Institutionen for data- och informationsteknik
CHALMERS TEKNISKA HOGSKOLA

Tentamen med I6sningsforslag
Programmering av inbyggda system

Exempel 3

Examinator
Roger Johansson, tel. 772 57 29

Kontaktpersoner under tentamen
Roger Johansson

Tillatna hjalpmedel
Haftet
Instruktionslista for CPU12
Inget annat dn rittelser och understrykningar
far vara inforda 1 héftet.
Du far ocksa anvinda bladet:
C Reference Card
samt en av bockerna:

Véagen till C,
Bilting, Skansholm

The C Programming Language,
Kerninghan, Ritchie

Endast rittelser och understrykningar fir vara
inforda 1 boken.

Tabellverk eller minirdknare far ej anvéindas.

Losningar

anslds senast dagen efter tentamen via kursens

hemsida.

Granskning
Tid och plats anges pa kursens hemsida.

Allmant
Siffror inom parentes anger full poéng pé
uppgiften. FOr full poang kravs att:

e redovisningen av svar och l6sningar ar
laslig och tydlig. Ett 16sningsblad fér
endast innehalla redovisningsdelar som
hor ithop med en uppgift.

e |6sningen ej dr onddigt komplicerad.

e du har motiverat dina val och
stallningstaganden

e assemblerprogram dr utformade enligt de
rad och anvisningar som givits under
kursen och tillrickligt dokumenterade.

e (C-program &r utformade enligt de rdd och
anvisningar som getts under kursen. |
programtexterna skall raderna dras in sa
att man tydligt ser programmens struktur.

Betygsattning
For godkint slutbetyg pa kursen fordras att
bade tentamen och laborationer dr godkinda.

Tentamenspoidng ger slutbetyg:
20p<betyg 3 < 30p < betyg 4 <40p < betyg 5

Programmering av inbyggda system - Tentamen exempel 3 2(10)

Uppgift 1 (6p) Assemblerprogrammering

En 8-bitars strombrytare, ”’DIP. SWITCH?” &r ansluten till adress $600 och en
displayenhet "THEXDISPLAY” som visar en byte i form av tva hexadecimala
siffror, dr ansluten till adress $400 i ett MC12 mikrodatorsystem.

Konstruera en subrutin DipHexReversed som ldser av strombrytaren och MSN LS
indikerar den mest signifikanta paslagna biten genom att skriva dess position,
raknat fran hoger, till displayenheten. Om exempelvis bitarna 2 och 4 utgor
ettstillda strombrytare ska positionen for bit 4, (dvs. 5) skrivas till
displayenheten.

Om ingen strombrytare &r ettstdlld ska siffran 0 skrivas till displayen.
Speciellt géller att endast symboler ska anvéndas for absoluta adresser.

e
Bt 76543210

DIP=SHITCH INFUT

Uppgift 2 (8p) Anvandning av sammansatta datatyper/avbrottshantering

Foljande figur beskriver en forenklad variant av CRG-modulen med de register som anvinds for den enkla
raknaren hos HCS12:

Clock Reset Generator (CRG)

Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$30 % RTIF | PORF | LVRF |LOCKIF| LOCK | SCMIE | SCMIF SCM CRGFLG Flags Register
R

$31 1 rTIE |2 O | ockiep—2 O |scwmie -2 CRGINT Interrupt Enable
W Register
R

$32 W 0 RTR6 | RTR5 | RTR4 | RTR3 | RTR2 | RTR1 | RTRO RTICTL RTI Control Register

Detta system har en 10 MHz oscillator. Rdknaren ska programmeras for att generera periodiska avbrott med
c:a 10ms intervall. Ledning: 3x2"° pulser/period ger tillricklig noggrannhet. Réknaren anvinder
avbrottsmekanismen hos HCS12, kopplad till vektor Ox3FF2.

