Mikrokontroller styrteknik

Version 2016

GoOran Hult

Innehallsférteckning. Sid

Kapitel 1:

Kapitel 2:
2.1
2.2

Kapitel 3:
3.1
3.2
3.3
3.4

Kapitel 4:

Kapitel 5:
5.1
5.2

Kapitel 6:
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Kapitel 7:

INEFOAUKTION .o 1
PIC 16F1827:s uppbyggnad

Centrala BIOCK 1
PeriferienNNeLer ..o 3

Instruktionsuppsattning och arbetssatt

INStruktioNSUPPSALININGocveiviriiiiiieeeee s 5
AAIESSEIING .ottt sre e enes 6
AVDIOttSNANTEIING. ..o ivieieceee e 6
Read Modify Write problemet............cccooe i, 6
C-kompilatorn MPLAB XC8.......cccooiiiiiiiiiene e 7
Programutveckling for PIC 16F1827c..ccccccevvevvevieinenenn, 7
Programskeletl ... 8
Programexempelccoceeiiiiieie e 9

Utvecklingsmiljon MPLAB X IDE

INEFOUKLION ... 16
Oppna befintligt Projekt..........cccoveevveeveiiceeeceeee e 16
Skapa NYLt projektccoooviieiieeic e 16
Installningar fOr projektet...........coovviieieieieeee, 16
Skapa KallKodsTil..........cccoeiiiiiie e 17
Kompilera for programmering av proCessorccoveeeeeneen. 18
SIMUIEIa PrOgraM........covveieiieie e 18
Branna program till PIC-Krets...........ccccooeiiiiieiiiiiicee, 23

Kontrollerkretsen PIC 16F1827

1 Introduktion

Denna beskrivning av kontrollerkretsen PIC 16F1827 fran Microchip &r en kortfattad beskrivning avsedd for
personer med grundlaggande kunskaper inom mikrodatorteknik. Beskrivningens syfte ar att snabbt ge nédvandig
information for att komma igdng med konstruktioner som innehaller en PIC-krets. Ett avsnitt i denna
kompendiedel tar upp utvecklingsmiljon MPLAB IDE, MPLAB SIM samt C-kompilatorn MPLAB XC8.
Datablad, MPLAB IDE (inklusive MPLAB SIM) samt C-kompilator finns att ladda ner fran Microchips
hemsida: www.microchip.com

2 PIC 16F1827:s uppbyggnad

Kretsen ar uppbyggd som en 8-bitars RISC-processor med Harvardarkitektur for att erhalla korta enhetliga
instruktionscykeltider Tcyc. De flesta instruktionerna utfors pa en instruktionscykel, (Teyc = !)

Feye
Instruktionsfrekvensen Fcyc erhalls genom att dividera klockoscillatorfrekvensen (Fosc) med 4:

Fosc

4

Maximala klockoscillatorfrekvensen Fosc = 32 MHz ger instruktionscykeltiden 125 ns. | aktuellt projekt
anvands Fosc = 4 MHz vilket ger instruktionscykeltiden 1 ps.

Feye =

Blockscheman for kretsen finns pa de féljande 2 sidorna samt pa sidorna 10 och 16 i databladet. PIC 16F1827
innehaller de enheter som behdvs for att fungera som ett litet men komplett mikrodatorsystem. Kretsen bestar av
bland annat blocken i foljande avsnitt dar sidhanvisningar ar till databladet for PIC 16F1827.

2.1 Centrala block

Klockoscillator sid 51-65

Man kan vélja en intern oscillator med frekvens mellan 31.25 kHz och 32 MHz. Om man vill ha 32 MHz intern
oscillator maste man anvéanda den inbyggda 4xPLL:n (Phase Locked Loop) som multiplicerar frekvensen med 4.
Man kan valja en oscillator dar frekvensen bestdms externt med en kristall, en keramisk resonator eller en RC-
krets. Det gar att anvanda kristaller med frekvens upp till 20 MHz. Om man vill ha oscillatorfrekvens 6ver 20
MHz med en yttre kristall maste man anvanda den inbyggda 4xPLL:n. Val av oscillatortyp gérs med
konfigurationsbitar sid 44-46. Val av oscillatorfrekvens vid intern oscillator gérs i OSCCON sid 65.

Resetkretsar sid 73
Power-On Reset kan goras internt eller externt via MCLR-benet. Extern Reset &r nddvandig om
matningsspanningen till kretsen stiger for langsamt vid spanningspaslag.

Power-up Timer ger en fordréjning pa ca 65 ms innan kretsen lamnar Resettillstandet vilket ger
matningsspanningen tid att stabilisera sig.

Watchdog Timer &r en Timer som genererar Resetsignal om den inte nollstélls med jamna mellanrum. Tiden
mellan nddvéndiga nollstéliningar av Watchdog Timern kan stéllas mellan 1ms till 268 s.

Anvénds for att processorn ska omstartas om programmet “hénger sig”. Anvands normalt inte vid grundlédggande
utvecklingsarbete.

Brown-out Reset ger en Resetsignal om matningsspanningen ar mindre &n Vgor under langre tid &n ca 3 ps. Veor
stalls in med konfigurationsbitar. Anvands for att processorn ska omstartas om man far en spanningsdipp pa
matningsspanningen som skulle kunna goéra att programmet inte fungerar som avsett.

Konfigurering av Resetkretsar gors med konfigurationsbitar sid 44-46.

http://www.microchip.com/

FIGURE 2-1: CORE BLOCK DIAGRAM

15 | Configuration |
_ 15 Data Bus 8
I a’,‘r¢| Program Counter K -
Flash J}
é Program
Memory 16-Level Stack
" J (15-bit) RAM
Prg?lrsam 14 || Program Memory H 12 RAM Addr
,:r_:; Read (PMR)
Addr MUX
Instruction Reg_ | / .
T Direct Adar 7 Indrect
! 5 12 12
15 BSR Reg
E]
15 . —>{ STATUS Reg :j
3,
Power-up
Wi Timer
Instruction Oscillator
Decode and K— | Start-up Timer
Control Power-on
QOSC1/CLKIN Reset
= Timing Watchdog
OSCZCLKOUT Generation <= Timer
' Brown-out
@ Reset
Internal
Oscillator
Block
VDD Vss

RAM, Dataminne, File Registers, sid 20-35

Registren ar organiserade i 32 olika minnessidor, Bank 0 - Bank 31. Val av bank gors i BSR-registret. De 12
lagsta adresserna i respektive bank ar s k Core Register vilka a&r samma i samtliga banker och innehaller ofta
anvanda register. | varje bank finns darefter 20 stycken 8-bitars Special Function Registers (SFR) som anvénds
for att styra kretsens funktion. De hdgre adresserna i respektive bank &r 8-bitars General Purpose Registers
(GPR) eller RAM som anvands for tillfallig lagring av egna data. Totalt finns 384 byte RAM for egna data.

