

Mikrokontroller styrteknik
Version 2016

Göran Hult

Innehållsförteckning. Sid

Kapitel 1: Introduktion .. 1

Kapitel 2: PIC 16F1827:s uppbyggnad
 2.1 Centrala block ... 1

 2.2 Periferienheter ... 3

Kapitel 3: Instruktionsuppsättning och arbetssätt
 3.1 Instruktionsuppsättning ... 5

 3.2 Adressering ... 6

 3.3 Avbrottshantering.. 6

 3.4 Read Modify Write problemet .. 6

Kapitel 4: C-kompilatorn MPLAB XC8 ... 7

Kapitel 5: Programutveckling för PIC 16F1827 7

5.1 Programskelett .. 8

5.2 Programexempel ... 9

Kapitel 6: Utvecklingsmiljön MPLAB X IDE
6.1 Introduktion ... 16

6.2 Öppna befintligt projekt .. 16

6.3 Skapa Nytt projekt .. 16

6.4 Inställningar för projektet.. 16

6.5 Skapa källkodsfil ... 17

6.6 Kompilera för programmering av processor 18

6.7 Simulera program .. 18

Kapitel 7: Bränna program till PIC-krets .. 23

 1

Kontrollerkretsen PIC 16F1827

1 Introduktion

Denna beskrivning av kontrollerkretsen PIC 16F1827 från Microchip är en kortfattad beskrivning avsedd för

personer med grundläggande kunskaper inom mikrodatorteknik. Beskrivningens syfte är att snabbt ge nödvändig

information för att komma igång med konstruktioner som innehåller en PIC-krets. Ett avsnitt i denna

kompendiedel tar upp utvecklingsmiljön MPLAB IDE, MPLAB SIM samt C-kompilatorn MPLAB XC8.

Datablad, MPLAB IDE (inklusive MPLAB SIM) samt C-kompilator finns att ladda ner från Microchips

hemsida: www.microchip.com

2 PIC 16F1827:s uppbyggnad

Kretsen är uppbyggd som en 8-bitars RISC-processor med Harvardarkitektur för att erhålla korta enhetliga

instruktionscykeltider TCYC. De flesta instruktionerna utförs på en instruktionscykel, (𝑇𝐶𝑌𝐶 =
1

𝐹𝐶𝑌𝐶
)

Instruktionsfrekvensen FCYC erhålls genom att dividera klockoscillatorfrekvensen (FOSC) med 4:

 𝐹𝐶𝑌𝐶 =
𝐹𝑂𝑆𝐶

4

Maximala klockoscillatorfrekvensen FOSC = 32 MHz ger instruktionscykeltiden 125 ns. I aktuellt projekt

används FOSC = 4 MHz vilket ger instruktionscykeltiden 1 μs.

Blockscheman för kretsen finns på de följande 2 sidorna samt på sidorna 10 och 16 i databladet. PIC 16F1827

innehåller de enheter som behövs för att fungera som ett litet men komplett mikrodatorsystem. Kretsen består av

bland annat blocken i följande avsnitt där sidhänvisningar är till databladet för PIC 16F1827.

2.1 Centrala block

Klockoscillator sid 51-65

Man kan välja en intern oscillator med frekvens mellan 31.25 kHz och 32 MHz. Om man vill ha 32 MHz intern

oscillator måste man använda den inbyggda 4xPLL:n (Phase Locked Loop) som multiplicerar frekvensen med 4.

Man kan välja en oscillator där frekvensen bestäms externt med en kristall, en keramisk resonator eller en RC-

krets. Det går att använda kristaller med frekvens upp till 20 MHz. Om man vill ha oscillatorfrekvens över 20

MHz med en yttre kristall måste man använda den inbyggda 4xPLL:n. Val av oscillatortyp görs med

konfigurationsbitar sid 44-46. Val av oscillatorfrekvens vid intern oscillator görs i OSCCON sid 65.

Resetkretsar sid 73

Power-On Reset kan göras internt eller externt via MCLR-benet. Extern Reset är nödvändig om

matningsspänningen till kretsen stiger för långsamt vid spänningspåslag.

Power-up Timer ger en fördröjning på ca 65 ms innan kretsen lämnar Resettillståndet vilket ger

matningsspänningen tid att stabilisera sig.

Watchdog Timer är en Timer som genererar Resetsignal om den inte nollställs med jämna mellanrum. Tiden

mellan nödvändiga nollställningar av Watchdog Timern kan ställas mellan 1ms till 268 s.

Används för att processorn ska omstartas om programmet ”hänger sig”. Används normalt inte vid grundläggande

utvecklingsarbete.

Brown-out Reset ger en Resetsignal om matningsspänningen är mindre än VBOR under längre tid än ca 3 μs. VBOR

ställs in med konfigurationsbitar. Används för att processorn ska omstartas om man får en spänningsdipp på

matningsspänningen som skulle kunna göra att programmet inte fungerar som avsett.