RTR[3:0] RTR[6:4]

000 (OFF) 001 010 011 100 101 110 111
0000 OFF 210 211 212 213 214 215 218
0001 OFF 2x210 X211 2x212 X253 2x24 2x215 2x216
0010 OFF 3x20 3x21 3x212 3x23 3x24 3x215 3x2%6
0011 OFF 4x210 4x1t 4x212 4321 4x2 4x215 4x216
0100 OFF 5x210 5x211 5x212 5x213 5x24 5x215 5x216
0101 OFF 6x210 6x21 6x212 6x213 6x214 6x215 6x216
0110 OFF 7x210 X2 7x212 7x23 X2 7x215 7x2%6
0111 OFF 8x210 8x21 8x212 8x213 8x214 8x215 8x216
1000 OFF 9x210 ox2i1 ox212 9x213 ox24 ox215 9x2%6
1001 OFF 10x210 10x21t 10x222 10x252 10x2 10x255 10x286
1010 OFF 11x210 11x1t 11x22 11x25 11x2 11x25 11x286
1011 OFF 12x210 12x21t 12x212 12x25 12x2% 12x255 12x286
1100 OFF 13x210 13x21t 13x212 13x28 13x24 13x255 13x216
1101 OFF 14x210 14x21t 14x212 14x25 14x2 14x255 14x286
1110 OFF 15x210 15x21L 15x212 15x288 15x214 15x255 15x216
1111 OFF 16x210 16x21t 16x222 16x25 16x21 16x25 16x286

Programpaketet ska besta av delar implementerade sévil i assemblersprék som i ’C’. Fyra olika funktioner
ska implementeras:

En initieringsrutin, i form av en C-funktion: void RTInit(void)

En servicerutin for avbrottet, i form av en C-funktion: void AtRTIrq(void)

En avbrottsrutin RT IRQ, i assemblersprdk som anropar servicerutinen

En assemblerrutin CLEAR1 som nollstéller avbrottsmasken hos HCS12
a) Visa en lamplig typdeklaration i form av en ’C’-struct for CRG-modulen, enligt figuren ovan.(2p)
b) Visa assemblerrutinen CLEARI och avbrottsrutinen RTIRQ. (2p)

¢) Konstruera RTINit som:
initierar riknaren fOr att generera avbrott med den angivna periodtiden
forbereder HCS12 for att hantera avbrott fran rdknaren.

Typdeklarationen fran uppgift a) ska anvéndas.(3p)

d) Konstruera AtRTIrq som kvitterar ett avbrott fran rdknaren. Typdeklarationen fran uppgift a) ska
anvandas.(1p)

Programmering av inbyggda system - Tentamen exempel 3 3(10)

Uppgift 3 (10p) Kodningskonventioner (C/assemblersprak)
I denna uppgift ska du forutsétta samma konventioner som i XCC12, (se bilaga 1).

a) I ett C-program har vi foljande deklarationer:

void Tunc(long adam, unsigned char bertil, struct one * ceasar)

{

long a = adam;
unsigned Int b = bertil;
struct one *C = ceasar;

/* Ovrig kod i funktionen ar bortklippt eftersom vi bara
betraktar anropskonventionerna. */

}

Oversitt hela funktionen func, som den #r beskriven, till HCS12 assemblersprak, savil prolog som
tilldelningar och epilog ska alltsa finnas med. Speciellt ska du borja med att beskriva aktiveringsposten, dvs.
stackens utseende i funktionen och dér riktningen for minskande adresser hos aktiveringsposten framgar. (6p)

b) Isamma C-program har vi dessuton foljande deklarationer givna pa toppniva” (global synlighet):

struct one * c;

long a;

char b;
Visa hur variabeldeklarationerna oversétts till assemblerdirektiv. Beskriv dessutom hur féljande
funktionsanrop dversitts till assemblerkod. (4p)

funcCa , b, c);

Uppgift 4 (8p) In och utmatning beskriven i C

I denna uppgift ska du bland annat demonstrera hur absolutadressering utfors i C. For full poéng maste du visa
hur preprocessordirektiv och typdeklarationer da anvéands for att skapa begriplig programkod.

