nasta direkt foljande steg (steg 2) varfor steg 2 maste forses med en
kopia av Timerl men med FALSE pa ingangen varvid denna exekveras och timerns
tidraknare nollstalls.

91

L6sning alternativ 2:

Alternativ I6sning med IEC-standardinstruktioner dar Actions skrivs i LD dar tillgang finns
till Set- resp Reset-instruktioner som &r separerade. Vad galler tidsfunktionen &r denna
I6sning identisk med l6sningsalternativ 1.

Foljande Actions deklareras i stegl, steg2 respektive steg 8.

Action steg 1:

B srbest [PRG] Action Actin_stegl [LD]
1 TRUE UT1
11 (=2
Timer1
TRUE TOMN FLAGS
N a T
T#s—— PT ET

Action steg 2:

Tirmerl
FALSE TOM
01 N @
‘ -PT_ETk

L

Action steg 8:

TRUE LT

@)

Losning alternativ 3:

Fortfarande 16sning med IEC-block men nu anvands ett FBD-POU som mal for
handelseflaggor som aktiveras i olika Actions. Denna metod tillampas konsekvent da stora
system programmeras dar funktionsblock skapas for de olika objekten som ingar i systemet.

I SFC-programmet aktiveras i steg 1 en BOOL- flagga SET_UT1 och en DELAY_FLAG3
och i steg 8 en flagga RESET_UT1. Dessa flaggor deklareras som Globala variabler
eftersom de skall verka 6ver POU-granser. Sedan skaps ett nytt POU med programsprak
FBD, | detta laggs tva networks for modifierad styrning av UT1 och FLAG3 som paverkas
ifrdn SFC-programmet:

1 Vippal

RS

SET UT1— & Qi —UT1
RESET UT1— R1

2 Timer1

TON

DELAY_FLAG3—— IN Q —FLAG3
T#bs— PT ET -

92

Overgangsvillkor:

Mellan tva pa varandra féljande steg finns ett 6vergangsvillkor. Den bendgmning man satt pa
overgangsvillkoret &r namnet pa det PLC-program som skrivs i valfri editor. For att komma
till nasta steg skall man skriva ett program som aktiverar en utgang med den unika
benamningen TRAN eller med samma namn som dvergangsprogrammet.
Tillvagagangssattet ar detsamma som villkorad handelse enligt ovan. Aktivera det aktuella

évergangsvillkoret och tryck ikonknapp 4 sa kommer dialogruta for New Transition dar
val av editor gors.

Nedan visas ett exempel for OVERG12.

[PRG] Body [SFC] Transition O¥ERG12 [FBD]

[Gwergingsvillkor far OVERGTZ2 |

GE AND
regd4 — L OVERG1Z (alt. TRAN)
4576 — in3—|

Om forloppet befinner sig i STEG1 och dvergangsvillkoret (transition) OVERG12 ar
uppfyllt kommer foérloppet att hamna i STEG12 och STEG22.

En brist finns i programvaran som gor att om 6vergangsvillkoret ar allt for omfattande
(flera ingangar och grindar) sd véigrar kompilatorn och ger felmeddelandet ”Only one OUT
instruction is allowed in a transition for the current CPU type”. I detta laget tvingas man
skapa ett eget POU for vergangsvillkoret och anvianda resultatvariabeln som
overgangsvillkor. Med detta forfarande &r kompilatorn ater medgorlig.

Ett alternativt sétt att skriva 6vergangsvillkor ar att markera 6vergangen och i menyn vélja
Tools — Edit Transition Condition och i den skriva in 6vergangsvillkoret i strukturerad text-
form. Detta kan se ut enligt:

srtest [PRG] Body [SFC]

[W Transition Condik i] 1

ker34>=4376 AND in3

Man formulerar 6vergangsvillkoret pa samma satt som if-satser i andra hdgnivasprak d v s
resultatet ska vara antingen TRUE eller FALSE. Anvand parenteser sa att det framgar klart i
vilken ordning operationerna ska utforas.