Konfigurering av Resetkretsar görs med konfigurationsbitar sid 44-46.

http://www.microchip.com/

 2

RAM, Dataminne, File Registers, sid 20-35

Registren är organiserade i 32 olika minnessidor, Bank 0 - Bank 31. Val av bank görs i BSR-registret. De 12

lägsta adresserna i respektive bank är s k Core Register vilka är samma i samtliga banker och innehåller ofta

använda register. I varje bank finns därefter 20 stycken 8-bitars Special Function Registers (SFR) som används

för att styra kretsens funktion. De högre adresserna i respektive bank är 8-bitars General Purpose Registers

(GPR) eller RAM som används för tillfällig lagring av egna data. Totalt finns 384 byte RAM för egna data.

Adresserna 70h-7Fh är så kallat "Common RAM" som är åtkomligt direkt oberoende av i vilken bank man

befinner sig i. Användandet av "Common RAM" ger snabbare åtkomst av data eftersom man inte behöver ändra

bank i BSR-registret innan åtkomst.

BSR Reg Bank Select Register. Väljer Bank. Innehåller 5 MSB i adressen till RAM minnet

Då man använder ett högnivåspråk såsom C behöver man inte bry sig om val av bank eftersom kompilatorn

sköter detta.

 3

Programminne, Flash Program Memory sid 17-18

4K x 14 bitar organiserat i 2 sidor om vardera 2K. Val av sida görs i PCLATH-registret

Då man använder ett högnivåspråk såsom C behöver man inte bry sig om val av sida eftersom kompilatorn

sköter detta.

Programräknare (15 bitar)

16-Level Stack 16 x 15 bitar där endast programräknarens värde kan lagras. Vid avancerade program kan detta

utgöra en begränsning då man bara kan anropa subrutiner i maximalt 16 nivåer.

FSR0, FSR1 Reg File Select Register, register vid indirekt adressering.

ALU (8-bitars)

Arbetsregistret W-registret. Resultat och arbetsregister om 8 bitar. De flesta operationer görs via W-registret.

Statusregistret 8-bitars register med bl a Carryflagga, DigitCarryflagga, Zeroflagga

2.2 Periferienheter

Nedan visas ett blockschema över periferienheterna hos PIC 16F1827.

Vilka ben på PIC16F1827 som periferienheterna använder beskrivs i tabellen på sidan 6 i databladet.

Enheter som är aktuella i projektet beskrivs på följande sidor.

 4

PORTA sid 117-124

PORTA är en port med maximalt 7 in/utgångar samt 1 ingång, RA5.

Maximalt antal in/utgångar erhålls om Intern Master Clear Reset och Intern klockoscillator används.

Fem av benen kan användas som analoga ingångar till AD-omvandlaren.

I ANSELA sid 123 väljs med ”0” om benen ska vara digitala och med ”1” om benen ska ha analogfunktion.

I TRISA sid 122 väljs med ”0” om benen ska vara utgångar och med ”1” om benen ska vara ingångar.

OBS Defaultinställning är analoga ingångar.

PORTB sid 125-129

PORTB är en port med 8 in/utgångar där 7 av benen kan användas som analoga ingångar till AD-omvandlaren.

I ANSELA sid 128 väljs med ”0” om benen ska vara digitala och med ”1” om benen ska ha analogfunktion.

I TRISB sid 127 väljs med ”0” om benen ska vara utgångar och med ”1” om benen ska vara ingångar.

OBS Defaultinställning är analoga ingångar.

Om man vill undvika yttre pull-up motstånd då man har strömställare anslutna till PORTB:s ingångar kan man

aktivera "weak pull-up" i registret WPUB sid 128 samt OPTION_REG registrets WPUEN-bit sid 176.

Timer0 sid 173-176

8 - bitars räknare. Insignal från klockgenerator (FOSC/4) vid timerfunktion. Pulser från yttre källa kan tas in via

ben RA4/T0CKI och räknas i TMR0. Timer0 konfigureras med OPTION_REG sid 176 och CPSCON0

sid 318.

Timer1 sid 177-187

16 - bitars räknare. Insignal från intern klockgenerator (t ex FOSC/4) eller yttre klockgenerator.

Timer1 konfigureras med T1CON sid 185 och T1GCON sid 186.

Timer2/4/6 sid 189-192

Timer2, Timer4 och Timer6 är 8–bitars räknare som får sina insignaler från klockgeneratorn (FOSC/4) via var sin

prescaler.

Timer2 konfigureras med T2CON sid 191.

Timer4 konfigureras med T4CON sid 191.

Timer6 konfigureras med T6CON sid 191.

PWM Pulse Width Modulation sid 203-227

Om man ska använda sig av en drivkrets med 2 transistorer i halvbrygga eller 4 transistorer i helbrygga så är det

lämpligt att använda Enhanced Mode PWM.

Om man bara vill PWM-styra 1 transistor så är det enklare med Standard PWM sid 208-211.