Adresserna 70h-7Fh ar sa kallat "Common RAM" som &r atkomligt direkt oberoende av i vilken bank man
befinner sig i. Anvandandet av "Common RAM" ger snabbare dtkomst av data eftersom man inte behéver andra
bank i BSR-registret innan atkomst.

BSR Reg Bank Select Register. Valjer Bank. Innehaller 5 MSB i adressen till RAM minnet

Da man anvander ett hognivasprak sasom C behéver man inte bry sig om val av bank eftersom kompilatorn
skoter detta.

Programminne, Flash Program Memory sid 17-18

4K x 14 bitar organiserat i 2 sidor om vardera 2K. Val av sida gors i PCLATH-registret

Da man anvander ett hognivasprak sasom C behdver man inte bry sig om val av sida eftersom kompilatorn
skoter detta.

Programréknare (15 bitar)

16-Level Stack 16 x 15 bitar dar endast programréknarens varde kan lagras. Vid avancerade program kan detta
utgdra en begransning da man bara kan anropa subrutiner i maximalt 16 nivaer.

FSRO, FSR1 Reg File Select Register, register vid indirekt adressering.
ALU (8-bitars)
Arbetsregistret W-registret. Resultat och arbetsregister om 8 bitar. De flesta operationer gors via W-registret.

Statusregistret 8-bitars register med bl a Carryflagga, DigitCarryflagga, Zeroflagga

2.2 Periferienheter

Nedan visas ett blockschema Over periferienheterna hos PIC 16F1827.
Vilka ben pa PIC16F1827 som periferienheterna anvander beskrivs i tabellen pa sidan 6 i databladet.
Enheter som &r aktuella i projektet beskrivs pa féljande sidor.

FIGURE 1-1: PIC16(L)F1826/27 BLOCK DIAGRAM
Program
Flash Memory
RAM |l EEPROM
CLKR
Clock
E Reference
|
osczaicLKkoyT Timing
OSCHCLKIN | Generatien
=
= PORTA
INTRC CPU =
Cacillator ‘
(Figure 2-1)
| PORTB
MCLR 24—
SR ADC 3
Latch 10-8it Timerd Timer e DAC Comparators

 f f 1 F T ¢
v v v ¥ v v v

ECCPx CCPx MSSPy Modulator EUSART FVR CapSense

Mote 1: See applicable chapters for meore information on peripherals.
2@ See Table 1-1 for peripherals available on specific devices.

PORTA sid 117-124

PORTA ar en port med maximalt 7 infutgangar samt 1 ingang, RA5.

Maximalt antal in/utgangar erhalls om Intern Master Clear Reset och Intern klockoscillator anvands.

Fem av benen kan anvandas som analoga ingangar till AD-omvandlaren.

I ANSELA sid 123 viljs med ”0” om benen ska vara digitala och med ’1” om benen ska ha analogfunktion.
| TRISA sid 122 viljs med ”0” om benen ska vara utgangar och med ”1”” om benen ska vara ingéngar.

OBS Defaultinstéllning &r analoga ingangar.

PORTB sid 125-129

PORTB &r en port med 8 infutgangar dar 7 av benen kan anvandas som analoga ingangar till AD-omvandlaren.
I ANSELA sid 128 viljs med ”0” om benen ska vara digitala och med ’1” om benen ska ha analogfunktion.

I TRISB sid 127 valjs med ”0” om benen ska vara utgangar och med ”1” om benen ska vara ingangar.

OBS Defaultinstallning &r analoga ingangar.

Om man vill undvika yttre pull-up motstand da man har stromstéllare anslutna till PORTB:s ingangar kan man
aktivera "weak pull-up" i registret WPUB sid 128 samt OPTION_REG registrets WPUEN-bit sid 176.

TimerO sid 173-176

8 - bitars raknare. Insignal fran klockgenerator (Fosc/4) vid timerfunktion. Pulser fran yttre kalla kan tas in via
ben RA4/TOCKI och raknas i TMRO. Timer0 konfigureras med OPTION_REG sid 176 och CPSCONO
sid 318.

Timerl sid 177-187

16 - bitars raknare. Insignal fran intern klockgenerator (t ex Fosc/4) eller yttre klockgenerator.
Timerl konfigureras med T1CON sid 185 och TIGCON sid 186.

Timer2/4/6 sid 189-192

Timer2, Timer4 och Timer6 ar 8-bitars raknare som far sina insignaler fran klockgeneratorn (Fosc/4) via var sin
prescaler.

Timer2 konfigureras med T2CON sid 191.

Timer4 konfigureras med T4CON sid 191.

Timer6 konfigureras med T6CON sid 191.

PWM Pulse Width Modulation sid 203-227

Om man ska anvanda sig av en drivkrets med 2 transistorer i halvbrygga eller 4 transistorer i helbrygga sa ar det
lampligt att anvdnda Enhanced Mode PWM.

Om man bara vill PWM-styra 1 transistor sa ar det enklare med Standard PWM sid 208-211.
Det finns 2 moduler for standard PWM, CCP3 respektive CCP4.
CCP3 konfigureras i CCP3CON och CCP4 konfigureras i CCP4ACON sid 226

Till varje PWM-modul ska man koppla var sin 8-bitars Timer: Timer2, Timer4 eller Timer6.
Val av kopplad Timer gors i CCPTMRS sid 227.

Timer2 konfigureras med T2CON och PR2 sid 191.

Timer4 konfigureras med T4CON och PR4 sid 191.

Timer6 konfigureras med T6CON och PR6 sid 191.

Pulsbredden for CCP3 styrs med CCPR3L och CCP3CON <5:4>
Pulsbredden for CCP4 styrs med CCPR4L och CCP4CON <5:4>

Ben RA3/CCP3 respektive RA4/CCP4 anvands som PWM-utgangar.
Ovrig konfigurering samt val av PWM-period mm sid 209.

AD-omvandlare sid 139-151

AD-omvandlaren ar en 10-bitars successiv approximationsomvandlare och kan kopplas till 12 olika ben pa
kretsen (Kanal ANO-AN11).

ADC Clock Period, Tap, erhalls vanligen genom en frekvensdelning av klockfrekvensen Fosc. For korrekt AD-
omvandling krdvs att: 1,0 us < Tap <9,0 ps.