93

Foljande operatorer kan anvéndas:

Priority level | Operatlon Operator symbol Comments

1 Brackets ()

2 Function call Fun()

3 Exponentiation e

4 Negation - U)
Complement NOT nary minus
Multiplication *

5 Division / Remainder of integer division
Modulo MOD
Addition - . .

6 Subtraction Binary minus

7 Comparison <, >, <=, >=
Equality =

8 Inequality <>

9 Logical AND AND, &

10 Logical Exclusive OR XOR

11 Logical OR OR

Master Control fér SFC:

Onskemal kan finnas att kunna stoppa sekvensen var som helst i férloppet. For detta
andamal finns ett antal funktionsblock tillgéngliga for "Master Control” éver en SFC-
slinga. Dessa och deras funktion anges nedan.

SFC_CTRL
?— EN ENO
A—— SFC_ON
B—— OUT_mode

C—— SFC_INI
"0"—— SFC_name*

For SFC_CTRL galler att om A=TRUE sa exekveras SFC-POU:et med namn ”D” normalt.
Om A=FALSE och B=FALSE kommer forloppet att stoppas i aktuellt steg (PAUSED) och
alla out-aktiviteter att nollstallas. Om A=FALSE och B=TRUE kommer de d&remot att
behalla sitt varde. C=TRUE medfor reset av POU:et och atergang till Initial-steget.

SFC_PAUSE
?— EN ENO

"D;'— SFC_name*®
C—— 0OUT_maode

L

For SFC_PAUSE galler att om EN =TRUE kommer forloppet att stoppas i aktuellt steg
(PAUSED). Om C=FALSE kommer alla out-aktiviteter att nollstidllas medan om C=TRUE
kommer de att behalla sitt varde.

SFC_START
?— EN ENO
"D"—— SFC_name*
"E"—— Step_name*

For SFC_START galler PAUSE:ad sekvens enligt ovan startar igen on EN = TRUE och da
frén steg med bendmning "E”.

94

SFC_STOP
7—EN ENO

"D;'— SFC _name*

L

For SFC_STOPP giller SFC ”D” stoppas, out-aktiviteter nollstalls och reset ger atergang
till Initial-steg.

SFC_PAUSED
"D"—— SFC name* Paused ——Q1

Flagga Q1 ettstélls dd SFC ”D” pausats med SFC_PAUSE enligt ovan. Detta kan anvandas
for att flagga av att denna master control gatt in.

SFC_STOPPED
"D"—— SFC_name* Stopped —Q2

Flagga Q2 ettstills dd SFC ”D” stoppats SFC_STOP enligt ovan. Detta kan anvéndas for att
flagga av att denna master control gatt in.

6.5.6. Strukturerad text.

Det femte majliga programspraket Structured Text, ST, ar ett textbaserat sprak liknande C
och Pascal och ar lampligt for bl a berdkningsrutiner. Detta sprak behandlas dock inte
djupare har.

6.5.7. Kontroll av inskriven kod.

& Med denna knapp kan kontroll av program och bendmningslistor goéras. Kontrollen
innebdr att aktiverat fonster kontrolleras av kompilatorn och eventuella felmeddelanden
rapporteras. Samtidigt sparas de andringar som gjorts sedan foregaende kontroll eller sedan
fonstret aktiverades. Det senare sker dven da fonstret stangs. Kontrollen innebar dock
endast kontroll av syntaxen sa ndgon kompilering sker inte.

6.6. Skapa TASK och kompilera projektet.

Ett projekt bestar av ett eller flera Tasks. Till ett Task knyts ett eller flera delprogram
(POU). Aktivera Navigatorfonstret och klicka sedan pa knapp markt TSK i
verktygsikonraden. Ge detta nya TASK ett namn och dubbelklick sedan pa detta namn i
Navigatorn. Ett fonster kommer da upp dar man kan skapa en lista pa de POU som skall
inga i Tasket. Exekveringen av de olika POU:na kommer nu att ske i den ordning som de
laggs i listan.

Ett Task kan sedan exekveras pa olika villkor. Markera aktuellt Task i Navigatorn, vélj
sedan Objekt i menyn och dar Information. Déar kan villkor for exekvering stéllas in enligt:

3. Varje programvarv. Sétt Event till TRUE.

4. Pahandelse. Satt Event till 1/0-adressen eller bendamningen pa det villkor som skall
aktivera exekveringen.

95

5. Tidsintervall. Satt Event till FALSE samt Interval till det 6nskade tidsintervallet
mellan programexekveringsstarterna. Denna tid maste vara langre an scancykeltiden.