Det finns 2 moduler för standard PWM, CCP3 respektive CCP4.

CCP3 konfigureras i CCP3CON och CCP4 konfigureras i CCP4CON sid 226

Till varje PWM-modul ska man koppla var sin 8-bitars Timer: Timer2, Timer4 eller Timer6.

Val av kopplad Timer görs i CCPTMRS sid 227.

Timer2 konfigureras med T2CON och PR2 sid 191.

Timer4 konfigureras med T4CON och PR4 sid 191.

Timer6 konfigureras med T6CON och PR6 sid 191.

Pulsbredden för CCP3 styrs med CCPR3L och CCP3CON <5:4>

Pulsbredden för CCP4 styrs med CCPR4L och CCP4CON <5:4>

Ben RA3/CCP3 respektive RA4/CCP4 används som PWM-utgångar.

Övrig konfigurering samt val av PWM-period mm sid 209.

 5

AD-omvandlare sid 139-151

AD-omvandlaren är en 10-bitars successiv approximationsomvandlare och kan kopplas till 12 olika ben på

kretsen (Kanal AN0-AN11).

ADC Clock Period, TAD, erhålls vanligen genom en frekvensdelning av klockfrekvensen FOSC. För korrekt AD-

omvandling krävs att: 1,0 μs ≤ TAD ≤ 9,0 μs.

Från det att en kanal valts krävs en viss tid (acquisition time, TACQ) innan man startar A/D-omvandlingen. Denna

tid gör bland annat att omladdning av AD-omvandlarens sample & holdkondensator CHOLD hinner ske. Minsta

TACQ är ca 5 μs enligt databladet sid 149.

Som referensspänning till AD-omvandlaren kan man vid mindre kritiska applikationer använda

matningsspänningen (VDD resp VSS).

Val av analog/digital görs i registren ANSELA sid 123 och ANSELB sid 128.

Konfigurering av AD-omvandlaren görs i ADCON0 och ADCON1 sid 145-146.

Resultatet av en AD-omvandling finns i registren ADRESH och ADRESL.

3 Instruktionsuppsättning och arbetssätt

3.1 Instruktionsuppsättning

En listning av samtliga 49 assemblerinstruktioner finns i databladet på sidan 327-328.

Instruktionsuppsättningen innehåller bl a instruktioner för att flytta data:

movlw, movwf, movf, movlb

Exempel:
movlw k ;Flyttar konstanten k till W

movwf f ;Flyttar innehållet i W till registret f

movf f,W ;Flyttar innehållet i registret f till W

movlb k ;Flyttar konstanten k till BSR-registret

Instruktioner finns för att addera, subtrahera, skifta samt utföra logiska operationer:

addwf, subwf, incf, decf, rlf, rrf, andwf, iorwf, xorwf

Exempel:
addwf f,W ;Addition W+f, resultatet placeras i W

addwf f,F ;Addition W+f, resultatet placeras i f

Bland bithanteringen återfinns:

bit clear (bcf), bit set (bsf)

Exempel:
bcf f,0x2 ;Bit 2 i register f nollställs

bsf f,0x0 ;Bit 0 i register f ettställs

För att skapa programstruktur finns bl a följande instruktioner:

goto label

bra label

call subrutinnamn resp return för återhopp

btfsc bit test f skip next instruction if clear.

btfss bit test f skip next instruction if set

decfsz decrement f skip next instruction if zero

incfsz increment f skip next instruction if zero

 6

3.2 Adressering

Kretsen stödjer endast 3 adresseringsmoder, direkt, indirekt respektive relativ adressering. Indirekt adressering

görs genom att ange en adress i indirekt adresseringspekare (FSR0 och FSR1) och sedan adressera register

INDF0 och INDF1.

3.3 Avbrottshantering

Kretsen har en avbrottsvektor i programminnet (adress 0x0004) samt 23 avbrottskällor. Sid 81-94.

Bland annat finns följande avbrottskällor:

Externt avbrott via RB0/INT

Förändring PORTB bitar

Timeravbrott

AD-omvandling klar

Samtliga avbrott har samma prioritet och så fort ett avbrott hanteras så maskeras automatiskt alla andra avbrott

tills återhopp från avbrottsrutinen sker. Maskering av alla avbrott sker genom nollställning av GIE-biten i

INTCON. GIE-biten ettställs automatisk vid återhopp från avbrottsrutinen så att nya avbrott kan betjänas.

Avbrottsflaggor måste nollställas i avbrottsrutinen innan återhopp från avbrottsrutinen sker.

Varje avbrottskälla kan maskas bort med enable-bitar i registren INTCON, PIE1, PIE2, PIE3 och PIE4.

Avbrottsflaggor finns i registren: INTCON, IOCBF, PIR1, PIR2, PIR3 och PIR4.

Då avbrott sker sparas följande register automatisk till så kallade skuggregister:

 W, STATUS, BSR, FSR och PCLATH.

Vid återhopp från avbrottsrutinen återläses registren automatiskt.

