Institutionen for data- och informationsteknik
CHALMERS TEKNISKA HOGSKOLA

Tentamen med I6sningsforslag
Programmering av inbyggda system

Exempel 2

Examinator
Roger Johansson, tel. 772 57 29

Kontaktpersoner under tentamen
Roger Johansson

Tillatna hjalpmedel
Héftet
Instruktionslista for CPU12
Inget annat &n réttelser och understrykningar
far vara inforda 1 héiftet.
Du far ocksé anvénda bladet:
C Reference Card
samt en av bockerna:

Véagen till C,
Bilting, Skansholm

The C Programming Language,
Kerninghan, Ritchie

Endast réttelser och understrykningar far vara
inforda i boken.

Tabellverk eller minirdknare far ej anvédndas.

Losningar

anslas senast dagen efter tentamen via kursens

hemsida.

Granskning
Tid och plats anges pé kursens hemsida.

Allmant
Siffror inom parentes anger full podng pa
uppgiften. FOr full poang kravs att:

e redovisningen av svar och l6sningar &r
laslig och tydlig. Ett 16sningsblad fér
endast innehalla redovisningsdelar som
hor ithop med en uppgift.

e |6sningen ej dr onddigt komplicerad.

e du har motiverat dina val och
stdllningstaganden

e assemblerprogram dr utformade enligt de
rad och anvisningar som givits under
kursen och tillrickligt dokumenterade.

e C-program ir utformade enligt de rdd och
anvisningar som getts under kursen. I
programtexterna skall raderna dras in s&
att man tydligt ser programmens struktur.

Betygsattning
For godként slutbetyg pa kursen fordras att
bade tentamen och laborationer dr godkénda.

Tentamenspodng ger slutbetyg:
20p<betyg 3 <30p < betyg 4 <40p < betyg 5

Programmering av inbyggda system - Tentamen exempel 2 2(8)

Uppgift 1 (6p) Assemblerprogrammering

En 8-bitars strombrytare, ”’DIP. SWITCH” dr ansluten till adress $600 och en

HEXDISPLAY
displayenhet "THEXDISPLAY” som visar en byte i form av tva hexadecimala '
siffror dr ansluten till adress $400 i ett MC12 mikrodatorsystem. m
Konstruera en subrutin DipHeX som ldser av strombrytaren och indikerar den MSN_LSN

minst signifikanta paslagna biten genom att skriva dess position, rdknat fran
hoger, till displayenheten. Om exempelvis bitarna 2 och 4 utgor ettstédllda
strombrytare ska positionen for bit 2, (dvs. 3) skrivas till displayenheten.
Om ingen strombrytare &r ettstélld ska siffran 0 skrivas till displayen.

0010100

Bt 76543210

DIP=SHITCH INPUT

Speciellt géller att endast symboler ska anvéndas for absoluta adresser.

Uppgift 2 (10p) Anvandning av sammansatta datatyper/avbrottshantering

Parallellporten Port P, iett HCS12-system kan programmeras sé att varje bit kan utgdra antingen en
insignal, eller en utsignal. Portarna som anvinds for insignaler kan dessutom konfigureras sé att ett avbrott
genereras dé en yttre enhet dndrat vdrdet hos insignalen. Porten har tre olika register, som specificeras enligt

foljande:
Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn
| R |1=0UT|1=0UT |1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT — .
$700 W1l o=IN | o=IN | o=IN | 0=IN | O=IN | O=IN | O=IN | O=IN DDR Data Direction Register
R IF IF IF IF IF IF IF IF
$701 W TEA EA EA 1EA EA EA EA EA ICIE Input Change Interrupt
R 0 0 0 0 0 0 0 0 .
$702 W 1 1 1 1 1 1 1 1 DATA Data Register
[]

DDR: 1 anger att positionen &r en utsignal, 0 anger att positionen &r en insignal. Bitarna kan programmeras oberoende
av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan astadkommas. Registret &r bade skrivbart och
lasbart i sin helhet.

