
Institutionen för data- och informationsteknik
CHALMERS TEKNISKA HÖGSKOLA

Tentamen med lösningsförslag
Programmering av inbyggda system

Exempel 3

Examinator
Roger Johansson, tel. 772 57 29

Kontaktpersoner under tentamen
Roger Johansson

Tillåtna hjälpmedel

Häftet
Instruktionslista för CPU12

Inget annat än rättelser och understrykningar
får vara införda i häftet.
Du får också använda bladet:

C Reference Card
samt en av böckerna:

Vägen till C,
Bilting, Skansholm

The C Programming Language,
Kerninghan, Ritchie

Endast rättelser och understrykningar får vara
införda i boken.

Tabellverk eller miniräknare får ej användas.

Lösningar
anslås senast dagen efter tentamen via kursens
hemsida.

Granskning
Tid och plats anges på kursens hemsida.

Allmänt
Siffror inom parentes anger full poäng på
uppgiften. För full poäng krävs att:

 redovisningen av svar och lösningar är
läslig och tydlig. Ett lösningsblad får
endast innehålla redovisningsdelar som
hör ihop med en uppgift.

 lösningen ej är onödigt komplicerad.
 du har motiverat dina val och

ställningstaganden
 assemblerprogram är utformade enligt de

råd och anvisningar som givits under
kursen och tillräckligt dokumenterade.

 C-program är utformade enligt de råd och
anvisningar som getts under kursen. I
programtexterna skall raderna dras in så
att man tydligt ser programmens struktur.

Betygsättning
För godkänt slutbetyg på kursen fordras att
både tentamen och laborationer är godkända.

Tentamenspoäng ger slutbetyg:
20p≤betyg 3 < 30p ≤ betyg 4 < 40p ≤ betyg 5

Programmering av inbyggda system - Tentamen exempel 3 2(10)

Uppgift 1 (6p) Assemblerprogrammering

En 8-bitars strömbrytare, ”DIP_SWITCH” är ansluten till adress $600 och en
displayenhet ”HEXDISPLAY” som visar en byte i form av två hexadecimala
siffror, är ansluten till adress $400 i ett MC12 mikrodatorsystem.

Konstruera en subrutin DipHexReversed som läser av strömbrytaren och
indikerar den mest signifikanta påslagna biten genom att skriva dess position,
räknat från höger, till displayenheten. Om exempelvis bitarna 2 och 4 utgör
ettställda strömbrytare ska positionen för bit 4, (dvs. 5) skrivas till
displayenheten.
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen.
Speciellt gäller att endast symboler ska användas för absoluta adresser.

Uppgift 2 (8p) Användning av sammansatta datatyper/avbrottshantering

Följande figur beskriver en förenklad variant av CRG-modulen med de register som används för den enkla
räknaren hos HCS12:

Clock Reset Generator (CRG)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$30
R

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM

CRGFLG Flags Register W

$31
R

RTIE
0 0

LOCKIE
0 0

SCMIE
0

CRGINT Interrupt Enable
Register W

$32
R 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0 RTICTL RTI Control Register W

Detta system har en 10 MHz oscillator. Räknaren ska programmeras för att generera periodiska avbrott med
c:a 10ms intervall. Ledning: 3×215 pulser/period ger tillräcklig noggrannhet. Räknaren använder
avbrottsmekanismen hos HCS12, kopplad till vektor 0x3FF2.

RTR [3:0] RTR[6:4]
 000 (OFF) 001 010 011 100 101 110 111
0000 OFF 210 211 212 213 214 215 216
0001 OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216
0010 OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216
0011 OFF 4x210 4x211 4x212 4x213 4x214 4x215 4x216
0100 OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216
0101 OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216
0110 OFF 7x210 7x211 7x212 7x213 7x214 7x215 7x216
0111 OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216
1000 OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216
1001 OFF 10x210 10x211 10x212 10x213 10x214 10x215 10x216
1010 OFF 11x210 11x211 11x212 11x213 11x214 11x215 11x216
1011 OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216
1100 OFF 13x210 13x211 13x212 13x213 13x214 13x215 13x216
1101 OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216
1110 OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216
1111 OFF 16x210 16x211 16x212 16x213 16x214 16x215 16x216

Programpaketet ska bestå av delar implementerade såväl i assemblerspråk som i ’C’. Fyra olika funktioner
ska implementeras:

 En initieringsrutin, i form av en C-funktion: void RTInit(void)
 En servicerutin för avbrottet, i form av en C-funktion: void AtRTIrq(void)
 En avbrottsrutin RTIRQ, i assemblerspråk som anropar servicerutinen
 En assemblerrutin CLEARI som nollställer avbrottsmasken hos HCS12

a) Visa en lämplig typdeklaration i form av en ’C’-struct för CRG-modulen, enligt figuren ovan.(2p)

b) Visa assemblerrutinen CLEARI och avbrottsrutinen RTIRQ. (2p)

c) Konstruera RTInit som:
 initierar räknaren för att generera avbrott med den angivna periodtiden
 förbereder HCS12 för att hantera avbrott från räknaren.