En avbrottsrutin bör ha följande principiella uppbyggnad:

isr_rutin

 Kontrollera vilken avbrottskälla som är aktuell

 Hoppa till aktuell avbrottsrutin

 Nollställ aktuell avbrottsflagga

 Återhopp från avbrott

3.4 Read Modify Write problemet

PIC 16Fxx familjen använder en metod som kallas Read-Modify-Write (RMW) när man skriver till en enskild

bit i ett register. Vid skrivning av enskild bit i t ex PORTB läser processorn först tillståndet på alla 8 benen i

PORTB som sedan mellanlagras temporärt i ett internt register. Därefter modifieras den aktuella biten i det

temporära registret. Slutligen skrivs det temporära registret till PORTB. Detta kan ge upphov till svårfunna fel

om något ben i PORTB lastas så hårt att spänningen på benet inte motsvarar det önskade logiska tillståndet. I PIC

16F1827 har man infört registren LATA och LATB för att komma runt problemet. LATA och LATB är

latcharna som är kopplade till respektive port. Om man skriver till en bit i LATB så läser processorn tillståndet i

latchen i stället för tillståndet på benen vilket gör att man är oberoende av belastningen på benen.

Följande kan rekommenderas:

Vid skrivning till PORTA och PORTB rekommenderas användning av registren LATA och LATB.

Vid läsning av PORTA och PORTB måste man använda registren PORTA och PORTB.

 7

4 C-kompilatorn MPLAB XC8

Olika C-kompilatorer kan ha olika storlek på sina datatyper så det är viktigt att ta reda på vad som gäller för den

aktuella kompilatorn. I tabellen nedan syns storleken på datatyperna i MPLAB XC8.

Observera att variabeltyperna bit och short long är en avvikelse från ANSI-standarden.

Eftersom PIC 16F1827 är en 8-bitars processor ska man försöka att använda heltalstyperna char, signed char

respektive unsigned char om det går. Om man väljer större heltalstyper där det inte behövs blir programmet

onödigt stort och långsamt.

Typ Storlek (bitar)

bit 1

char (1) 8

signed char 8

unsigned char 8

short 16

unsigned short 16

int 16

unsigned int 16

short long 24

unsigned short long 24

long 32

unsigned long 32

long long 32

unsigned long long 32

float (2) 24 eller 32

double (2) 24 eller 32

long double Som double

Not (1): char är unsigned som standard.

 (2): Storlek för float och double väljs under: Project>Build Options>Project>Global

I MPLAB XC8 finns följande makron för att erhålla fördröjningar (OBS! Två understreck i början):
__delay_us(x); //Ger en fördröjning på x mikrosekunder, x heltal

__delay_ms(y); //Ger en fördröjning på y millisekunder, y heltal

För att kunna använda makrona ovan krävs följande definition av aktuell klockoscillatorfrekvens:
#define _XTAL_FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz

Man kan infoga assemblerinstruktioner i sin C-kod, vilket man endast bör göra i undantagsfall.

Exempel:
asm("nop"); //Assemblerinstruktionen ”no operation”

5 Programutveckling för PIC 16F1827

Vid utveckling av program till microcontrollers används ofta språket C.

Om man vill lära känna sin processor i detalj eller om det är tidskritiska delar i ett program är assembler att

föredra. Nackdelen med assemblerprogrammering är att det tar längre tid att koda samt att felsökning är svårare.

I fallet med PIC-processorer har man också problemet med att hålla ordning på i vilken bank ett register finns i

samt vilken som den aktuella sidan i programminnet. Detta håller kompilatorn reda på för oss om vi använder ett

högnivåspråk.

 8

5.1 Programskelett

Programskelett C-kod och minimal hårdvarukoppling

Kondensatorn på 100 nF (keramisk för låg impedans vid höga frekvenser) är en så kallad avkopplings-

kondensator som ska placeras nära PIC-processorn med så korta anslutningsledningar som möjligt.

RA5/MCLR-ingången måste vara ansluten till +5V via ett motstånd på 10 kohm. Om man vill använda RA5 som

ingång måste man ändra MCLRE=ON till MCLRE=OFF i koden nedan.

Notera att klockoscillatorfrekvensen delat med fyra, Fosc/4, finns tillgänglig på ben RA6. Om man vill använda

RA6 som in/utgång måste man ändra CLKOUTEN=ON till CLKOUTEN=OFF i koden nedan.

Om man vill använda en yttre kristall som klockoscillator måste man ändra FOSC=INTOSC till FOSC=LP,

FOSC=XT eller FOSC=HS beroende på frekvensen hos kristallen.

/* Programskelett MPLAB XC8 */

//Headerfiler---

#include <xc.h>

//Configuration Bits---

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 while(1)

 {

 //PROGRAMKOD

 }

}

//Funktioner--

void init()

{

 //PROGRAMKOD

}

P
I
C
1
6
F
8
8

RB0

Vss Vdd

+5V

0V +5V

0V

MCLR

0V

100nF

10k

1k

Fosc/4

RA6

 9

5.2 Programexempel

Programexempel 1

Nedan syns ett minimalt program för att tända en lysdiod på PORTB bit0 (RB0) och skriva talet 5 till PORTA.