ICIE: Bestar av olika delar (R=IF/W=IEA).

0 |EA (Interrupt Enable/Acknowledge). Biten ar 0 efter RESET. Da 1 (Interrupt Enable) skrivs till biten aktiveras
avbrottsgenerering vid &ndring av motsvarande bit i DATA-registret om denna programmerats som insignal.
Om motsvarande bit i DDR i stéllet programmerats som utsignal, genereras inga avbrott. IEA-biten har da
ingen funktion. DA 1 skrivs till en bit som tidigare satts till 1, fungerar detta i stallet som en Interrupt
Acknowledge-funktion, dvs. IF (Interrupt Flag) nollstélls. Fér att helt aterstalla avbrottsmekanismen for denna
bit i DATA-registret skrivs 0 till IEA.

0 IF (Interrupt Flag) Biten &r 0 efter RESET. D& motsvarande bit i DDR ar programmerad som en insignal och
motsvarande IEA &r 1, sétts IF till 1 och ett avbrott (IRQ) generereras, avbrottsvektor FFF2,

o DATA: Bestdr i sjdlva verket av tva olika register (R,W):

d)

o R:innehaller insignaler for de bitar som programmerats som insignaler. Endast 0 far skrivas, till en bit som &r
programmerad som insignal.

o W: anvands da biten ar programmerad som en utsignal. D& en bit som &r programmerad som utsignal lases
kommer detta alltid att resultera i vérdet 1, oavsett vilket varde som tidigare skrivits till databiten.
Visa en ldmplig deklaration av porten med anvdndning av en Struct. Visa ocksé en funktion,
void portPinit(void) som initierar port P, sa att bitarna b;,-bs anvéinds som en 4-bitars
inport och bitarna bs-by anvénds som en 4-bitars utport. D4 ndgon av inportens bitar dndras ska
avbrott genereras. (3p)

Visa en funktion, void outPortP(unsigned char c)som matar ut bitarna bs-by av C, till
port P. (1p)

Visa hur du implementerar en avbrottsfunktion, void irgPortP(void) som kvitterar ett
avbrott fran nadgon av portens ingangar. (3p)

Visa nddvindiga programdelar i assemblersprak, dvs. hur avbrottsrutinen definieras,
avbrottsvektorn initieras (antag att FFF2 &r 1ds- och skrivbart minne) och hur processorn forbereds
for att acceptera avbrotten i ett huvudprogram. Anvind endast standard-C konstruktioner och/eller
assemblersprak for HCS12. (3p)

Programmering av inbyggda system - Tentamen exempel 2 3(8)

Uppgift 3 (10p) Kodningskonventioner (C/assemblersprak)
I denna uppgift ska du forutsétta samma konventioner som i XCC12, (se bilaga 1).

a) I ett C-program har vi foljande deklarationer:

void Tfunc(unsigned int adam, char bertil, unsigned short * ceasar)

{

char a = bertil;

int b = adam;

long *c = ceasar;

/* Ovrig kod i funktionen ar bortklippt eftersom vi bara
betraktar anropskonventionerna. */

}

Oversiitt hela funktionen func, som den ir beskriven till HCS12 assemblersprik. Speciellt ska du borja med att
beskriva aktiveringsposten, dvs. stackens utseende i funktionen och dar riktningen for minskande adresser hos
aktiveringsposten framgér. (6p)

b) Isamma C-program har vi dessuton foljande deklarationer givna pé ”toppniva” (global synlighet):

short * C;
int a;
char b;

Visa hur variabeldeklarationerna oversitts till assemblerdirektiv. Beskriv dessutom hur foljande
funktionsanrop dversitts till assemblerkod. (4p)

funcCa, b, c);

Uppgift 4 (6p) In och utmatning beskriveni C

I denna uppgift ska du bland annat demonstrera hur absolutadressering utfors i C.
For full poéng ska du visa hur preprocessordirektiv och typdeklarationer anvinds for
att skapa begriplig programkod.