Tvéa strombrytare och en ljusdiodramp, enligt figuren till
hoger, ér anslutna till adresser 0x600 och 0x601, respektive
adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
void CondRunDiode (void)

e som oupphorligt jAmfor strombrytarnas varden
e dessutom skriver ut ett rinnande ljus pa diodrampen.

DIP-SWIICH INFUT DIP =SWITCH INFUT

Det rinnande ljuset bestar i att en diod i taget tdnds upp.

e Om virdet hos strombrytaren pa adress 0x600 dr storst ska ljuset rinna fran hoger till vénster
e Om virdet hos strombrytaren pa adress 0x601 dr storst ska ljuset rinna fran vénster till hoger
e Om vérdena dr lika ska det rinnande ljuset stannas.

Frén borjan ska dioden léngst till vinster vara tind.
Du behover hér inte ta hiansyn till att fordrojningar kravs for det rinnande ljuset.

Programmering av inbyggda system - Tentamen exempel 3 4(10)

Uppgift 5 (8p) Programmering med pekare

Uppgiften ér att skriva en C-funktion med namnet split som delar upp en text i delar, s.k. tokens.
Varje token avgrénsas i texten av ett eller flera blanka tecken, med undantag for den forsta token
som inte behdver ha nagot blankt tecken fore och den sista som inte behdver ha ndgot blankt tecken
efter. Texten ”Nu tentar vi MOP!” skall t.ex. delas upp i fyra tokens: ”Nu, “tentar”, vi”
och ”mMOP!1™ .

Funktionen skall ha foljande deklaration:

void split(char *s, char *tab[], int max);

Parametern s dr en pekare till den text som skall delas upp. Du far forutsitta att denna text avslutas
med ett noll-tecken. Parametern tab &r en pekare till ett oinitierat falt. Du far forutsitta att
minnesutrymme for sjélva faltet har allokerats i den anropande funktionen. Antalet element i faltet
anges av parametern max.

Funktionen split skall fylla i faltet tab sé att dess komponenter pekar pa de tokens som finns i
texten s. Om filtet tab innehéller farre element 4n antalet tokens skall bara sd ménga tokens pekas ut
som antalet element i tab medger. Om det & andra sidan finns farre tokens &n antalet element i tab
sa skall de dverflodiga elementen i tab fyllas i med tomma pekare. Funktionen split skall dessutom
1 texten s ldgga in noll-tecken efter varje token.

I din 16sning fér du inte anvédnda dig av nagra fardiga standardfunktioner, utan du maste skriva allt
sjélv.

Har visas ett litet testprogram som anropar funktionen split.

#define N 10

int i;

char txt[] = "Nu tentar vi MOP! ";

char *tokens[N];

split(txt, tokens, N);

for (i=0; i< N && tokens[i]; i++)
printf('%s\n", tokens[i]);

Utskriften frdn programmet skall bli:
Nu
tentar
Vi

MOP!

Programmering av inbyggda system -

Tentamen exempel 3 5(10)

Uppgift 6 (10p) Maskinndra programmering i C

Till en enkel skrivare hor de tre ttabitars register som visas i vidstdende
figur. Basadressen dr 600 hexadecimalt. For att starta utskrift av ett tecken
placeras tecknet i dataregistret och dérefter skrivs en etta i bit 0 i
kontrollregistret. Om man vill att skrivaren skall generera ett avbrott nér
utskriften ar klar skall dven bit 1 i kontrollregistret sdttas. Om man angivit
att avbrott skall anvdndas skall avbrott kvitteras genom att bitarna 0 och 1 i
kontrollregistret nollstélls. Nar ett tecken skrivits klart sitter skrivaren en
etta 1 bit 2 1 statusregistret. Bitarna 0 och 1 sitter skrivaren om pappret ar
slut eller nagot fel intraffat. Bit 3 i statusregistret sdtts om nadgon av bitarna 0
till 2 &r satt. (Bitarna O till 2 i statusregistret visas dven med lysdioder pa
sjdlva skrivaren sé att anvéndaren kan se vilken status skrivaren befinner sig
i. Det finns ocksa en reset-knapp pa skrivaren som anvandaren kan trycka pa
for att generera ett avbrott.)