Notera hur man tilldelar värde till en enskild bit i ett register (LATBbits.LATB0) samt hur man kan skriva data

på hexadecimalform som 0xNN, på binär form som 0bNNNNNNNN och på vanlig decimal form som NNN.

/* Programexempel 1 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 while(1)

 {

 LATBbits.LATB0=1; //PORTB bit RB0 ettställs

 LATA=5; //PORTA bit RA0 och bit RA2 ettställs

 }

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 ANSELA=0b00000000; //PORTA alla bitar digitala

 ANSELB=0b00000000; //PORTB alla bitar digitala

 TRISA=0b00100000; //PORTA bit 5 ingång resten utgångar

 TRISB=0x00; //PORTB alla bitar utgångar

}

P
I
C
1
6
F
8
8

RB0

Vss Vdd

+5V

0V +5V

0V

MCLR

0V

100nF

10k

1k

Fosc/4

RA6

 10

Programexempel 2

Följande program tänder en lysdiod på RA0 då de båda strömställarna är i till-läge, en AND-funktion.

/* Programexempel 2 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 while(1) //Oändlig huvudloop

 {

 LATAbits.LATA0 = PORTBbits.RB0 && PORTBbits.RB1;

 }

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern oscillator Fosc = 4 MHz

 LATA=0x00; //Nollställer alla bitar i PORTA

 LATB=0x00; //Nollställer alla bitar i PORTB

 ANSELA=0b00000000; //PORTA alla bitar digitala

 ANSELB=0b00000000;//PORTB alla bitar digitala

 TRISA=0b00100000; //PORTA bit 5 ingång resten utgångar

 TRISB=0b00000011; //PORTB bit0-1 ingångar, bit2-7 utgångar

}

P
I
C
1
6
F
8
8

RB0

RB1

Vss Vdd

RA0

+5V

0V +5V

0V

0V

MCLR

0V

100nF

10k

1k

10k

Fosc/4RA6

 11

Programexempel 3

Följande program initierar I/O-portarna. PORTA får 7 digitala utgångar och en ingång. PORTB får 8 digitala

utgångar. Till PORTA bit 0 är en lysdiod ansluten till jord via en resistor vilket innebär att lysdioden tänds då

RA0 går hög. Programmet tänder och släcker lysdioden med en fördröjningsrutin på ca 1 sekund mellan

händelserna, vilket gör att lysdioden blinkar med frekvensen 0,5 Hz.

/* Programexempel 3 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Definitioner av konstanter---

#define _XTAL_FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz

 //Krävs för macro ”__delay_us(x)”

 //respektive ”__delay_ms(x)”

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 while(1)

 {

 LATAbits.LATA0=1;

 __delay_ms(1000); //fördröj 1000ms

 LATAbits.LATA0=0;

 __delay_ms(1000); //fördröj 1000ms

 }

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 ANSELA=0b00000000; //PORTA alla bitar digitala

 ANSELB=0b00000000; //PORTB alla bitar digitala

 TRISA=0b00100000; //PORTA bit 5 ingång resten utgångar

 TRISB=0x00; //PORTB alla bitar utgångar

}

 12

Programexempel 4

I detta program räknas pulserna som mottagits på T0CKI/RA4. Då 3*8=24 pulser mottagits blir RB2 hög under

ett mycket kort ögonblick. Om man har problem med störningar kan man lägga en kondensator på 100 nF mellan

RA4-ben och jord.

/* Programexempel 4 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 LATBbits.LATB2=0;

 TMR0=0;

 while(1)

 {

 if(TMR0==3) //Om 3*8=24 pulser mottagits

 {

 TMR0=0;

 LATBbits.LATB2=1;

 LATBbits.LATB2=0;

 }

 }

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 LATB=0; //Nollställer alla bitar i PORTB

 ANSELA=0b00000000; //PORTA alla bitar digitala

 ANSELB=0b00000000; //PORTB alla bitar digitala

 TRISA=0b00110000; //PORTA bit 4-5 ingångar resten utgångar

 TRISB=0x00; //PORTB alla bitar utgångar

 OPTION_REG=0b00100010; //Initiera Timer0, Prescaler = 1:8,räknar på pos flank

 CPSCON0bits.T0XCS=0; //Initiera Timer0 för pulsräkning på T0CKI/RA4

}

 13

Programexempel 5

I detta program sker en AD-omvandling av den analoga spänningen på ingång RA0/AN0 till ett 8-bitars digitalt

värde som läggs i variabeln AD_in. Efter val av AD-kanal finns en fördröjning, TACQ = 5μs. Denna tid gör bland

annat att omladdning av AD-omvandlarens sample & holdkondensator CHOLD hinner ske innan start av AD-

omvandlingen. Placera ett 2,2 kΩ:s motstånd i serie med den analoga ingången för att skydda kretsen mot

eventuella överspänningar. Om man har problem med störningar vid AD-omvandlingen kan man lägga en

kondensator på 100 nF mellan AD-ingång och jord.