Tva strombrytare och tva displayenheter, enligt figuren till hdger, &r anslutna till
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.
Konstruera en funktion

void AddSigned8bitTol6(void)
som adderar de tva viardena som ldses fran strombrytarna (tolka som tal med tecken)
och dérefter presenterar resultatet som ett 16 bitars tal pa displayindikatorerna.

MSH LSH MSH LSH

Uppgift 5 (8p) Programmering med pekare
I standarden for C beskrivs funktionen gsort pa féljande sitt:

void gsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

The gsort function sorts an array of nmemb objects, the initial element of which is pointed to by base. The size of
each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function pointed to by compar,
which is called with two arguments that point to the objects being compared. The function shall return an integer less
than, equal to, or greater than zero if the first argument is considered to be respectively less than, equal to, or greater
than the second. If two elements compare as equal, their order in the resulting sorted array is unspecified.

The gsort function returns no value.

Din uppgift dr nu att skriva en egen sorteringsfunktion, mysort, som fungerar pa samma sétt som qsort
och alltsé kan anropas pa samma sétt. Du behdver inte anvéinda sorteringsalgoritmen quicksort utan kan
utnyttja vilken algoritm som helst, t.ex. den enklare bubble sort. Du far inte anropa négra standardfunktioner
utan maste skriva all kod sjilv. Du fér inte heller anvdnda indexering utan maste utnyttja pekare. Tips: Arbeta
internt i funktionen med typen char. (Du far forutsétta att en variabel av denna typ &r en byte lang.)

Programmering av inbyggda system - Tentamen exempel 2 4(8)
Uppgift 6 (10p) Maskinnara programmeringi C

En signalenhet som ldser externa signaler &r ansluten till en dator. Signalenheten har 64 ingangar
(kanaler), numrerade frén O till 63. Signalenheten kan bara avldsa en ingéng i taget. Det avlista
virdet ges som ett positivt 16-bitars tal. Varje ldsning tar normalt hogst 2 ms.

Signalenheten kopplas till datorn via ett dataregister och ett styrregister. Dessa register bestir bada
av 16-bitar och de har de oktala adresserna 270000 resp. 270002. Dataregistret innehaller det avlésta
vérdet. Styrregistret anvénds for att initiera avldsningar och kontrollera signalenhetens tillstdnd.
Styrregistret innehaller foljande bitar:

270002 | bis | b1s| b1z | b1z | b1y |bio| by | bg | by | be | bs | bs | bz | by | by | bo

L |
Channel number L ‘*Interrupt Enable J
Error Done Start

270000 | b1s | b1s| b1z | b1z | b1y |bio| by | bg | by | be | bs | bsa | bs | bz | by | bo

Bit Namn Anvandning

15 Error Sétts till 1 av signalenheten om avldsningen misslyckades.

8-13 | Channel number Hir anger man vilken av de 64 ingdngarna som skall avldsas.

7 Done Skall séttas till 0 fore avldsningen. Sétts automatiskt till 1 ndr
avldsningen &r klar.

6 Interrupt enable Om en etta skrivs i detta ges ett avbrott nir avldsningen &r klar.

0 Start Nir en etta skrivs i detta startas en avldsning.

Styrregistret maste uppdateras atomaért, dvs. vid initiering maste alla 16-bitarna ska vara korrekt satta och
skrivas samtidigt.

Skriv en modul (med en .h fil och en .c fil) som innehaller tva C-funktioner, Sig_read, som
initierar avlasning och sig_get_value som ger det avldsta virdet som resultat. Du maste ocksa
skriva de definitioner av typer och portar som behovs. (Dessa definitioner kan med fordel ldggas i1 en
separat fil.) Avbrottsmekanismen ska inte anvéndas.