Avbrottsvektorn som hor till skrivaren har adressen 3FF4 hexadecimalt.

Programmerarens bild
av skrivarporten
adress
DATA (+0) |b;|bg|bs|bs|bz|b, by |bg
bs-b; Printer data (ASCII)
CTRL (+1) ‘ ‘ ‘ ‘ ‘ ‘ b, | bo
b; Data available (DAV)
by Interrupt Enable (IE)
STAT(2) | | | [[bs|be|ba]b
bs Attention (ATT)
b, Printer ready (RDY)
b, Error (ER)
by Paper out (PO)

Assemblerrutinen som visas hér ir given: export _printtrap
export _seil
export _cli

Din uppgift ar att, helt i C, skriva en modul (bade .h fil och .c
fil) som styr skrivaren. Du maste ocksé ev. skriva nagon

* Filen asm.s12
segment init

import print_inter
_printtrap: jsr

_print_inter

ytterligare fil for att det skall g att kompilera dina filer. sei - ;g:
For att undvika busy-wait skall modulen internt anvanda en k6. | — ~ rts
Det finns en fardigskriven k6-modul som kan anvéndas. Denna cli: cli
har include-filen: - rts

// Filen queue.h

#ifndef QUEUE_H

#define QUEUE_H

struct gstruct; // gstruct definieras 1 .c filen

//
//
//
//
//
//

typedef struct gstruct *Queue;
typedef unsigned char Data;
Queue new_queue();

void delete_queue(Queue Qq);
void clear(Queue q);

int size(Queue q);

int add(Queue g, Data c);

typen Queue
typen Data
skapar en ny ko

void remove_first(Queue q);
#endif

tar bort kon helt och hallet

tar bort koelementen men behaller kon
ger koéns aktuella langd

//1agger in c sist i kdn, ger 1 om OK, O annars
int copy_first(Queue g, Data *pc); //kopierar forsta elementet dit pc pekar
//andrar inte koén, ger 1 om OK, O annars
//tar bort det forsta elementet

Din modul skall innehélla foljande tva interna hjélpfunktioner, vilka inte skall kunna anropas utifran:
e iInit_printer, skall om den inte anropats tidigare initiera avbrottsvektorn for skrivaren, skapa en

ny ko och nollstélla processorns interrupt-flagga.

e print_next, skall kontrollera att skrivaren &r redo att ta emot ett nytt tecken och i sé fall himta det

forsta tecknet fran kon och initiera utskrift av tecknet. Om kon &r tom, papperet &r slut eller om det dr

nagot fel pé skrivaren skall inget goras.

Modulen skall ha tva funktioner som kan anropas fran andra delar av programmet:
e print, har en parameter av typen unsigned char, ger som resultat virdet 1 eller 0 beroende pa

om utskriften lyckades eller inte. Skall initiera skrivaren (om sa behdvs) och ligga tecknet som gavs

som parameter sist i kon. Skall initiera utskrift av ndsta tecken om sa behovs.
print_inter, saknar parametrar och resultat, anropas fran avbrottsrutinen nér avbrott skett. Skall kvittera

avbrottet och initiera utskrift av nésta tecken.

Programmering av inbyggda system - Tentamen exempel 3 6(10)

Bilaga 1: Kompilatorkonvention XCC12:

Parametrar overfors till en funktion via stacken och den anropande funktionen aterstéller stacken efter
funktionsanropet.

Da parametrarna placeras pa stacken bearbetas parameterlistan fran hoger till vanster.

Lokala variabler 6versitts i den ordning de péatriffas i kélltexten.

Prolog kallas den kod som reserverar utrymme for lokala variabler.

Epilog kallas den kod som aterstiller (dterlamnar) utrymme for lokala variabler.