/* Programexempel 5 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Definitioner av konstanter---

#define _XTAL_FREQ 4000000 //Klockoscillatorfrekvens Fosc=4 MHz

 //Krävs för macro ”__delay_us(x)”

 //respektive ”__delay_ms(x)”

//Funktionsprototyper---

void init(void);

char AD_omv(char ADkanal);

//Huvudprogram--

void main()

{

 char AD_in;

 init();

 while(1) //Oändlig huvudloop

 AD_in=AD_omv(0); //AD resultat från RA0/AN0 till AD_in

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 TRISB=0x00; //PORTB alla bitar utgångar

 ANSELB=0b00000000; //PORTB alla bitar digitala

 ADCON1=0b01000000; //Vänsterjusterat, AD-clock=Fosc/4,Vref VDD och VSS

 ANSELA=0b00000001; //PortA bit 0 analog, övriga bitar digitala

 TRISA=0b00100001; //PORTA bit0 och bit5 ingång, resten utgångar

 ADCON0=0x01; //ADON

}

char AD_omv(char ADkanal)

{

 ADCON0=(ADCON0 & 0b10000011)|(ADkanal<<2); //Val av AD-kanal

 __delay_us(5); //Delay 5us. Macro i MPLAB XC8.

 ADCON0bits.GO=1; //AD-omvandling startar

 while(ADCON0bits.GO); //Vänta på att AD-omvandling är klar

 return ADRESH; //Returnera 8 MSB av AD-omvandling

}

 14

Programexempel 6
Följande program visar hur man kan erhålla en PWM-signal på ben RA3/CCP3.

Vid FOSC = 4 MHz är fPWM = 4 kHz.

/* Programexempel 6 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

//Huvudprogram--

void main()

{

 init();

 while(1)

 {

 CCPR3L=76; //Duty-cycle=76/255=30%

 }

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 ANSELA=0b00000000; //PORTA alla bitar digitala

 ANSELB=0b00000000; //PORTB alla bitar digitala

 TRISB=0; //PORTB alla bitar utgångar

 TRISA=0b00100000; //PORTA bit 5 ingång resten utgångar

 CCP3CON=0b00001100; //CCP3 i PWM-mode

 CCPTMRS=0b01001010; //CCP3 använder Timer2

 PR2=254;

 T2CON=0b00000100; //Timer2 On, Prescaler=1 ger fPWM = 4 kHz

}

 15

Programexempel 7

Följande visar hur avbrottshantering fungerar med MPLAB XC8. Programmet använder timeravbrott med

Timer1 för att med 0.5 sekunders intervall ändra utgången RB0. På utgången RB0 kan man ansluta en lysdiod

som kommer att blinka med frekvensen 1 Hz.

/* Programexempel 7 MPLAB XC8 */

//Headerfiler---

#include <xc.h> //Definition av register och registerbitar mm.

 //Se pic16f1827.h i kompilatorns include catalog

 //C:\Program Files\Microchip\xc8\Vx.xx\include

//Configuration Bits---

//Se C:\Program Files\Microchip\xc8\Vx.xx\docs\pic_chipinfo

//Oscillator Intern, Watchdog timer disabled, Power-Up timer enabled

//Brownout Reset Disable, Low-Voltage Programming Disabled, Unprotect memory,

//MasterClear Input Enabled, Debug disabled,FCM/IESO disabled

#pragma config CPD=OFF, BOREN=OFF, IESO=OFF, FOSC=INTOSC, FCMEN=OFF, MCLRE=ON,\

 WDTE=OFF, CP=OFF, PWRTE=ON, CLKOUTEN=ON //Config Word 1

#pragma config PLLEN=OFF, WRT=OFF, STVREN=ON, BORV=LO, LVP=OFF //Config Word 2

//Funktionsprototyper---

void init(void);

void interrupt isr(void); //Nyckelordet interrupt ger interruptfunktion

//Huvudprogram--

void main()

{

 init();

 while(1); //Oändlig loop som väntar på avbrott

}

//Funktioner--

void init()

{

 OSCCON=0b01101000; //Intern klocka 4 MHz

 ANSELA=0b00000000; //PORTA och PORTB digitala I/O

 ANSELB=0b00000000;

 TRISB=0; //PORTB utgångar

 TRISA=0b00100000; //PORTA bit 5 ingång resten utgångar

 T1CON=0b00110001; //Initiera Timer1.Prescale=8,Internal clock,Timer1 ON

 T1GCON=0b00000000;

 TMR1L=0xDF; //Ställer TMR1 så att delay=0,5 sekunder

 TMR1H=0x0B;