Fran det att en kanal valts kravs en viss tid (acquisition time, Tacg) innan man startar A/D-omvandlingen. Denna
tid gor bland annat att omladdning av AD-omvandlarens sample & holdkondensator Choip hinner ske. Minsta
Taco &r ca 5 ps enligt databladet sid 149.

Som referensspanning till AD-omvandlaren kan man vid mindre kritiska applikationer anvanda
matningsspanningen (Vpp resp Vss).

Val av analog/digital gors i registren ANSELA sid 123 och ANSELDB sid 128.
Konfigurering av AD-omvandlaren gérs i ADCONO och ADCONL sid 145-146.
Resultatet av en AD-omvandling finns i registren ADRESH och ADRESL.

3 Instruktionsuppsattning och arbetssatt
3.1 Instruktionsuppséattning

En listning av samtliga 49 assemblerinstruktioner finns i databladet pa sidan 327-328.
Instruktionsuppsattningen innehaller bl a instruktioner for att flytta data:
movliw, movwf, movf, movib

Exempel:

movlw k ;Flyttar konstanten k till W

movwf £ ;Flyttar innehd&llet i W till registret f
movf £f,w ;Flyttar innehd&llet i registret f till W
movlb k ;Flyttar konstanten k till BSR-registret

Instruktioner finns for att addera, subtrahera, skifta samt utfora logiska operationer:
addwf, subwf, incf, decf, rIf, rrf, andwf, iorwf, xorwf

Exempel:
addwf £,W ;Addition W+f, resultatet placeras 1 W
addwf f,F ;Addition W+f, resultatet placeras i f

Bland bithanteringen aterfinns:
bit clear (bcf), bit set (bsf)

Exempel:
bcf f£,0x2 ;Bit 2 1 register f nollstalls
bsf £,0x0 ;Bit 0 1 register f ettstalls

For att skapa programstruktur finns bl a féljande instruktioner:

goto label
bra label
call subrutinnamn resp return for aterhopp

btfsc bit test f skip next instruction if clear.
btfss bit test f skip next instruction if set
decfsz decrement f skip next instruction if zero
incfsz increment f skip next instruction if zero

3.2 Adressering

Kretsen stodjer endast 3 adresseringsmoder, direkt, indirekt respektive relativ adressering. Indirekt adressering
gors genom att ange en adress i indirekt adresseringspekare (FSR0O och FSR1) och sedan adressera register
INDFO och INDFL1.

3.3 Avbrottshantering

Kretsen har en avbrottsvektor i programminnet (adress 0x0004) samt 23 avbrottskallor. Sid 81-94.
Bland annat finns féljande avbrottskéllor:

Externt avbrott via RBO/INT
Forandring PORTB bitar
Timeravbrott
AD-omvandling klar

Samtliga avbrott har samma prioritet och sa fort ett avbrott hanteras sa maskeras automatiskt alla andra avbrott
tills aterhopp fran avbrottsrutinen sker. Maskering av alla avbrott sker genom nollstéllning av GIE-biten i
INTCON. GIE-biten ettstalls automatisk vid aterhopp fran avbrottsrutinen sa att nya avbrott kan betjanas.
Avbrottsflaggor maste nollstéllas i avbrottsrutinen innan aterhopp fran avbrottsrutinen sker.

Varje avbrottskalla kan maskas bort med enable-bitar i registren INTCON, PIE1, PIE2, PIE3 och PIE4.
Avbrottsflaggor finns i registren: INTCON, IOCBF, PIR1, PIR2, PIR3 och PIRA4.

Da avbrott sker sparas foljande register automatisk till sa kallade skuggregister:
W, STATUS, BSR, FSR och PCLATH.
Vid aterhopp fran avbrottsrutinen aterldses registren automatiskt.

En avbrottsrutin bor ha féljande principiella uppbyggnad:

isr_rutin
Kontrollera vilken avbrottskalla som ar aktuell
Hoppa till aktuell avbrottsrutin
Nollstall aktuell avbrottsflagga
Aterhopp frén avbrott

3.4 Read Modify Write problemet

PIC 16Fxx familjen anvander en metod som kallas Read-Modify-Write (RMW) ndr man skriver till en enskild
bit i ett register. Vid skrivning av enskild bit i t ex PORTB laser processorn forst tillstandet pa alla 8 benen i
PORTB som sedan mellanlagras temporart i ett internt register. Déarefter modifieras den aktuella biten i det
temporara registret. Slutligen skrivs det temporara registret till PORTB. Detta kan ge upphov till svarfunna fel
om nagot ben i PORTB lastas sa hart att spanningen pa benet inte motsvarar det 6nskade logiska tillstandet. | PIC
16F1827 har man infort registren LATA och LATB for att komma runt problemet. LATA och LATB &r
latcharna som &r kopplade till respektive port. Om man skriver till en bit i LATB sa laser processorn tillstandet i
latchen i stallet for tillstandet pa benen vilket gér att man ar oberoende av belastningen pa benen.

Féljande kan rekommenderas:

Vid skrivning till PORTA och PORTB rekommenderas anvandning av registren LATA och LATB.
Vid lasning av PORTA och PORTB maste man anvanda registren PORTA och PORTB.

4 C-kompilatorn MPLAB XC8

Olika C-kompilatorer kan ha olika storlek pa sina datatyper sa det &r viktigt att ta reda pa vad som galler for den
aktuella kompilatorn. | tabellen nedan syns storleken pé datatyperna i MPLAB XC8.
Observera att variabeltyperna bit och short long ar en avvikelse fran ANSI-standarden.

Eftersom PIC 16F1827 &r en 8-bitars processor ska man forsoka att anvanda heltalstyperna char, signed char
respektive unsigned char om det gar. Om man valjer storre heltalstyper dér det inte behovs blir programmet
onddigt stort och langsamt.

Typ Storlek (bitar)
bit 1

char @ 8

signed char 8

unsigned char 8

short 16
unsigned short 16

int 16
unsigned int 16

short long 24
unsigned short long | 24

long 32
unsigned long 32

long long 32
unsigned long long | 32

float @ 24 eller 32
double @ 24 eller 32
long double Som double

Not (1): char ar unsigned som standard.
(2): Storlek for float och double valjs under: Project>Build Options>Project>Global

I MPLAB XCS8 finns féljande makron for att erhalla fordrojningar (OBS! Tva understreck i borjan):
__delay us(x); //Ger en foérdrdjning pad x mikrosekunder, x heltal
__delay ms(y); //Ger en férdrdjning pd y millisekunder, y heltal

For att kunna anvanda makrona ovan kravs foljande definition av aktuell klockoscillatorfrekvens:
#define XTAL FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz

Man kan infoga assemblerinstruktioner i sin C-kod, vilket man endast bér gora i undantagsfall.
Exempel:
asm("nop"); //Assemblerinstruktionen ”“no operation”

5 Programutveckling for PIC 16F1827

Vid utveckling av program till microcontrollers anvéands ofta spraket C.