Vid icke kontinuerlig exekvering enligt pkt 2-3 ovan, dvs da exekveringsvillkoret for ett
Task inte ar TRUE (kontinuerlig exekvering) utan utfors pa handelse eller med jamna
tidsintervall uppfor sig systemet nagot underligt. Mojligheten finns dar for att lasta av
centralenheten men for 6vrigt ar avsikten att styrlogiken skall fungera normalt. Den
funktion som fanns tillganglig for att realisera denna IEC 61131-facilitet i Mitsubishi-
systemet var en Master Control-funktion som frikopplade utvalda delar av programkoden
fran exekvering. Det innebar att da faciliteten icke kontinuerlig exekvering tillampas sa
faller alla M-flaggor (%MX-flaggor) och Y-utgangar (%QX-utgangar), som inte ar styrda
med SET/RESET-instruktion, sa fort den tids- eller villkorsstyrda exekveringen utférts. Det
innebar att om diskontinuerlig exekvering skall tillampas sa maste alla kombinatoriska
uttryck lasas med SET och RESET for att forvantad funktion skall uppnas.

Exempel 6.2:
Logiska villkoret Q = C och (A eller B) maste skrivas pa féljande satt om det ligger i ett
POU under en TASK som exekveras pa handelse eller med jamna tidsintervall.

vippal
OR AND RS
A S af—a

B— C— —q R1

Vidare véljs ocksa exekveringsprioritet (Priority) mellan 0 och 31 for Tasket dar O &r
hogsta prioritet. Vid kompilering medfor detta att det Task med hdgst prioritet 1aggs Gverst
i programlistan.

Exekveringsordningen blir foljande:

6. TASK med hogst prioritet, dvs lagst angivet prioritetsvarde (0-31), exekveras forst.
Default har alla TASK l&gsta prioritet 31.

7. De TASK med samma prioritet exekveras i den ordning de laggs i Navigatorn.
8. De POU som ligger under ett TASK exekveras i den ordning de laggs i Navigatorn.

9. Varje POU bestar av en instruktionslista eller av ett eller flera Networks i ladder (LD)
eller funktionsblock (FBD) och dessa exekveras i ordning uppifran och ner.

10. Exekveringen sker cykliskt dvs om och om igen i den ordning som ges av pkt 1-4.

11. Interrupt avbryter tillfalligt exekveringsordningen da interruptrutinen kors.
Exekveringen atervander efter interrupt tillbaka till det stélle i programcykeln den
befann sig da interruptet kom.

Kompilering av hela projektet sker sedan i meny Project rubrik Build eller Build all.

Endast de POU som dr knutna till ett Task blir kompilerade. Vid kompileringen skapas den
kod som kan laddas ner till PLC-systemet. Med Build kompileras endast det som ar &ndrat i
projektet sedan foregaende kompilering. Man vet vilka Task och POU som &r kompilerade

96

genom att den rdda asterisk som finns vid rubrikerna i Navigatorn férsvinner vid lyckad
kompilering.

6.7. Overforing av program och OnLine-funktioner.

| Online-menyn valjer man Transfer Setup for att stalla in hur 6verforing skall ske. For bade
Q02-systemen och A1S-systemen anvander vi serieporten och RS232.

I Online-menyn kan man ocksa starta monitorering av program som finns i aktiverat fonster
och félja statusen hos olika signaler. Entry Data Monitor kan ocksa véljas for att lasa
statusen hos valfria adresser.

Man kan ocksa gora onlineandringar av PLC-programmet. Med Projekt - Online Program
Change kompileras det modifierade programmet och dverfors till PLC:t da detta ar i RUN
mode.

6.8. Simulering av program.

I GX IEC Developermiljon finns en simulator som aktiveras genom Online — GX
Simulator. Aktivering av denna funktion innebar att dverforing sker till en simulerad PLC-
enhet och signaler kan styras och monitoreras via en monitoreringsfunktion i programkoden
och via Entry Data Monitor. OBSERVERA att det inte ar mojligt att simulera POU:er
skrivna i SFC.