 Typdeklarationen från uppgift a) ska användas.(3p)

d) Konstruera AtRTIrq som kvitterar ett avbrott från räknaren. Typdeklarationen från uppgift a) ska
användas.(1p)

Programmering av inbyggda system - Tentamen exempel 3 3(10)

Uppgift 3 (10p) Kodningskonventioner (C/assemblerspråk)

I denna uppgift ska du förutsätta samma konventioner som i XCC12, (se bilaga 1).

a) I ett C-program har vi följande deklarationer:

void func(long adam, unsigned char bertil, struct one * ceasar)
{
 long a = adam;
 unsigned int b = bertil;
 struct one *c = ceasar;
 /* Övrig kod i funktionen är bortklippt eftersom vi bara
 betraktar anropskonventionerna. */
}

Översätt hela funktionen func, som den är beskriven, till HCS12 assemblerspråk, såväl prolog som
tilldelningar och epilog ska alltså finnas med. Speciellt ska du börja med att beskriva aktiveringsposten, dvs.
stackens utseende i funktionen och där riktningen för minskande adresser hos aktiveringsposten framgår. (6p)

b) I samma C-program har vi dessuton följande deklarationer givna på ”toppnivå” (global synlighet):

 struct one * c;
 long a;
 char b;

Visa hur variabeldeklarationerna översätts till assemblerdirektiv. Beskriv dessutom hur följande
funktionsanrop översätts till assemblerkod. (4p)

 func(a , b , c);

Uppgift 4 (8p) In och utmatning beskriven i C

I denna uppgift ska du bland annat demonstrera hur absolutadressering utförs i C. För full poäng måste du visa
hur preprocessordirektiv och typdeklarationer då används för att skapa begriplig programkod.

Två strömbrytare och en ljusdiodramp, enligt figuren till
höger, är anslutna till adresser 0x600 och 0x601, respektive
adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
 void CondRunDiode (void)
 som oupphörligt jämför strömbrytarnas värden
 dessutom skriver ut ett rinnande ljus på diodrampen.

Det rinnande ljuset består i att en diod i taget tänds upp.

 Om värdet hos strömbrytaren på adress 0x600 är störst ska ljuset rinna från höger till vänster
 Om värdet hos strömbrytaren på adress 0x601 är störst ska ljuset rinna från vänster till höger
 Om värdena är lika ska det rinnande ljuset stannas.

Från början ska dioden längst till vänster vara tänd.
Du behöver här inte ta hänsyn till att fördröjningar krävs för det rinnande ljuset.

Programmering av inbyggda system - Tentamen exempel 3 4(10)

Uppgift 5 (8p) Programmering med pekare

Uppgiften är att skriva en C-funktion med namnet split som delar upp en text i delar, s.k. tokens.
Varje token avgränsas i texten av ett eller flera blanka tecken, med undantag för den första token
som inte behöver ha något blankt tecken före och den sista som inte behöver ha något blankt tecken
efter. Texten ”Nu tentar vi MOP!” skall t.ex. delas upp i fyra tokens: ”Nu”, ”tentar”, ”vi”
och ”MOP!” .

Funktionen skall ha följande deklaration:

void split(char *s, char *tab[], int max);

Parametern s är en pekare till den text som skall delas upp. Du får förutsätta att denna text avslutas
med ett noll-tecken. Parametern tab är en pekare till ett oinitierat fält. Du får förutsätta att
minnesutrymme för själva fältet har allokerats i den anropande funktionen. Antalet element i fältet
anges av parametern max.

Funktionen split skall fylla i fältet tab så att dess komponenter pekar på de tokens som finns i
texten s. Om fältet tab innehåller färre element än antalet tokens skall bara så många tokens pekas ut
som antalet element i tab medger. Om det å andra sidan finns färre tokens än antalet element i tab
så skall de överflödiga elementen i tab fyllas i med tomma pekare. Funktionen split skall dessutom
i texten s lägga in noll-tecken efter varje token.