Om man vill l&ra k&nna sin processor i detalj eller om det &r tidskritiska delar i ett program ar assembler att
foredra. Nackdelen med assemblerprogrammering &r att det tar langre tid att koda samt att felsokning ar svarare.
| fallet med PIC-processorer har man ocksa problemet med att héalla ordning pa i vilken bank ett register finns i
samt vilken som den aktuella sidan i programminnet. Detta haller kompilatorn reda pa fér oss om vi anvander ett
hognivasprak.

5.1 Programskelett
Programskelett C-kod och minimal hardvarukoppling

Kondensatorn pa 100 nF (keramisk for 1ag impedans vid hoga frekvenser) ar en sa kallad avkopplings-
kondensator som ska placeras nara PIC-processorn med sa korta anslutningsledningar som majligt.
RA5/MCLR-ingangen maste vara ansluten till +5V via ett motstand pa 10 kohm. Om man vill anvanda RA5 som
ingdng maste man dndra MCLRE=0N till MCLRE=0FF i koden nedan.

Notera att klockoscillatorfrekvensen delat med fyra, Fosc/4, finns tillganglig pa ben RA6. Om man vill anvanda
RA6 som in/utgang maste man andra CLKOUTEN=ON till CLKOUTEN=0FF i koden nedan.

Om man vill anvanda en yttre kristall som klockoscillator maste man dndra rosc=1nTosc till Fosc=Lp,
rosc=xT eller rFosc=Hs beroende pa frekvensen hos kristallen.

/* Programskelett MPLAB XC8 */

//Headerfiler-—-—-----------"-"-"-"-"-"-"-"-"-"-""—""" "~~~
#include <xc.h>

//Configuration Bits-—-—-——-——————————————— -

#pragma config CPD=OFF, BOREN=OFF, IESO=0FF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=0FF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper—--——-———-——————-- -
void init (void);

//HUVUA P Og am == = = = = = e e
void main ()
{

init () ;

while (1)

{

/ / PROGRAMKOD
}

//Funktioner—-———————-—-——————————~———
void init ()

{

/ / PROGRAMKOD
}
oe U |
O |
10k O |

Fosc/4
+5V — 1 MmcLR RA6

0—>
Vss Vvdd :’T +5V
]

2
|‘||‘||‘||er

5.2 Programexempel

Programexempel 1

Nedan syns ett minimalt program for att tanda en lysdiod pa PORTB bit0 (RBO) och skriva talet 5 till PORTA.
Notera hur man tilldelar vérde till en enskild bit i ett register (LATBbits.LATBO) samt hur man kan skriva data
pa hexadecimalform som 0xNN, pa binar form som ObNNNNNNNN och pa vanlig decimal form som NNN.

/* Programexempel 1 MPLAB XC8 */

//Headerfiler—————————-——-- -
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bitg-————————— e

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper——————————— -
void init (void) ;

/ AUV U P L Og r A= = = = == = -
void main ()
{
init () ;
while (1)
{
LATBbits.LATBO=1; //PORTB bit RB0O ettstalls
LATA=5; //PORTA bit RAO och bit RA2 ettstalls

}

//Funktioner—-———————-—-————————~——~—
void init ()

{

OSCCON=0b01101000; //Intern klocka 4 MHz
ANSELA=0b00000000; //PORTA alla bitar digitala
ANSELB=0b00000000; //PORTB alla bitar digitala
TRISA=0b00100000; //PORTA bit 5 ingdng resten utgangar
TRISB=0x00; //PORTB alla bitar utgangar
}
ge U m|
O |
10k = H Fosc/4
+5V — 1 MCcLR RA6 B>
0V — vss Vad DT +5V
@
+—K—{—1—1dRrBo |
1k O 5 T 100nF
ov O] oV
O |

Programexempel 2
Foljande program tander en lysdiod pa RAO da de bada stromstallarna &r i till-lage, en AND-funktion.

/* Programexempel 2 MPLAB XC8 */
//Headerfiler————————————————— -~
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits-—-——————————————- -

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=0FF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=0OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=0OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper—--——-———-———————— -
void init (void) ;

//HUVUA P Og am == = = = = = e e
void main ()

{

init () ;
while (1) //0andlig huvudloop
{

LATAbits.LATA0 = PORTBbits.RBO && PORTBbits.RBI;
}
}

//Funktioner—-—-——-—-—-—-—--———-————— -
void init ()

{

OSCCON=0b01101000; //Intern oscillator Fosc = 4 MHz
LATA=0x00; //Nollstaller alla bitar i PORTA
LATB=0x00; //Nollstaller alla bitar i PORTB

ANSELA=0b00000000; //PORTA alla bitar digitala
ANSELB=0b00000000; //PORTB alla bitar digitala
TRISA=0b00100000; //PORTA bit 5 ingdng resten utgangar
TRISB=0b00000011; //PORTB bit0-1 ingangar, bit2-7 utgangar

e UJ 0k,
O RAoz—ﬁ:::}—HT
5V e 10k O | ov
MCLR RAGH > Fosc/4
0V —_ Vss Vad j—Jj +5V
——T]RBO |
re1 5 T 100nF
O]
10k O o o
ov

10

Programexempel 3

Foljande program initierar 1/0-portarna. PORTA far 7 digitala utgangar och en ingang. PORTB far 8 digitala
utgangar. Till PORTA bit 0 &r en lysdiod ansluten till jord via en resistor vilket innebér att lysdioden tands da
RAO gar hdg. Programmet tander och slacker lysdioden med en fordrojningsrutin pa ca 1 sekund mellan
héndelserna, vilket gor att lysdioden blinkar med frekvensen 0,5 Hz.