6.9. Komma igang exempel.
Har foljer en snabb steg for steg-genomgang av ett programexempel som utfor foljande:

a) Ingangarna Inl, In2 och In3 kopplade till de fysiska ingangarna X1, X2 resp X3
anvéands. Om Inl varit aktiv i 4 sekunder och In2 ej ar aktiv eller om In3 &r aktiv skall
utgang Y14 benamnd Utgang14 aktiveras.

b) Ett registervarde Pott kopplat till register D54 skall raknas uppat med en enhet per
sekund. Registret far inte dverskrida vardet 12. Pott skall nollstallas om Utgang14
aktiveras enligt a).

1. Starta GX IEC Developer v 7.04 och aktivera Project — New.
2. Vilj CPU-typ Q — Q02(H) alt. AnS - A1S.

3. Ge projektet ett namn och biblioteksplacering.

4. | New Project Startup Option valjs Empty Project.

5. Vi kor detta exempel med defaultinstéliningar varfor vi i Project Navigator inte bryr
0ss om PLC Parameter.

97

10.

11.

12.

13.

98

Vélj Global Variables i Project Navigator. Asterix fore nagon rubrik innebar att den
enheten inte ar kompilerad.

Lagg in i Global Variable List som VAR_GLOBAL Identifier In1 med MIT-adress X1
sa fas automatiskt motsvarande IEC-standardadress och typen satts automatiskt till
BOOL.

B
Lagg till sex nya rader med hjélp av verktygsknapp "= | (tredje frén héger).
Systemet serverar nu ett forslag pa de sex féljande raderna dar de tva forsta ar helt
acceptabla. Redigera om de tva sista raderna sa att de far foljande utseende. Alla
variabler som &r kopplade till en in- eller utgangsadress maste deklareras som Globala
variabler. | detta fall géller det alltsa In1, In2, In3 och Utgang14. De andra tre, Pott,
Timerl och Trigl, behdver egentligen i detta fall inte deklareras som globala utan det
hade varit tillfyllest att deklarera dem som lokala variabler i Headern.

HEH Global Variable List

Class Identifier MIT-Addr. | IEC-Addr. Type
0|VAR_GLOBAL - |In1 X1 Yal¥1 BOOL
1/WVAR_GLOBAL - |In2 X2 %lX2 BOOL
2|VAR_GLOBAL - |In3 X3 %lX3 BOOL
3\VAR_GLOBAL - |Utgang14 Y14 %QX20 BOOL
4[VAR_GLOBAL - ||Pott D54 %MW0 .54 [INT
5|VAR_GLOBAL * |Timer1 TON
6/ VAR_GLOBAL = |Trig1 R_TRIG

Ga till Project Navigator, markera POU-pool, klicka pa verktygsknapp markt POU. Ge
POU:t ett namn och valj Function Block Diagram. Sedan OK.

Dubbelklicka i Project Navigator pa POU-pool sa kommer nagra undernivaer fram.
Dubbelklicka dar pa Header vilket 6ppnar en ruta for lokala variabellistan. Nagra
ytterligare variabler behdver vi inte i detta fall. Ga tillbaka till Project Navigator och
dubbelklicka Body. En Network-ruta finns nu i Body-rutan. Vlj i verktygsknappraden
en knapp med en “IC-kapselsymbol” pa. En dialogruta 6ppnas. Vilj Operator Type till
All Types och vélj dar en AND. Behall Number of Pins vid defaultvardet 2. Tryck
Apply och ga upp i Network-rutan och klicka in funktionsblocket. Testa ocksa att du
kan flytta pa blocket med musen. For att invertera ingdng In2 klicka vid “roten” av
ingangshenet. Hamta ocksa ett OR-block och ett TON-block och placera pa lampligt
stélle.

Klicka pa ? pa in och utgangar. Hogerklicka. Via dialogruta kan In1, In2, In3,
Utgang14 laggas pa sina stéllen enligt figur nedan. Detta kan ocksa skrivas in via
tangentbordet. Markera ingangen PT pa TON-blocket och skriv T#4s vilket innebér 4
sekunders fordréjning. Aterstér att knyta ihop de olika blocken. Hogerklicka och vélj
Interconnect Mode. Klicka pa utgang, flytta musen och klicka pa ingang. Nar alla
forbindelser ar gjorda hégerklicka och valj Select Mode.