Den del av stacken som anvinds for parametrar och lokala variabler kallas aktiveringspost.

Beroende pé datatyp anvénds for returparameter HC12:s register enligt foljande tabell:

Storlek Bendmning C-typ Register
8 bitar byte char B
16 bitar word short int D
och
pekartyp
32 bitar long long int Y/D
float float

Bilaga 2 - Assemblerdirektiv for MC68HC12.

Assemblerspraket anvinder sig av mnemoniska beteckningar som tillverkaren Freescale specificerat for
maskininstruktioner och instruktioner till assemblatorn, s.k. pseudoinstruktioner eller assemblerdirektiv.
Pseudoinstruktionerna framgar av foljande tabell:

Direktiv Forklaring
ORGN Placerar den efterfoljande koden med borjan pa adress N (ORG for ORiGin =
ursprung)
L RMBN Avsitter N bytes i f6ljd i minnet (utan att ge dem vérden), sa att programmet
kan anvénda dem. Foljden placeras med borjan pé adress L. (RMB for Reserve
Memory Bytes)
L EQUN Ger label L konstantvirdet N (EQU for EQUates = beréknas till)

L FCBNI, N2 Avsitter i f61jd i minnet en byte for varje argument. Respektive byte ges
konstantvédrdet N1, N2 etc. F6ljden placeras med borjan pa adress L. (FCB for
Form Constant Byte)

L FDBNI, N2 Avsitter 1 f0ljd i minnet ett bytepar (tva bytes) for varje argument. Respektive
bytepar ges konstantvédrdet N1, N2 etc. Foljden placeras med borjan pa adress
L. (FDB for Form Double Byte)

L FCS"ABC" Avsitter en foljd av bytes 1 minnet, en for varje tecken i teckenstrangen
"ABC". Respektive byte ges ASCII-vérdet for A, B, C etc. Foljden placeras
med borjan péd adress L. (FCS for Form Caracter String)

Programmering av inbyggda system - Tentamen exempel 3 7(10)

Losningsforslag

Uppgift 1 (6p):

; Symboliska adresser
DipSwitch: EQU $600
HexDisp: EQU $400

; Subrutin DipHexReversed

DipHexReversed:
CLRB
LDAA DipSwitch
BEQ DipHexReversed20
LDAB #9
DipHexReversedl10:
DECB
BEQ DipHexReversed20
LSLA
BCC DipHexReversedl10
DipHexReversed20:
STAB HexDisp
RTS
Uppgift 2a (2p):

typedef struct sCRG{
volatile unsigned char crgflg;
volatile unsigned char crgint;
volatile unsigned char rtictl;
}CRG, *PCRG ;

Uppgift 2b (2p):

EXPORT _CLEARI
_CLEARI: CLI

RTS

EXPORT _RTIRQ
IMPORT _AtRTIrq

_RTIRQ: JSR _AtRTIrq
RTI

Uppgift 2¢c (3p):
void RTInit(void)

{
extern void RTIRQ(void);
extern void CLEARI(void);
((PCRG) (0x30))->rtictl = 0x62; /* periodtid 10 ms: 0110 0010 */
((PCRG) (0x30))->crgint = 0x80; /* RTIE <-1: aktivera avbrott */
*(unsigned short *) Ox3FF2 = RTIRQ;
CLEARIQ);

¥
Uppgift 2d (1p):
void AtRTIrq(void)

((PCRG) (0x30))->rtiflg = 0x80; /* RTIE <- 1: kvittera avbrott */

Programmering av inbyggda system - Tentamen exempel 3 8(10)

Uppgift 3a (6p):
Beskrivning av aktiveringspost
minnesanvandning | adress
ceasar 15,SP minskande
bertil 14,SP adress
adam 10,SP
PC (vid JSR)
a 4,SP
b 2,SP
\/
c 0,SP

void func(long adam, unsigned char bertil, struct one * ceasar)

= adam;