/* Programexempel 3 MPLAB XC8 */
//Headerfiler————————--——-- -
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl1827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bitg-————————— e

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Definitioner av konstanter----—-——————————=——————— - ————
#define XTAL FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz
//Kravs for macro 7 delay us(x)”

//respektive ” delay ms(x)”
//Funktionsprototyper—————————— -
void init (void);
//HUVUA P Og am == = = = = = e
void main ()
{
init () ;
while (1)
{
LATAbits.LATAO=1;
__delay ms (1000); //férdrsj 1000ms
LATAbits.LATAQ0=0;
__delay ms (1000); //fdérdrsj 1000ms
}
}
//Funktioner—-—-——-——————————— -
void init ()
{
OSCCON=0b01101000; //Intern klocka 4 MHz
ANSELA=0b00000000; //PORTA alla bitar digitala
ANSELB=0b00000000; //PORTB alla bitar digitala
TRISA=0b00100000; //PORTA bit 5 ingdng resten utgangar
TRISB=0x00; //PORTB alla bitar utgangar

11

Programexempel 4

| detta program raknas pulserna som mottagits pa TOCKI/RA4. Da 3*8=24 pulser mottagits blir RB2 hog under
ett mycket kort 6gonblick. Om man har problem med stérningar kan man lagga en kondensator pa 100 nF mellan
RAA4-ben och jord.

/* Programexempel 4 MPLAB XC8 */
//Headerfiler————————————————— -~
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits-—-———-——————————— -

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=0FF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper—-———-———-——-—-——— -
void init (void);

//HUVUA P Ogr am == = = = = = e
void main ()
{

init () ;

LATBbits.LATB2=0;

TMRO=0;

while (1)
{
if (TMR0==3) //0m 3*8=24 pulser mottagits
{
TMRO=0;
LATBbits.LATB2=1;
LATBbits.LATB2=0;

//Funktioner---- - ——————-—————— -
void init ()

{

OSCCON=0b01101000; //Intern klocka 4 MHz

LATB=0; //Nollstdller alla bitar i PORTB
ANSELA=0b00000000; //PORTA alla bitar digitala
ANSELB=0b00000000; //PORTB alla bitar digitala
TRISA=0b00110000; //PORTA bit 4-5 ingdngar resten utgangar
TRISB=0x00; //PORTB alla bitar utgangar

OPTION REG=0b00100010; //Initiera Timer0, Prescaler = 1:8,rdknar pa pos flank
CPSCONObits.T0XCS=0; //Initiera TimerO for pulsrédkning pa TOCKI/RA4

12

Programexempel 5

| detta program sker en AD-omvandling av den analoga spanningen pa ingang RAO/ANO till ett 8-bitars digitalt
vérde som laggs i variabeln AD_in. Efter val av AD-kanal finns en fordrdjning, Taco= 5us. Denna tid gér bland
annat att omladdning av AD-omvandlarens sample & holdkondensator Croip hinner ske innan start av AD-
omvandlingen. Placera ett 2,2 kQ:s motsténd i serie med den analoga ingangen for att skydda kretsen mot
eventuella 6verspanningar. Om man har problem med storningar vid AD-omvandlingen kan man l&gga en
kondensator pa 100 nF mellan AD-ingéng och jord.

/* Programexempel 5 MPLAB XC8 */
//Headerfiler-————-=—-----—---"—"--"—"——~—~—~ -~~~ -
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl1827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bitg-————————— e

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=0FF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Definitioner av konstanter----—-————————————=————— - ————

#define XTAL FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz
//Krévs f6r macro ” delay us(x)”
//respektive ” delay ms(x)”
//Funktionsprototyper——————————
void init (void) ;
char AD omv (char ADkanal);
//HUVUA P Og am == = = = = = e
void main ()
{
char AD in;
init () ;
while (1) //0&ndlig huvudloop
AD in=AD omv (0) ; //AD resultat frdn RAO/ANO till AD in
}
//Funktioner-—-——————————— =
void init ()
{
OSCCON=0b01101000; //Intern klocka 4 MHz
TRISB=0x00; //PORTB alla bitar utgangar
ANSELB=0b00000000; //PORTB alla bitar digitala
ADCON1=0b01000000; //Vansterjusterat, AD-clock=Fosc/4,Vref VDD och VSS
ANSELA=0b00000001; //PortA bit 0 analog, 6vriga bitar digitala
TRISA=0b00100001; //PORTA bit0 och bit5 ingdng, resten utgdngar
ADCONO=0x01; / /ADON
}
char AD omv (char ADkanal)
{
ADCONO= (ADCONO & 0b10000011) | (ADkanal<<2); //Val av AD-kanal
__delay us(5); //Delay 5us. Macro i MPLAB XC8.
ADCONObits.GO=1; //AD-omvandling startar
while (ADCONObits.GO); //Vanta pad att AD-omvandling &r klar
return ADRESH; //Returnera 8 MSB av AD-omvandling

13

Programexempel 6
Foljande program visar hur man kan erhalla en PWM-signal pa ben RA3/CCP3.
Vid Fosc =4 MHz ar fpwm=4 kHz.

/* Programexempel 6 MPLAB XC8 */
//Headerfiler-—-—--------—-—"-"-"-"-"-"-"-"-"—-~—"-~—"—"\—~" "~~~
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits-——-—-—-----"-"""="""""-"-"—"-""-"-~—~ -~~~

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=0FF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=0OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=0OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper—-———-———-——————- -
void init (void);

//HUVUA P Og am == = = = = = e e
void main ()
{

init () ;

while (1)

{

CCPR3L=76; //Duty-cycle=76/255=30%
}

//Funktioner—-—-——-—-—-—-—--———-————— -
void init ()

{

OSCCON=0b01101000; //Intern klocka 4 MHz
ANSELA=0b00000000; //PORTA alla bitar digitala
ANSELB=0b00000000; //PORTB alla bitar digitala

TRISB=0; //PORTB alla bitar utgangar
TRISA=0b00100000; //PORTA bit 5 ingdng resten utgangar
CCP3CON=0b00001100; //CCP3 i PWM-mode

CCPTMRS=0b01001010; //CCP3 anvadnder Timer2

PR2=254;

T2CON=0b00000100; //Timer2 On, Prescaler=1 ger fpym = 4 kHz

14

Programexempel 7

Féljande visar hur avbrottshantering fungerar med MPLAB XC8. Programmet anvander timeravbrott med
Timerl for att med 0.5 sekunders intervall &ndra utgadngen RBO. Pa utgadngen RBO kan man ansluta en lysdiod
som kommer att blinka med frekvensen 1 Hz.