Funktionen sig_read skall som parameter fa numret pa den ingang som skall avldsas. Detta virde
skall ligga 1 intervallet O till 63. Om ett felaktigt virde ges skall ingen avladsning initieras.
Resultattypen skall vara void.

Funktionen sig_get_value skall ge virdet -1 om avldsningen dnnu inte ar klar och vérdet -9 om
avlasningen misslyckades. Dessa tva vérden skall definieras som makron med namnen BUSY resp.
ERROR i .h filen sé att det anropande programmet kan anvédnda dessa.

Programmering av inbyggda system - Tentamen exempel 2 5(8)

Bilaga 1: Kompilatorkonvention XCC12:

Parametrar overfors till en funktion via stacken och den anropande funktionen aterstéller stacken efter
funktionsanropet.

Da parametrarna placeras pa stacken bearbetas parameterlistan fran hoger till vanster.

Lokala variabler 6versitts i den ordning de péatriffas i kélltexten.

Prolog kallas den kod som reserverar utrymme for lokala variabler.

Epilog kallas den kod som aterstiller (dterlamnar) utrymme for lokala variabler.

Den del av stacken som anvinds for parametrar och lokala variabler kallas aktiveringspost.

Beroende pé datatyp anvénds for returparameter HC12:s register enligt foljande tabell:

Storlek Bendmning C-typ Register
8 bitar byte char B
16 bitar word short int D
och
pekartyp
32 bitar long long int Y/D
float float

Bilaga 2 - Assemblerdirektiv for MC68HC12.

Assemblerspraket anvinder sig av mnemoniska beteckningar som tillverkaren Freescale specificerat for
maskininstruktioner och instruktioner till assemblatorn, s.k. pseudoinstruktioner eller assemblerdirektiv.
Pseudoinstruktionerna framgar av foljande tabell:

Direktiv Forklaring
ORGN Placerar den efterfoljande koden med borjan pa adress N (ORG for ORiGin =
ursprung)
L RMBN Avsitter N bytes i f6ljd i minnet (utan att ge dem vérden), sa att programmet
kan anvénda dem. Foljden placeras med borjan pé adress L. (RMB for Reserve
Memory Bytes)
L EQUN Ger label L konstantvirdet N (EQU for EQUates = beréknas till)

L FCBNI, N2 Avsitter i f61jd i minnet en byte for varje argument. Respektive byte ges
konstantvédrdet N1, N2 etc. F6ljden placeras med borjan pa adress L. (FCB for
Form Constant Byte)

L FDBNI, N2 Avsitter 1 f0ljd i minnet ett bytepar (tva bytes) for varje argument. Respektive
bytepar ges konstantvédrdet N1, N2 etc. Foljden placeras med borjan pa adress
L. (FDB for Form Double Byte)

L FCS"ABC" Avsitter en foljd av bytes 1 minnet, en for varje tecken i teckenstrangen
"ABC". Respektive byte ges ASCII-vérdet for A, B, C etc. Foljden placeras
med borjan péd adress L. (FCS for Form Caracter String)

Programmering av inbyggda system - Tentamen exempel 2 6(8)

Losningsforslag
Uppgift 1:

; Symboliska adresser
DipSwitch EQU $600
HexDisp EQU $400

; Subrutin DipHex
DipHex: LDAA DipSwitch
CLRB

DipHex10: TSTA
BEQ DipHex20

INCB
LSRA
BCC DipHex10

DipHex20: STAB HexDisp
RTS

Uppgift 2a (3p):

typedef struct sPortP{
volatile unsigned char ddr;
volatile unsigned char icie;
volatile unsigned char data;