_func:
0 1
LEAS -8,SP
long
LDY 10,SP
LDD 12,SP
STY 4 ,SP
STD 6,SP
; unsigned int b = bertil;
LDAB 14,SP
CLRA
STD 2,SP
; struct one *Cc = ceasar;
LDD 15,SP
STD 0,SP

; /* Ovrig kod i funktionen ar bortklippt eftersom vi bara

}
LEAS 8,SP
RTS

Uppgift 3b (4p):

c: RMB 2

a: RMB 4

b: RMB 1
LDD e
PSHD
LDAB b
PSHB
LDD 2+ a
PSHD
LDD a
PSHD
JSR _func
LEAS 7,SP

betraktar anropskonventionerna. */

Programmering av inbyggda system - Tentamen exempel 3 9(10)

Uppgift 4 (8p):

typedef unsigned char * port8ptr;
#define DISPLAY *((port8ptr) 0x400)
#define DIPSWITCH1 *((port8ptr) 0x600)
#define DIPSWITCH2 *((port8ptr) 0x601)

void CondRunDiode(void)
{
unsigned char value;
value = 0x80; /* initialvarde */
while(1)
{
if(DIPSWITCH1 > DIPSWITCH2)
{ /* ljus rinner at vanster */
DISPLAY = value;
value = value << 1;
if(value == 0) /* Over kanten? ... */
value = 1; /* boja om fran hoger */
}else if (DIPSWITCH1 < DIPSWITCH2)
{ /* ljus rinner at hoger */
DISPLAY = value;
value = value >> 1;
if(value == 0) /* Over kanten? ... */
value = 0x80; /* boja om fran vanster */

}else /* ljus star still */
DISPLAY = value;

Uppgift 5 (8p):

void split(char *s, char *tab[], int max) {
int i;
for (i=0; i<max; i++)
tab[i] = O;
for (i=0; i<max; i++) {
while (*s && *s == = *
S++;
if (1*s)
return;
tab[i] = s;
whille (*s && *s 1= " ") {
S++;

}

if (1*s)
return;

*s++ = "\0";

Programmering av inbyggda system - Tentamen exempel 3 10(10)

Uppgift 6 (10p):

/* filen asm_h, ges av asm.sl12” och behdvs for C-rutinerna */
void printtrap(void); // avbrottrutin, anropar print_inter

void sei(void); // satter avbrottsflaggan i processorn
void cli(void); // nollstéaller avbrottsflaggan i processorn
/* .c */

#include "queue.h"
#include "asm.h"
#include <stddef.h>

typedef unsigned char port;

typedef port *portptr;

#define DATA_REG (*(portptr) 0x600)
#define CTRL_REG (*(portptr) 0x601)
#define DAV 2

#define IE 1

#define STAT_REG (*(portptr) 0x602)
#define RDY 4

#define ER 2

#define PO 1

typedef void (*vec) (void);

typedef vec *vecptr;

#define PRINT_VEC_ADR Ox3FF4

#define PRINT_VEC *((vecptr) PRINT_VEC_ADR)

static Queue g = NULL;
static void print_next() {

unsigned char c;
if (1 (STAT_REG & RDY))

return; /* Skrivaren upptagen med utskrift, avbrott kommer nar tecknet ar klart
*/
else if ((STAT_REG & (ER | PO)))
return; /* Fel, kan inget gora har */
else if (copy_first(g, &c)) { /7* hamta nasta tecken ur kon */
remove_first(q);
DATA_REG = c;
CTRL_REG = DAV | IE;
¥
}

static void init_printer(void) {
if (g == NULL) {
q = new_queue();
PRINT_VEC = printtrap;
cliQ;

}

void print_inter(Q) {
CTRL_REG = O;
print_next();

s

int print(unsigned char c) {
init printer();
if (tadd(g, c))
return O;
if (size(q) == 1)
print_next();
return 1;

}

/* _h-fil med prototypdeklarationer */

extern void print_inter(void); // anropas vid avbrott
extern int print(unsigned char); // ger 1 om OK, O annars