B

Skapa tv& nya network med verktygsknapp "% | och I4gg in block enligt figur nedan.
ADD _E blocket innebar att Pott 6kar med en enhet for varje positiv flank som laggs pa
EN-ingangen. M9032 &r ett pulstdg med frekvensen 1 Hz.

14.

15.

16.

17.

18.

19.

TOM ARD oR
InT—— I Q ——Lltgang14
T#s—— PT_ ET |~ In2 —= N3 —
2 Trigl
LT ARD R_TRIG ADD_E
Pott — —1 ClK Q- EN ENO
12— MS0E2 —— Pott— _IM ——Pott
T— N
3 MOWE_E
tgangld—— EN EMOD —
— 1IN ——Fott

Vi skall nu koppla det skapade delprogrammet, POU:et, till ett Task. Ga till Projekt
Navigator, markera Task och klicka pa verktygsknappen markt TSK. Ge tasket ett

namn.

Dubbelklicka pa det antagna tasknamnet i Project Navigator. En dialogruta kommer
fram dér onskade POU:n ansluts till detta Task. | detta fall finns bara ett val.

Nu ar projektet klart for kompilering. Ga till Project i huvudmenyn och aktivera
Rebuild all. Férhoppningsvis inga fel annars ga in och korrigera.

Dags for overforing till PLC-systemet. Valj huvudmenyns Project och Transfer och dar
Dopwnload to PLC. (Lyckas det inte s& ga till Online-menyn valj Transfer Setup -
Ports - Setup och stall in ratt port.)

Monitoreringar och on-line-andringar kan sedan goras enligt avsnitt 6.7.

Skulle samma problem I6sas med ladderprogrammering LD skulle denna
programmeringsform véljas under punkt 110 ovan. Det fardiga programmet skulle se

ut enligt nedan. Som synes ar det endast de logiska grindarna av typ AND och OR och
negeringar som beskrivs med serie och parallellkopplade kontakter i ett ladderdiagram.
For ovrigt anvands samma funktionsblock som i FBD.

mLhDDER_Z [PRG] Body [LD]

In2

Tirnerl
Il TOM
0 M Q
T#ds— PT ET
Ind
I

01

Utgang14
§2
L

Patt ——
12—

LT

Trig!
Mo032 R_TRIG
— CLK o

Patt —— _|

j

ADD E
EN ENO

——Pott

MOVE_E
N END

3 Ut?-]anim

0—

Iy

——Fatt

20. For att skriva SFC-program ar forfarandet ungeféar detsamma. Det som skiljer &r

uppbyggnaden av sjalva funktionsdiagrammet.

99

6.10. Dokumentation.

Vid all form av utvecklingsarbete &r dokumentation en nddvandighet. Det galler i hdgsta
grad i programutvecklingssammanhang. Ar ett program inte dokumenterat pa ett
tillfredsstéllande sétt kan det vara mycket tidskréavande att redan efter en relativt kort tid
atervanda for att gora en modifiering, &ven om man sjalv utvecklat programmet. Om sedan
nagon som inte varit med i utvecklingsarbetet skall géra modifieringen kan det vara annu
besvarligare om bra dokumentation saknas.

I utvecklingsmiljon GX IEC finns goda mojligheter till dokumentation. Dels skall man hela
tiden arbeta med relevanta benamningar pa de variabler eller signaler som anvands. Var
alltsd noggrann med att hitta processnara benamningar som darmed direkt gor
programlogiken mera lattl&st.

Darutéver finns det mycket goda majligheter att lagga in kommentarer dér sa dnskas.

o)
Genom att aktivera ikonen) kan en kommentarruta ritas” i arbetsfaltet genom att
aktivera véanster musknapp. Resultatet blir enligt nedan.

MOVE E :
FIRST SCAN—IEN ENO - Register LAGERPLATS
- nollstalls initialt.

0—_IN ——LAGERPLATS

Utskrift av delar eller hela GX IEC Developer-projekt kan goras via Print-funktionen under
Projekt i menyn. Utskrift sker av det som &r markerat i Navigatorn. Om hela projektet
markeras blir default-utskriften omfattande. Genom att stalla 6nskad omfattning i Print
Options kan man styra omfattningen av utskriften. Utskriften sker pa eget format men kan
goras till en PDF-writer sa att dokumentationen sedan kan kopplas till annat dokument.

100

Kap 7. Sekvensstyrningar i LD och FBD.