}PORTP;
#define PORTP_BASE 0x700
#define portP ((PORTP *)(PORTP_BASE))
void portPinit(void)
{
portP->ddr = OxOF; /* b7-b4 inport, b3-b0 utport */
portP->icie = OxFO; /* b7-b4 inportar, avbrott aktiveras */
¥
Uppgift 2b (1p):
void outPortP(unsigned char c)
{
portP->data = ¢ & OXOF ; /* b7-b4 ska vara 0 */
¥
Uppgift 2c (3p):
void irgPortP(void)
{
switch(portP->data & OcFO) /* bestam avbrottskalla */
{ /* kvittera avbrott */
case 0x80: portP-> icie = 0x80; break;
case O0x40: portP-> icie = 0x40; break;
case 0x20: portP-> icie = 0x20; break;
case O0x10: portP-> icie = 0x10; break;
}
¥
Uppgift 2d (3p):
Assembler:

initieringar i1 huvudprogram...
IMPORT _irgPortP

MOVW #PortPirqg,$FFF2
cLI

; avbrottsrutin

PortPirq:
JSR _irgPortP

RTI

Programmering av inbyggda system - Tentamen exempel 2 7(8)

Uppgift 3a:
Beskrivning av aktiveringspost

minnesanvandning

stackoffset

ceasar 10,SP

bertil 9,SP

adam 7,SP

PC (vid JSR)

a 4,SP

b 2,SP

c 0,SP

_func:

LEAS
char
LDAB
STAB
inth =
LDD
STD
long
LDD
STD

-5,SP

a = bertil;
9,SP

4,SP

adam;

7,SP

2,SP

*C = ceasar;
10,SP

0,SP

LEAS
RTS

5,SP

Uppgift 3b:

Cc:

RMB 2

_a:RMB2

_b:

RMB 1

LDD ¢
PSHD

LDAB b
PSHB

LDD _a

PSHD
JSR_func
LEAS 5,SP

Uppgift 4

typedef
typedef

#define
#define
#define
#define

#define
#define

void

{

char
short

*port8ptr;
*portl6ptr;

ML40OUT_ADR 0x400
ML4IN_ADR1 0x600
ML4IN_ADR2 0x601

AddSigned8bitTol6(void)

short s;
while(1)
{

S
S =
ML40OUT16 = s;

(short) ML4IN1;

}

ML40UT16 *((portl6ptr) MLAOUT ADR)

ML4IN1 *((port8ptr) ML4IN_ADRL)
ML4IN2 *((port8ptr) ML4IN_ADR2)

s + (short) ML4IN2;

Programmering av inbyggda system - Tentamen exempel 2 8(8)

Uppgift 5:

void mycpy(char *to, const char *from, size_t size) {
while (size-- > 0)
*to++ = *from++;
¥

void mysort(void *base, size_t n, size_t size,
int (*compare) (const void *, const void *)) {

char *b = base;
char temp[size];
_Bool swapped;
do {
swapped = O;
for (char *p = b; p < bt(n-1)*size; p += size) {
if (compare(p, p+size) > 0) {
mycpy(temp, p, size);
mycpy(p, ptsize, size);
mycpy(p+size, temp, size);
swapped = 1;
}

}
} while (swapped);
¥

Uppgift 6:

typedef unsigned short int port;

typedef unsigned short int *portptr;
#define SIGDATA_ADR 0270000

#define SIGCTRL_ADR 0270002

#define SIGDATA *((portptr) SIGDATA_ADR)
#define SIGCTRL *((portptr) SIGCTRL_ADR)

#define start 0x0001
#define int_enable 0x0040
#define done 0x0080
#define channel 0x3T00
#define error 0x8000

// Filen sig_reader.h

#define BUSY -1

#define ERROR -9

extern void sig_read(int channel);
extern int sig_get_value(void);

// Filen sig_reader.c
#include 'sig_reader.h"
#include 'sig.h"

void sig_read(int chan) {
port shadow = O;
if (chan >= 0 && chan <= 63) {
shadow |= start;
chan <<= 8;
shadow |= chan;
SIGCTRL = shadow;

int sig_get_value(void) {
if (SIGCTRL & error)
return ERROR;
else if (SIGCTRL & done)
return SIGDATA;
else
return BUSY;