/* Programexempel 7 MPLAB XC8 */
//Headerfiler-—————=--—---—---"—"--"—"—-~—~——~—(-
#include <xc.h> //Definition av register och registerbitar mm.
//Se picl6fl1827.h i kompilatorns include catalog
//C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bitg-———————— e

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic chipinfo

//0Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled, FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON, \
WDTE=OFF, CP=0OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper————————————————————"———~——
void init (void) ;
void interrupt isr(void); //Nyckelordet interrupt ger interruptfunktion

/ AUV U P L Og LA = = = = = = -
void main ()
{
init ()
while (1) ; //0andlig loop som vantar pa avbrott
}

//Funktioner--————————— e
void init ()
{
OSCCON=0b01101000; //Intern klocka 4 MHz
ANSELA=0b00000000; //PORTA och PORTB digitala I/O
ANSELB=0b00000000;
TRISB=0; //PORTB utgangar
TRISA=0b00100000; //PORTA bit 5 ingdng resten utgangar
T1CON=0b00110001; //Initiera Timerl.Prescale=8,Internal clock,Timerl ON
T1GCON=0b00000000;
TMR1L=0xDF; //Staller TMR1 sa att delay=0,5 sekunder
TMR1H=0x0B;
PIE1=0b00000001; //TMR1 overflow interrupt enable
INTCON=0b11000000; //Global och peripherial interrupt enable
}

//Interruptrutin
void interrupt isr(void)

{

if (PIRlbits.TMR1IF && PIElbits.TMR1IE) //Vilken interrupt &r aktuell
{
LATBbits.LATBO = !LATBbits.LATBO; //Togglar PORTB bitO0
TMR1L=0xDF; //Aterstaller TMR1
TMR1H=0x0B; //sa att delay=0,5 sekunder
PIR1bits.TMR1IF=0; //Nollstaller interruptflagga

15

6 Utvecklingsmiljon MPLAB X IDE

6.1 Introduktion

Detta kapitel kan ses som en lathund for att snabbt komma igdng med C-programmering i den aktuella
utvecklingsmiljon MPLAB X IDE. Som vanligt kan det mesta annat hittas i manualer och "hjélpfiler”.

MPLAB XC8 fran Microchip &r en C-kompilator for PIC-processorer i som huvudsakligen foljer ANSI C90
standarden. Det rekommenderade séttet att anvanda kompilatorn ar som “’plug-in” till MPLAB X IDE vilket ger
anvandaren en valbekant windowsmiljo. Integrationen av kompilatorn i MPLAB X IDE gor ocksa att det gar
smidigt att simulera sitt C-program i MPLAB SIM. Den installerade versionen av kompilatorn &r en gratisversion
vars huvudsakliga begransning &r att alla optimeringar ej gar att aktivera. Det ar aven tillatet att anvanda
gratisversionen for kommersiella projekt. MPLAB X IDE och gratisversionen av MPLAB XC8 kan laddas ner

utan kostnad fran tillverkarens hemsida: www.microchip.com.

6.2 Oppna befintligt projekt

Starta MPLAB X IDE

6.3 Skapa Nytt projekt

Starta MPLAB X IDE

Categories:
Projects:

Family:
Device:

Supported Debug Header:
Hardware Tools:
Compiler Toolchains:
Project Name:

Project Location:
Kryssa i:

Valj: File>Open Project : zzzzzz.x

Valj: File > New Project

Microchip Embedded

Standalone Project

Next>

Mid-Range 8-bit MCUs (PIC10/12/16/MCP)
PIC16F1827

Next>

None

Next>

Simulator

Next>

XC8

Next>

2272777 (Anvéand ej mellanslag aao etc)
Z:\yyyyy (Anvand ej mellanslag 4ao etc)

Set as main project och Use project location as the project folder

Finish>

6.4 Installningar for projektet

File>Project Properties

Categories: xc8 linker

Option categories: Memory model
Valj: Size of Double: 32 bit och Size of Float, 32 bit

Categories: Simulator

Valj Instruction Frequency: Foyc = % =1MHz

16

http://www.microchip.com/

6.5 Skapa kallkodsfil
| Project fonstret: Hogerklicka pa Source Files, Valj New>Empty File..
File Name: xxxxxx.c (Anvand ej mellanslag 40 etc)
Finish

Skriv C-program, spara. Skrivbordet kan nu se ut som nedan:

€ MPLAB X IDE v2.26 - test_16f1827 : default = B 2|
File Edit View Mavigate Source Refactor Run Debug Team Tools Windoew Help
L = TR T~ . - - n o -
F D O TR B N 3
& : Proj... @ = | Files : Classes Start Page ﬁ|@ main.c % @ @ E|
2@ rest 1one B - - S E LI z
i {5 Header Files A5 B
- S =
T [1mportant Files 3 40 TR e a
ﬁ Linker Files 21 void main(}
E—}--[aﬁ Source Files Flle —| 22 |{
B main.c 23 init();
. B[vibraries panel 24 while (1) 0&ndlig huvudloop
E}--ﬁl‘ Loadables ~|| 25 {
! Navigator |:test one7 . a=|| 26 LATEbits.LATA) = PORTBbits.RB0 &£& PORTBbits.RB1; r
S = = N]
2% |% test_16f1827 27 1
%4 Project Type: Application - Configurati 28| -} T
&) - Device 29 N
| Pz o L
E _ 4 Checksum: 0x6712 _ _: o .
— Elnﬁ“ Compiler Toolchain 31 void init(} EdItOI’
e rtj‘ ¥C8 (v1.33) [C:\Program Files (%3 32 |1 anel
~ i’ Production Image: Optimization: 4 || 33 OSCCON=0b01101000; Intern oscill P
[—]---QMemory 24 TATR=Nw " Nallatiller alla hit="
- Usage Symbols disabled, Click to e < 1 | 3
-~ [Data 384 (0x180) bytes : - —
.- Program 4096 (0x1000) words : Tasks : Output - Trace/Profiling e =
E—]x Debug Tool
@) Simulator
~- @ Click for Simulated Peripherals
(-7 Debug Resources b
Task
panel
< 1 | 2 \
@ 3212 |ms

File-panel: En panel med 3 alternativa fonster:
-Projektfonstret som visar projekttradet
-Filesfonstret som visar projektets filer
-Classfonstret som visar eventuella klasser i koden

Navigation-panel: En panel med 2 alternativa fonster:
-Navigatorfonstret visar information om valda filer samt symboler och variabler.
-Dashboardfonstret som visar information om processor, anvant minne mm.

Editor-panel: For att studera och editera projektfiler. Startsida kan ocksa visas har.

Task-panel: Visar resultat av kompilering eller simulering av program.

Om man dubbelklickar pa filnamn i File-panelen sa Gppnas den i Editorpanelen

Om man hogerklickar pa en flik i ett fonster och véljer Undock Window sa kopplas fonstret loss fran panelen.
For att aterstalla fonster till panelen, hogerklicka pa namn i fonster och valj Dock Window.