Programmering av sekventiella forlopp ar numera mojligt att gora i spraket SFC, Sequence
Function Chart. Sekventiella forlopp har dock utforts lange med relder och sedan, innan
SFC-spraket dok upp, med LD- eller FBD-kod i PLC-styrningar. Foljande avsnitt beskriver
programmeringsmonstret for hur en sekvenskedja kodas pa ett systematiskt satt utgaende
fran funktionsdiagrammet. Systematiken &r viktig annars virrar man latt bort sig i koden.
Den nedan beskrivna metoden for LD-kod &r ocksa 6verforbar till relalosningar for
sekvensiella forlopp.

7.1. Funktionsdiagrammet.

Funktionsdiagrammets uppbyggnad ar reglerad i tidigare presenterad standard IEC 848. Det
som foljer i detta kapitel utgar fran ett enkelt sekventiellt férlopp beskrivet i funktions-
diagram i Figur 7.1.

]
0 s| actB=0
-steg | s| actC=1
¥ ovgl
steg1 actA
S| actB=1
+ ovg2
steq? actA
9 S| actC=0
+ ovgO

Figur 7.1: Funktionsdiagram for ett enkelt sekventiellt forlopp

Vi skall nu titta pa hur denna styrféljd kan realiseras | PLC-program med nagra olika
metoder. Nedan visas Globala Variabellistan for de POU som presenteras senare.

Class Aut |dentifier MIT-Addr. | IEC-Addr. Type
0vAR_GLOBAL - ovgD =0 %alx0 BOOL
1[VAR_GLOBAL hd ovyl w1 %alx1 BOOL
2 WAR GLOBAL e o2 w2 Yalx2 BOOL
J VAR _GLOBAL h actA YA E R BOOL
4 VAR GLOBAL hd actB Y18 E AR Ewr) BOOL
5 |WAR_GLOBAL e actC Y1C FAREES BOOL
6 |vAR_GLOBAL hd stegl 10 Sahx0.0 BOOL
7 VAR GLOBAL - steq hf 1 Ym0 1 BOOL
8 WAR GLOBAL - steg2 Mi2 Ym0 2 BOOL

101

7.2. LOsning som Ladderprogram.

Nedan framgar hur man delar upp forloppet i en sekvensdel och en handelsedel.
Anledningen till det ar att en och samma handelse kan ske i flera olika steg och da kan de
inte aktiveras separat i varje aktuellt steg eftersom da endast den sista paverkan av
handelsen skulle sla igenom. PLC:t arbetar sa att insignaler lases in, sedan exekveras hela
koden varefter utsignalerna laggs ut. Detta upprepas sedan cykliskt. | sekvensdelen kodar
man alltsa att steg och 6vergangar genomfors.

En svaghet i sekvensdelen nedan ar att om t ex ovg2 skulle vara aktiv da ovgl blir aktiv
skulle stegl passeras direkt utan att nagon exekvering av handelsedelen sker. Detta medfor
att dessa handelser i det fallet inte blir genomforda. Detta satt att koda innebér att man
maste forsékra sig om att ett stegs efterfoljande 6vergangsvillkor verkligen kontrollerar att
stegets handelse &r utford.

L [SEKVENSDEL |
steg? ovgld stegl
11 01 (=
w0358 steg2
INl (R
stegl ovg 1 steqgl
01 01 s
stegd
-—([R
3 steg o2 steg2
01 01 =
stegl
'—(ER

| Handelsedelen tas varje handelse upp en gang och de steg som skall aktivera denna
handelse samlas till en gemensam OR-grind. Detta sakrar att handelser alltid blir utférda.

[HANDELSEDEL |
stegl actA
01 € »
steg2
01
& stegl actB
01)2
5 stegl actB
01 (R
7 stegld act
I G
&3 stegs act
I R

102

Med en andring av sekvensdelen till att behandla stegen i ordning nerifran och upp enligt
nedan elimineras problemet med risk fér 6verhoppad handelse till att sista stegets, har
steg2:s, handelse inte blir exekverad om ovg0 &r aktiv da ovg2 blir aktiv. Sarskild
uppmarksamhet maste alltsa ges sista steget i sekvenskedjan vid kodning av stegen nerifran
och upp i funktionsdiagrammet. Handelsedelen blir har densamma.