I din lösning får du inte använda dig av några färdiga standardfunktioner, utan du måste skriva allt
själv.

Här visas ett litet testprogram som anropar funktionen split.

#define N 10
main() {
 int i;
 char txt[] = "Nu tentar vi MOP! ";
 char *tokens[N];
 split(txt, tokens, N);
 for (i=0; i< N && tokens[i]; i++)
 printf("%s\n", tokens[i]);
}

Utskriften från programmet skall bli:

Nu
tentar
vi

MOP!

Programmering av inbyggda system - Tentamen exempel 3 5(10)

b7 b6 b5 b4 b3 b2 b1 b0DATA (+0)

b1 b0CTRL (+1)

b3 b2 b1 b0STAT (+2)

Programmerarens bild
av skrivarporten

b1 Data available (DAV)
b0 Interrupt Enable (IE)

b7-b1 Printer data (ASCII)

b3 Attention (ATT)
b2 Printer ready (RDY)
b1 Error (ER)
b0 Paper out (PO)

adress

* Filen asm.s12
 segment init
 export _printtrap
 export _sei
 export _cli
 import _print_inter
_printtrap: jsr _print_inter
 rti
_sei: sei
 rts
_cli: cli
 rts

Uppgift 6 (10p) Maskinnära programmering i C

Till en enkel skrivare hör de tre åttabitars register som visas i vidstående
figur. Basadressen är 600 hexadecimalt. För att starta utskrift av ett tecken
placeras tecknet i dataregistret och därefter skrivs en etta i bit 0 i
kontrollregistret. Om man vill att skrivaren skall generera ett avbrott när
utskriften är klar skall även bit 1 i kontrollregistret sättas. Om man angivit
att avbrott skall användas skall avbrott kvitteras genom att bitarna 0 och 1 i
kontrollregistret nollställs. När ett tecken skrivits klart sätter skrivaren en
etta i bit 2 i statusregistret. Bitarna 0 och 1 sätter skrivaren om pappret är
slut eller något fel inträffat. Bit 3 i statusregistret sätts om någon av bitarna 0
till 2 är satt. (Bitarna 0 till 2 i statusregistret visas även med lysdioder på
själva skrivaren så att användaren kan se vilken status skrivaren befinner sig
i. Det finns också en reset-knapp på skrivaren som användaren kan trycka på
för att generera ett avbrott.)

Avbrottsvektorn som hör till skrivaren har adressen 3FF4 hexadecimalt.

Assemblerrutinen som visas här är given:

Din uppgift är att, helt i C, skriva en modul (både .h fil och .c
fil) som styr skrivaren. Du måste också ev. skriva någon
ytterligare fil för att det skall gå att kompilera dina filer.
För att undvika busy-wait skall modulen internt använda en kö.
Det finns en färdigskriven kö-modul som kan användas. Denna
har include-filen:

Din modul skall innehålla följande två interna hjälpfunktioner, vilka inte skall kunna anropas utifrån:

 init_printer , skall om den inte anropats tidigare initiera avbrottsvektorn för skrivaren, skapa en
ny kö och nollställa processorns interrupt-flagga.

 print_next, skall kontrollera att skrivaren är redo att ta emot ett nytt tecken och i så fall hämta det
första tecknet från kön och initiera utskrift av tecknet. Om kön är tom, papperet är slut eller om det är
något fel på skrivaren skall inget göras.

Modulen skall ha två funktioner som kan anropas från andra delar av programmet:
 print , har en parameter av typen unsigned char, ger som resultat värdet 1 eller 0 beroende på

om utskriften lyckades eller inte. Skall initiera skrivaren (om så behövs) och lägga tecknet som gavs
som parameter sist i kön. Skall initiera utskrift av nästa tecken om så behövs.

print_inter, saknar parametrar och resultat, anropas från avbrottsrutinen när avbrott skett. Skall kvittera
avbrottet och initiera utskrift av nästa tecken.