 PIE1=0b00000001; //TMR1 overflow interrupt enable

 INTCON=0b11000000; //Global och peripherial interrupt enable

}

//Interruptrutin

void interrupt isr(void)

{

 if(PIR1bits.TMR1IF && PIE1bits.TMR1IE) //Vilken interrupt är aktuell

 {

 LATBbits.LATB0 = !LATBbits.LATB0; //Togglar PORTB bit0

 TMR1L=0xDF; //Återställer TMR1

 TMR1H=0x0B; //så att delay=0,5 sekunder

 PIR1bits.TMR1IF=0; //Nollställer interruptflagga

 }

}

 16

6 Utvecklingsmiljön MPLAB X IDE

6.1 Introduktion

Detta kapitel kan ses som en lathund för att snabbt komma igång med C-programmering i den aktuella

utvecklingsmiljön MPLAB X IDE. Som vanligt kan det mesta annat hittas i manualer och ”hjälpfiler”.

MPLAB XC8 från Microchip är en C-kompilator för PIC-processorer i som huvudsakligen följer ANSI C90

standarden. Det rekommenderade sättet att använda kompilatorn är som ”plug-in” till MPLAB X IDE vilket ger

användaren en välbekant windowsmiljö. Integrationen av kompilatorn i MPLAB X IDE gör också att det går

smidigt att simulera sitt C-program i MPLAB SIM. Den installerade versionen av kompilatorn är en gratisversion

vars huvudsakliga begränsning är att alla optimeringar ej går att aktivera. Det är även tillåtet att använda

gratisversionen för kommersiella projekt. MPLAB X IDE och gratisversionen av MPLAB XC8 kan laddas ner

utan kostnad från tillverkarens hemsida: www.microchip.com.

6.2 Öppna befintligt projekt

 Starta MPLAB X IDE Välj: File>Open Project : zzzzzz.x

6.3 Skapa Nytt projekt

 Starta MPLAB X IDE Välj: File > New Project

 Categories: Microchip Embedded

Projects: Standalone Project

 Next>

Family: Mid-Range 8-bit MCUs (PIC10/12/16/MCP)

 Device: PIC16F1827

 Next>

 Supported Debug Header: None

 Next>

 Hardware Tools: Simulator

 Next>

 Compiler Toolchains: XC8

 Next>

 Project Name: zzzzzz (Använd ej mellanslag åäö etc)

Project Location: Z:\yyyyy (Använd ej mellanslag åäö etc)

Kryssa i: Set as main project och Use project location as the project folder

 Finish>

6.4 Inställningar för projektet

 File>Project Properties

Categories: xc8 linker

Option categories: Memory model

Välj: Size of Double: 32 bit och Size of Float, 32 bit

Categories: Simulator

Välj Instruction Frequency: 𝐹𝐶𝑌𝐶 =
𝐹𝑂𝑆𝐶

4
= 1 𝑀𝐻𝑧

http://www.microchip.com/

 17

6.5 Skapa källkodsfil

 I Project fönstret: Högerklicka på Source Files, Välj New>Empty File..

File Name: xxxxxx.c (Använd ej mellanslag åäö etc)

Finish

 Skriv C-program, spara. Skrivbordet kan nu se ut som nedan:

File-panel: En panel med 3 alternativa fönster:

 -Projektfönstret som visar projektträdet

 -Filesfönstret som visar projektets filer

 -Classfönstret som visar eventuella klasser i koden

Navigation-panel: En panel med 2 alternativa fönster:

-Navigatorfönstret visar information om valda filer samt symboler och variabler.

-Dashboardfönstret som visar information om processor, använt minne mm.

Editor-panel: För att studera och editera projektfiler. Startsida kan också visas här.

Task-panel: Visar resultat av kompilering eller simulering av program.

Om man dubbelklickar på filnamn i File-panelen så öppnas den i Editorpanelen

Om man högerklickar på en flik i ett fönster och väljer Undock Window så kopplas fönstret loss från panelen.

För att återställa fönster till panelen, högerklicka på namn i fönster och välj Dock Window.

File

panel

Navigation

panel

Editor

panel

Task

panel

 18

6.6 Kompilera för programmering av processor

1. Kompilera hela projektet: Run>Build Main Project .

hex-fil skapas i katalogen: projektkatalog\dist\default\production.

2. I Output-fönstret längst ner fås resultatet av kompileringen. Man kan dubbelklicka på felmeddelandet i blå

text, Error, för att komma till aktuell rad i källkodsfilen.

6.7 Simulera program

1. Debug>Debug Main Project (Innefattar kompilering men skapar EJ hex-fil)

2. Studera tiden: Window>Debugging>Stopwatch.

3. Studera SFR-register: Window>PIC Memory Views>SFRs

I Task-panelen: Fliken SFR

4. Studera logiktillstånd på ett ben. Window>Simulator>IOPin

I Task-panelen: Fliken I/O-Pins. Klicka på <New Pin>, välj ben.