L [SEKVEMNSDEL |
steg! o2 steg2
I I =
stegl
-—(l:R
stegl vy stegl
01 010 =
stegd
_@q
3 steg? gl stegd
01 010 =
hS035 steq2
I (r

Genom att utnyttja en flanktriggning vid dvergangen kan alla 6vergangar sékras for passage
utan att handelser exekveras. Metoden innebaér att tva exekveringsvarv maste genomlopas
vid varje 6vergang vilket okar fordrojningen nagot. Denna teknik framgar av koden nedan.

[SERVEMSDEL |

TrigO
R_TRIG
CLK o puls2
steg2 puls2 avgd stegd
0 1011 3

Ma03a steq2
01 @

2 Trig1
R_TRIG
CLK o pulsd
stegl puls0 oyl steqgl
0 01— 3

‘ stegd

—@q

3 Trig2
R_TRIG
CLK aQ pulsi
steq! pulsi ovg2 steg2
0 01— 3

‘ stegl

—@q

Sekvensdelen kan naturligtvis ocksa kodas i LD med hallkretsar. Nedan givna exempel ar
jamforbart med forsta l6sningen ovan dar risk fanns for missade utforda handelser om tva
overgangsvillkor efter varandra ar uppfyllda samtidigt. Detta satt att koda ar det som ligger
nara relalésningar fran tider fore PLC. Dessa relalosningar innebar alltsa att det kravdes ett
reld for varje steg i sekvensen.

103

! [SERVENSDEL |
steg! steg? owgl ste%i
/1 | .
MDQDSEB
sﬁegﬂﬂ
steg2 stegd owgl stegl
/ |
stegl
3 stegd stegl owg2 stegd
/ —
stegd

7.3.

L6sning som Funktionsblock-program.

Foredrar man att koda samma styrfoljd i FBD enligt IEC kan koden se ut enligt nedan. Det
forsta exemplet har samma uppbyggnad som forsta LD-exemplet ovan.

[SEKVENSDEL
AND OR MOVE_E
steg2 —— ERl =
ovgd—— hAS05E —— TRUE— N ——stegl
MOWE_E
EN EMNO
FALSE — _IM ——steg2
2 ARD MOWE_E
stegld—— ER EMO —
oviyl —— TRUE— _IN —steqgl
MOVE_E
Y EN EMNO
FALSE — _IM ——stegd
3 ARD MOWE_E
stegl —— ERM EMO —
ovg2 —— TRUE — _IM —steg2
MOVE_E
Y EN ENO
FALSE — N ——steqgl

104

& [HANDELSEDEL |
OR
stegl —— ——acta
steg? ——
E MOWE_E
stegl — EN ENO
TRUE— N ——actB
MOWE_E
stegd — EN ErO
FALSE— M ——actB
7 MOWE_E
stegd—— EM EMO
TRUE— N ——actC
g8 MOWE_E
steg? — EN EMO
FALSE— M ——act’

Nedan visas en l6sning med dvergangssakring av handelser enligt det tidigare LD-exemplet
men nu kodat i FBD.

[SERVENSDEL |
Trigd
| R_TRIG | AND OR MOYE_E
SIEQQ—"—L_M,—J ' EN ENO
M3038 —| TRUE —{_IN ——stegD
ol ——
MOWE_E
L — EMOD -
FALSE — _IM —steg2
2 Trig1
| R_TRIG | AND MOVE_E
stegD—]—L_M,—; EM END —
TRUE — _IN —steql
oy ——
MOVE_E
EM EMOD -
FALSE — _IN ——stegD
3 Trig2
| R_TRIG | AND MOVE_E
steg —]—L_M,—a EM ENO
TRUE — _IN —steg
o2 ——
MOWE E
EM ENOD -
FALSE — [N T