// Filen queue.h
#ifndef QUEUE_H
#define QUEUE_H
struct qstruct; // qstruct definieras i .c filen
typedef struct qstruct *Queue; // typen Queue
typedef unsigned char Data; // typen Data
Queue new_queue(); // skapar en ny kö
void delete_queue(Queue q); // tar bort kön helt och hållet
void clear(Queue q); // tar bort köelementen men behåller kön
int size(Queue q); // ger köns aktuella längd
int add(Queue q, Data c); //lägger in c sist i kön, ger 1 om OK, 0 annars
int copy_first(Queue q, Data *pc); //kopierar första elementet dit pc pekar
 //ändrar inte kön, ger 1 om OK, 0 annars
void remove_first(Queue q); //tar bort det första elementet
#endif

Programmering av inbyggda system - Tentamen exempel 3 6(10)

Bilaga 1: Kompilatorkonvention XCC12:
 Parametrar överförs till en funktion via stacken och den anropande funktionen återställer stacken efter

funktionsanropet.
 Då parametrarna placeras på stacken bearbetas parameterlistan från höger till vänster.
 Lokala variabler översätts i den ordning de påträffas i källtexten.
 Prolog kallas den kod som reserverar utrymme för lokala variabler.
 Epilog kallas den kod som återställer (återlämnar) utrymme för lokala variabler.
 Den del av stacken som används för parametrar och lokala variabler kallas aktiveringspost.
 Beroende på datatyp används för returparameter HC12:s register enligt följande tabell:

Storlek Benämning C-typ Register

8 bitar byte char B

16 bitar word short int
och
pekartyp

D

32 bitar long
float

long int
float

Y/D

Bilaga 2 - Assemblerdirektiv för MC68HC12.
Assemblerspråket använder sig av mnemoniska beteckningar som tillverkaren Freescale specificerat för
maskininstruktioner och instruktioner till assemblatorn, s.k. pseudoinstruktioner eller assemblerdirektiv.
Pseudoinstruktionerna framgår av följande tabell:

Direktiv Förklaring
 ORG N Placerar den efterföljande koden med början på adress N (ORG för ORiGin =

ursprung)
L RMB N Avsätter N bytes i följd i minnet (utan att ge dem värden), så att programmet

kan använda dem. Följden placeras med början på adress L. (RMB för Reserve
Memory Bytes)

L EQU N Ger label L konstantvärdet N (EQU för EQUates = beräknas till)
L FCB N1, N2 Avsätter i följd i minnet en byte för varje argument. Respektive byte ges

konstantvärdet N1, N2 etc. Följden placeras med början på adress L. (FCB för
Form Constant Byte)

L FDB N1, N2 Avsätter i följd i minnet ett bytepar (två bytes) för varje argument. Respektive
bytepar ges konstantvärdet N1, N2 etc. Följden placeras med början på adress
L. (FDB för Form Double Byte)

L FCS "ABC" Avsätter en följd av bytes i minnet, en för varje tecken i teckensträngen
"ABC". Respektive byte ges ASCII-värdet för A, B, C etc. Följden placeras
med början på adress L. (FCS för Form Caracter String)

Programmering av inbyggda system - Tentamen exempel 3 7(10)

Lösningsförslag
Uppgift 1 (6p):

; Symboliska adresser
DipSwitch: EQU $600
HexDisp: EQU $400

; Subrutin DipHexReversed

DipHexReversed:
 CLRB
 LDAA DipSwitch
 BEQ DipHexReversed20
 LDAB #9

DipHexReversed10:
 DECB
 BEQ DipHexReversed20
 LSLA
 BCC DipHexReversed10

DipHexReversed20:
 STAB HexDisp
 RTS

Uppgift 2a (2p):

typedef struct sCRG{
 volatile unsigned char crgflg;
 volatile unsigned char crgint;
 volatile unsigned char rtictl;
}CRG, *PCRG ;

Uppgift 2b (2p):

 EXPORT _CLEARI
_CLEARI: CLI
 RTS

 EXPORT _RTIRQ
 IMPORT _AtRTIrq
_RTIRQ: JSR _AtRTIrq
 RTI

Uppgift 2c (3p):

void RTInit(void)
{
 extern void RTIRQ(void);
 extern void CLEARI(void);
 ((PCRG) (0x30))->rtictl = 0x62; /* periodtid 10 ms: 0110 0010 */
 ((PCRG) (0x30))->crgint = 0x80; /* RTIE <-1: aktivera avbrott */
 *(unsigned short *) 0x3FF2 = RTIRQ;
 CLEARI();

}

Uppgift 2d (1p):

void AtRTIrq(void)
{
 ((PCRG) (0x30))->rtiflg = 0x80; /* RTIE <- 1: kvittera avbrott */
}

Programmering av inbyggda system - Tentamen exempel 3 8(10)

Uppgift 3a (6p):