Avsluta eventuell simulering . Starta simulering: Debug>Debug Main Project

Nedan studerar man de aktuella benen i exempel 2.

5. Studera Variabler/Register: Window>Debugging>Watches

Högerklicka på Variabel/Register i källkodsfil. Välj New Watch. OK

 ELLER

I Task-panelen: Fliken Watches.

Högerklicka på <Enter new watch>, välj Variabel.

OBS! Variabler/Register uppdateras bara då man pausar simuleringen

 I figuren på nästa syns ett programexempel på hur det kan se ut.

Den gröna raden i källkoden motsvarar den rad som står i tur att utföras vid stegning av programmet.

Den röda raden i källkoden är en rad med brytpunkt.

De register/variabler som är markerade med röd färg i SFR-fönstret är register/variabler som har ändrats

vid utförandet av den senaste raden.

Kontroller

Stopwatch

 19

 Knappar vid simulering

Infoga/Radera brytpunkter genom att klicka på radnummer.

Observera att det måste finnas assemblerkod tillhörande den rad i C-koden som man har placerat en

brytpunkt på för att simuleringen ska stoppa vid brytpunkten.

Bl a följande val finns för simulering:

1. Stegning rad för rad, stegar ej inne i funktioner: Step Over

2. Stegning rad för rad, stegar även inne i funktioner: Step Into

3. Simulering till nästa brytpunkt: Continue

4. Pausa simulering. Pause

5. Reset

5. Avsluta simulering

Om man under simuleringen vill ändra en variabel/registers innehåll:

Pausa simuleringen

Dubbelklicka på den aktuella variabeln/registrets värde (Hex/Decimal) i Watchfönstret eller SFRfönstret och

ändra till önskat värde, avsluta med Retur.

 20

Logikanalysator

Om man vill studera kurvformen för signaler på kretsens ben:

Window>Simulator>Analyzer

I Task-panelen: Fliken Logic Analyzer. Välj önskat ben med:

I figuren nedan har man valt att studera en PWM-signal på RA3/CCP3.

Asynkron Stimuli

Om man vid simuleringen asynkront (oberoende av tidpunkt) vill sätta en valfri ingång t ex hög eller låg gör

följande:

Window>Simulator>Stimulus>
Välj fliken Asynchronous:

Välj Pin samt Action: Set High/Set Low/ Toggle/Pulse High/Pulse Low.

I figuren nedan fås en puls på T0CK1-ingången som är en instruktionscykel lång då man trycker på dess

Fire-knapp samt RB0 växlar tillstånd då man trycker på dess Fire-knapp

 21

Simulera analog inspänning

Om man vid simuleringen vill sätta inspänningen på ett analogt ingångsben gör följande:

Window>Simulator>IOPin

I Task-panelen: Fliken I/O-Pins. Klicka på <New Pin>, välj ben.

Skriv in den analoga inspänningen under ”Value”.

Avsluta eventuell simulering . Debug>Debug Main Project

OBS!

Variabler och register som beror på den analoga inspänningen uppdateras bara då man pausar

simuleringen

I figuren nedan har man simulerat inspänningen 3.86 V på ben AN0/RA0.

 22

Exempel:

I nedanstående fönster har man simulerat programexempel 2. Genom att klicka på Fire-knapparna i

Stimulusfönstret kan man byta tillstånd på de 2 insignalerna på ben RB0 respektive RB1. Både insignaler på

PORTB och utsignal på PORTA kan studeras i SFR-fönstret.

 23

7. Bränna program till PIC-krets med programmeraren Dataman-40PRO.

1. Sök reda på HEX-filen med filnamnsändelse .hex som utvecklingsverktyget skapat i projektkatalogen:

 \projektkatalog\dist\default\production.

 Kopiera .hex filen till en USB-sticka. Notera eventuellt Checksum i MPLAB

2. Ladda ur eventuell statisk elektricitet som du är uppladdad med genom att hålla handen på den svarta

ANTISTAT-mattan. Montera krets i brännarens sockel. Observera läge. Spänn fast. (Fäll ner ”arm”.)

3. Starta programmet Dataman-PRO Pg4uw om ej startat. Välj Dataman-40PRO.

4. Välj krets om ej vald. Alternativ 1: Device>Select/default . Välj t ex PIC16F1827.

 Välj krets om ej vald. Alternativ 2: Device>Select device Search 16F1827

 Välj krets med notering: Note: no adapter required

5. File>Load :

Välj Files of type: IntelHEX (*HEX) Leta reda på din zzz.hex

Tryck Open

Kontrollera eventuellt att ” PICmicro checksum” stämmer med Checksum i MPLAB

6. Device>Device options>operation options

7. Programmera kretsen: Device > Program

8 Vid frågeruta Repeat?: Tryck

9. Ladda ur eventuell statisk elektricitet som du är uppladdad med genom att hålla handen på den svarta

ANTISTAT-mattan. Plocka ur kretsen ur sockeln.