17

6.6 Kompilera for programmering av processor

=

1. Kompilera hela projektet: Run>Build Main Project i)
hex-fil skapas i katalogen: pro;ektkatalog\dlst\defauIt\productlon

2. | Output-fonstret langst ner fas resultatet av kompileringen. Man kan dubbelklicka pa felmeddelandet i bla
text, Error, for att komma till aktuell rad i kallkodsfilen.

6.7 Simulera program

EI;.

1. Debug>Debug Main Project (Innefattar kompilering men skapar EJ hex-fil)

2. Studeratiden: Window>Debugging>Stopwatch.

: Stopwatch B

/.r_‘ Target halted, Stopwatch cycle count = 203446 (203,446 ms)
Target halted, Stopwatch cycle count = 1962418 (1,962418 5)
L=l

Kontroller o]
Stopwatch D Jcyde count = 1962418 (1,962418 5) Instruction Freq = 1 MHz

3. Studera SFR-register: Window>PIC Memory Views>SFRs
| Task-panelen: Fliken SFR

4. Studera logiktillstand pa ett ben. Window>Simulator>IOPin
| Task-panelen: Fliken I/O-Pins. Klicka pa <New Pin>, valj ben.

EI;.

Avsluta eventuell simulering . Starta simulering: Debug>Debug Main Project

Nedan studerar man de aktuella benen i exempel 2.

: 0 Pins ®
Pin Mode Value Qwner or Magoing

RAD Dout @0 RADJAND/CPS0/C 12IND-/SD02 ~

REOQ Din @0 RBO/SRITIG/CCP11/P1AL/INT FLTO

RE1 Din @0 RB1/AM11/CPS11/RX0/OTO/SDAL/SDIL
<Mew Pinx -

5. Studera Variabler/Register: Window>Debugging>Watches

Hogerklicka pa Variabel/Register i kéllkodsfil. Valj New Watch. OK
ELLER

| Task-panelen: Fliken Watches.

Hogerklicka pa <Enter new watch>, valj Variabel.

OBS! Variabler/Register uppdateras bara dd man pausar simuleringen

| figuren pa nasta syns ett programexempel pa hur det kan se ut.

Den grona raden i kallkoden motsvarar den rad som star i tur att utféras vid stegning av programmet.
Den roda raden i kallkoden ar en rad med brytpunkt.

De register/variabler som &r markerade med rod farg i SFR-fonstret &r register/variabler som har &ndrats
vid utférandet av den senaste raden.

18

-
x MPLAB X IDE v2.26 - test_16f1827 : default

Knappar vid simulering

File Edit View Mavigate Source Refactor Run Debug Team Tools Window Help
E o o DBy fa o, Ui . L - . By : M G >
TS D E AT- R P 2-2-QEC00Q0oamadED
@ |iProj.. 4 % |iFiles : Classes StartPage w|main.c | e e
2 58 testicisy NEEN LY - s]
-4 Header Files - A B
v Huvudorooram] £
T [Important Files ||| 2° B i a
- Linker Files B 21 woid main()
%. L‘—}- Source Files 2z {
—% - |E“] main.c o init();
o H . . 3}
& | E}-ﬁ' Libraries 24 while (1) ndlig huvudloop
O || -l Loadables 1| 25 {
: Navigator |Ete=t_16"3'ﬂ A B =] LATAbits.LATA] = PORTEBbits.RBE0 && PORTBbits.RB1; =
2% |% test_16f1827 || 27 }
i--%g Project Type: Application - Configui |
€| @ Devi 28| L}
=) evice
= G PIC16F1827 29
.E - 88 Checksum: Debug Image 30 Funktioner ettty
= [_]Dﬂ" C_ompiler Toolchain 31| veid init(} I
@ - ¥C8 (v1.33) [C:\Program Files i o | ;
Dﬁ‘ Debug Image: ELF: Optimizatic
- [Memory = : Tasks ¢ Qutput : Stopwatch | SFR =R
g Data 384 (0x180) bytes Address ¢+ Name Hex Decimal Binary Char
{ 1% 5 00R PCLATH 0x07 7 00000111 vt ~
H 00B INTCON 0x00 0 00000000 vt i
E}ﬁ Program 4096 (0x1000) words % aac PORTE 0x00] G0000000 T ==
_ { 1% — [00D FORIE 0x=00] 00000000 T
i-{f Program Used: 42 (0x24) F 011 FIRL 0x00 0 00000000 T
[_]x Debug Tool B 012 PIR2 0x00 a 00000000 LT
0 Simulator 013 FIR3 0x00 a 00000000 Lt
)) . 014 FIR4 0x00 1] 00000000 LT
“- (g Click for Simulated Peripherals —
9%‘3 Debug Resources 015 THRO 0x00 [1] 00000000 B
o L.E Dr:[nnram F!Dll lead: 1 Fras: Q?C Memory |SFR v | Format |Individual - |
Call Stack
test_16f1827 (Build, Load, ...) | debugger halied | @B 2311 |ms

Infoga/Radera brytpunkter genom att klicka pa radnummer.

Observera att det maste finnas assemblerkod tillhérande den rad i C-koden som man har placerat en
brytpunkt pa for att simuleringen ska stoppa vid brytpunkten.

Bl a f6ljande val finns for simulering:

=

5.

5.

Stegning rad for rad, stegar ej inne i funktioner: Step Over

E

Stegning rad for rad, stegar dven inne i funktioner: Step Into

)

Simulering till nasta brytpunkt: Continue

Pausa simulering. Pause

@

Avsluta simulering

Reset

Om man under simuleringen vill &ndra en variabel/registers innehall:
Pausa simuleringen
Dubbelklicka pa den aktuella variabeln/registrets varde (Hex/Decimal) i Watchfonstret eller SFRfonstret och
andra till 6nskat varde, avsluta med Retur.

19

Logikanalysator

Om man vill studera kurvformen for signaler pa kretsens ben:
Window>Simulator>Analyzer

| Task-panelen: Fliken Logic Analyzer. Vélj énskat ben med:

| figuren nedan har man valt att studera en PWM-signal pa RA3/CCP3.

: Logic Analyzer -]
g : Exempel2_PIC16F1827:
B | Hien
E' L
03000 23100 03200 03300 03400 Q3500 03600 03700 Q3200 03000 04000
— RAZ
!