Beskrivning av aktiveringspost

 minnesanvändning adress

minskande
adress

ceasar

15,SP

 bertil 14,SP

adam

10,SP

PC (vid JSR)

a

4,SP

b

2,SP

c

0,SP

; void func(long adam, unsigned char bertil, struct one * ceasar)
_func:
; {
 LEAS -8,SP
; long a = adam;
 LDY 10,SP
 LDD 12,SP
 STY 4,SP
 STD 6,SP
; unsigned int b = bertil;
 LDAB 14,SP
 CLRA
 STD 2,SP
; struct one *c = ceasar;
 LDD 15,SP
 STD 0,SP
; /* Övrig kod i funktionen är bortklippt eftersom vi bara
; betraktar anropskonventionerna. */
; }
 LEAS 8,SP
 RTS

Uppgift 3b (4p):

_c: RMB 2
_a: RMB 4
_b: RMB 1
 LDD _c
 PSHD
 LDAB _b
 PSHB
 LDD 2+_a
 PSHD
 LDD _a
 PSHD
 JSR _func
 LEAS 7,SP

Programmering av inbyggda system - Tentamen exempel 3 9(10)

Uppgift 4 (8p):

typedef unsigned char * port8ptr;
#define DISPLAY *((port8ptr) 0x400)
#define DIPSWITCH1 *((port8ptr) 0x600)
#define DIPSWITCH2 *((port8ptr) 0x601)

void CondRunDiode(void)
{
 unsigned char value;
 value = 0x80; /* initialvärde */
 while(1)
 {
 if(DIPSWITCH1 > DIPSWITCH2)
 { /* ljus rinner åt vänster */
 DISPLAY = value;
 value = value << 1;
 if(value == 0) /* över kanten? ... */
 value = 1; /* böja om från höger */
 }else if (DIPSWITCH1 < DIPSWITCH2)
 { /* ljus rinner åt höger */
 DISPLAY = value;
 value = value >> 1;
 if(value == 0) /* över kanten? ... */
 value = 0x80; /* böja om från vänster */

 }else /* ljus står still */
 DISPLAY = value;
 }
}

Uppgift 5 (8p):

 void split(char *s, char *tab[], int max) {
 int i;
 for (i=0; i<max; i++)
 tab[i] = 0;
 for (i=0; i<max; i++) {
 while (*s && *s == ' ')
 s++;
 if (!*s)
 return;
 tab[i] = s;
 while (*s && *s != ' ') {
 s++;
 }
 if (!*s)
 return;
 *s++ = '\0';
 }
 }

Programmering av inbyggda system - Tentamen exempel 3 10(10)

Uppgift 6 (10p):

/* filen asm.h, ges av ’asm.s12’ och behövs för C-rutinerna */
void printtrap(void); // avbrottrutin, anropar print_inter
void sei(void); // sätter avbrottsflaggan i processorn
void cli(void); // nollställer avbrottsflaggan i processorn

/* .c */
#include "queue.h"
#include "asm.h"
#include <stddef.h>

typedef unsigned char port;
typedef port *portptr;
#define DATA_REG (*(portptr) 0x600)
#define CTRL_REG (*(portptr) 0x601)
#define DAV 2
#define IE 1
#define STAT_REG (*(portptr) 0x602)
#define RDY 4
#define ER 2
#define PO 1

typedef void (*vec) (void);
typedef vec *vecptr;
#define PRINT_VEC_ADR 0x3FF4
#define PRINT_VEC *((vecptr) PRINT_VEC_ADR)

static Queue q = NULL;

static void print_next() {
 unsigned char c;
 if (! (STAT_REG & RDY))
 return; /* Skrivaren upptagen med utskrift, avbrott kommer när tecknet är klart
*/
 else if ((STAT_REG & (ER | PO)))
 return; /* Fel, kan inget göra här */
 else if (copy_first(q, &c)) { /* hämta nästa tecken ur kön */
 remove_first(q);
 DATA_REG = c;
 CTRL_REG = DAV | IE;
 }
}

static void init_printer(void) {
 if (q == NULL) {
 q = new_queue();
 PRINT_VEC = printtrap;
 cli();
 }
}

void print_inter() {
 CTRL_REG = 0;
 print_next();
}

int print(unsigned char c) {
 init_printer();
 if (!add(q, c))
 return 0;
 if (size(q) == 1)
 print_next();
 return 1;
}

/* .h-fil med prototypdeklarationer */
extern void print_inter(void); // anropas vid avbrott
extern int print(unsigned char); // ger 1 om OK, 0 annars