105

Sakregister

A Flodesschema, 10
FROM_M, 68
A/D- och D/A-omvandling i Mitsubishisystem A1S, 75 Function Block Diagram, 39
A/D- och D/A-omvandling i Mitsubishisystem Q02, 71 funktionsblock, 59
ABS, 49 Funktionsblock, 87
absolut adress, 83 Funktionsdiagram, 14, 88
actions, 14 faltbussar, 33
ADD, 44 Foljddiagram, 8
Alternativa sekvenser, 20 foljdstyrning, 11
alternativférgrening, 88 Forbindelser mellan komponenterna, 87
Analoga in- och utgangsenheter, 32 forreglingsstyrning, 11
AND, 42 forsta scan efter RUN, 36
ARRAY, 57, 62
G
B
globala variabellistan, 38
Berdkningar, 44 Globala variabler, 83
Berdknings- och forflyttningsinstruktioner— Grafcet, 88
Mitsubishispecifika, 66 GX IEC Developer, 81
bitadresseringsmajligheten, 47
Body, 84 H
BOOL, 37, 62
Header, 84
C hopp, 20, 88
handelser, 14, 90
CANopen, 33
case insensitive, 63 |
CTD, 52
CTU, 51 Identifier, 38
CTUD, 52 Identifiers, 63
cykeltid, 34 IEC 61131-3, 42, 81
IEC 61131-3 funktionsblock, 59
D IL, 40
Initial, 84
Datatyper, 62 input-output-kopiering, 34
Decentraliserad in/ut-enhet, 33 Instance, 50
Digitala ingangsenheter, 29 Instruktionslista, 40, 85
Digitala utgangsenheter, 30 INT, 37, 62
DINT, 37, 62 intelligenta moduler, 68
DIV, 45 Interbus, 33
DUT_Pool, 83 Interconnect Mode, 87
DWORD, 37, 62 Invertering av in- eller utgang, 87
E K
Edit Transition Condition, 94 klockpulstag, 66
EN / ENO, 45 klocksignaler, 36
enable, 45 kombinatorik, 11
Ethernet, 33 kommentarruta, 101
Kommunikationsmoduler, 33
F
L
falling edge, 49
FBD, 39, 87 Ladderdiagram, 86
FIFO-register, 70 Ladderprogrammering, 38
Flankavkannande instruktioner — Mitsubishispecifika, 69 LD, 38
Flankavkanningar, 49 Library_Pool, 83
flyttal, 57 LIMIT, 49

106

Logik, 42
Logiska instruktioner — Mitsubishispecifika, 66
Lokala variabellistan, 84

M

MAX, 49

MIN, 49

minnesregister, 37

MIT-adress, 38

Mitsubishis signalbeteckningar, 65
Mitsubishispecifika SET- och RST-block, 66
MOQOD, 45

Modbus, 33

MOVE, 46

MOVE_E, 46

MUL, 44

NAND, 43
Navigatorn, 82
NC, 35

Negativ flank, 49
Network, 86

NO, 35

NOT, 42
nyckelord, 63

Operatorspanel, 33
OR, 42

Parallella sekvenser, 21
parallellférgrening, 88
PID-regulatorn i A1S-systemet, 79
PID-regulatorn i Q02-systemet, 78
PLC, 24

Positiv flank, 49

POU, 82

POU_Pool, 82

Print, 101

Profibus, 33

Program Organisation Unit, 82
Programmable Logic Controller, 24
project, 81

REAL, 57, 62
Realtidsklockan, 80
Reldhallkrets, 39
reset-dominant, 39
rising edge, 49
ROL, 49

ROR, 49

Rotation, 49
RS232, 33

RS485, 33

RST_M, 66

RS-vippa, 42

Réaknare, 51

Réknarinstruktioner — Mitsubishispecifika, 69
raknefunktionsblock, 51

SCADA, 33
sekvensstyrningar, 14
Sequence Function Chart, 14
SET_M, 66

setdominant, 39

SFC, 88

SHL, 49

SHR, 49

Skapa project, 82
Skiftning, 49
snabbraknarenhet, 34
specialminnesflaggor, 36
SR-vippa, 42

STRING, 62

Structured Text, 41

SUB, 44

Subsekvenser, 21

TASK, 81

Task_Pool, 82

Tidskretsar, 52

TIME, 52, 62
Timerinstruktioner — Mitsubishispecifika, 69
TO_M, 68

TOF, 52

TON, 52

TP, 52

TRAN, 94

transition, 14, 94

TRUE forsta cykel efter RUN, 66
Type, 84

Typomvandlingar, 45

U

Utskrift, 101
V,W

VAR_GLOBAL, 83
variabeltyper, 37
WORD, 37, 62

X
XOR, 42

0)

Overgangsvillkor, 94

107