Asynkron Stimuli

Om man vid simuleringen asynkront (oberoende av tidpunkt) vill satta en valfri ingang t ex hog eller lag gor
foljande:

Window>Simulator>Stimulus>

Valj fliken Asynchronous:

Viélj Pin samt Action: Set High/Set Low/ Toggle/Pulse High/Pulse Low.

| figuren nedan fas en puls pa TOCK1-ingangen som &r en instruktionscykel lang da man trycker pa dess
Fire-knapp @ samt RBO vaxlar tillstand da man trycker pa dess Fire-knapp

: Stimulus]
@ Asynchronous | Pin/Register Actions | Advanced Pin/Register I Clock Stimulus | Register Injection
E Fire Pin Action Width Units Comments
E RBO Toggle
& |[=JTock Pulse High Leye
=
)
=]

SCL
E
SCL

20

Simulera analog inspanning
Om man vid simuleringen vill satta inspanningen pa ett analogt ingangsben gor féljande:
Window>Simulator>10Pin

| Task-panelen: Fliken 1/0-Pins. Klicka pa <New Pin>, vélj ben.
Skriv in den analoga inspanningen under ”Value”.

]

Avsluta eventuell simulering . Debug>Debug Main Project

OBS!
Variabler och register som beror pa den analoga inspanningen uppdateras bara da man pausar
simuleringen

I figuren nedan har man simulerat inspanningen 3.86 V pa ben ANO/RAO.

: /0 Pins ®

Pin Mode Value Owner or Mapoing g
ANO Ain 3.86V RAOD/ANO/CPS0/C12INO-/SDO2 -~
<New Pin>

21

Exempel:

I nedanstaende fonster har man simulerat programexempel 2. Genom att klicka pa Fire-knapparna ! i
Stimulusfonstret kan man byta tillstand pa de 2 insignalerna pa ben RBO respektive RB1. Bade insignaler pa
PORTB och utsignal pa PORTA kan studeras i SFR-fonstret.

PLAB X IDE v2

File Edit View Mavigate Source Refactor Run Debug Team Tools Window Help
E F £ ! N . - . N L i
PSS D @ o AT B P R-T-QUM- 000 669 F
= : Proj. < ® | Files |E(‘.Iasses Start Page ﬁ| main.c E| @E @ E
B E CuE h-]
g (o6 test 16f1827 FeE-E- e eeSBfeR e e B =8 =
& Header Files ; | ®
o 20 /4 L — T e e e “ | =
fin ﬁ' Important Files - id .]
- [Linker Files void main()
%. Source Files 22 0t
_% . main.c 23 init();
£ 65 Libraries 24 while (1}
] -([EF Loadables El| 25 {
=43 | LATAbits.LATAQ) = PORTBbits.RB0 && PORTBbits.RBl;
Header Files 27 }
ﬁ' Important Files 28| Ly
Linker Files
29 il
Source Files . | J “
(5 Libraries L 4 | &
- Loadabl -1 21
4 |i Stimulus %
: main() - Navigator | test_16f1827 .. @ =
- E 33
2% |% test_16f1827 @ | Asynchronous | pin/Register Actions | Advanced Pin/Register | Clock Stimulus | Register Injection|
i--%g Project Type: Application - Configurati 39 =
@ - 34 Fire PFin Action Width Units Comments
= 3| & =]reo Toggle
| Crecsm Deug nage | B |
=Y Compiler Toolchain o
D{f ¥C8 (v1.33) [C:\Program Files (x5 38
D{f Debug Image: ELF: Optimization: 39 i=
[n]
E—Jﬁ Memory 4
=[G Data 384 (0x180) bytes a1 dQ’cEL'
o 1%] F=
m Data Used: 3 (0x3) Free: 381 43 e
EIE Program 4095 {0x%1000) words scL Asynchronous Stimulus Toggle RE1 fired.
- %] !)
m Program Used: 42 (0x2A) Freg
54§ Debug Tool : Tasks |: Output |: 40 Pins |: stopwatch Watch |: sFR EP
@ Address s Name Hex Decimal Binary Char
' 00R BCLATH 0x07 7 00000111 Tt ~
00B INTCON 0x02 2 00000010 Tt
‘ aoc PORTZ (Ox01 1 00000001 Tt I~
— (00D PORTE 0Ox03 3 00000011 T
011 FIE1 0x90 144 10010000 ar
01z FIRZ 0x00 [1] 00000000 L
013 FIR3 0x00 [1] 00000000 Lt
014 FIR4 0x00 a 00000000 Tt
015 THRO 0x00 a 00000000 Lt -
P — - Memary :SFR v: Format :I.ndividual v:
Call Stack
test_16f1827 (Build, Load, ...) | debugger halted @| 6|1 |INs
e EEE}E}RPRERETTNS

22

7

. Branna program till PIC-krets med programmeraren Dataman-40PRO.

Sok reda pa HEX-filen med filnamnsandelse .hex som utvecklingsverktyget skapat i projektkatalogen:
\projektkatalog\dist\default\production.
Kopiera .hex filen till en USB-sticka. Notera eventuellt Checksum i MPLAB

Ladda ur eventuell statisk elektricitet som du ar uppladdad med genom att halla handen pa den svarta
ANTISTAT-mattan. Montera krets i brannarens sockel. Observera lage. Spéann fast. (Fill ner ”arm”.

Starta programmet Dataman-PRO Pg4uw om ej startat. VValj Dataman-40PRO.

&
Valj krets om ej vald. Alternativ 1: Device>Select/default Select/def. Valj tex PIC16F1827.

Vilj krets om ej vald. Alternativ 2: Device>Select device Skt Search 16F1827
Vaélj krets med notering: Note: no adapter required

2

File>Load ‘' :
Valj Files of type: IntelHEX (*HEX) Leta reda pa din zzz.hex

Tryck Open | open |

Kontrollera eventuellt att > PICmicro checksum” stimmer med Checksum i MPLAB

Device operation options il

Device>Device options>operation options

Inserion test and/or ID check ——————

Ingertion test: IEnabIe VI
Device |D check errar terminates the operation: IEnabIe vl
Cormand execution ———————————

Erase before programming: IEnabIe hd l#
Blank check before prograrmming: IEnabIe VI*
Yerify after reading: IEnabIe Vl

Yerify: |Once =
Frogramming parameters

v Program Memaon,™
[~ Data MEFOry
[~ UserlD
[v Configuration bits™
—— Erase parameters
[~ Preserve Diata EEFROM ey

JQK I © Cancel | ? Help |
&
of ves |

Programmera kretsen: Device > Program _Frearam

Mo

Vid frageruta Repeat?: Tryck

Ladda ur eventuell statisk elektricitet som du ar uppladdad med genom att halla handen pa den svarta
ANTISTAT-mattan. Plocka ur kretsen ur sockeln.

23

