
Institutionen för data- och informationsteknik
CHALMERS TEKNISKA HÖGSKOLA

Tentamen med lösningsförslag
Programmering av inbyggda system

Exempel 2

Examinator
Roger Johansson, tel. 772 57 29

Kontaktpersoner under tentamen
Roger Johansson

Tillåtna hjälpmedel

Häftet
Instruktionslista för CPU12

Inget annat än rättelser och understrykningar
får vara införda i häftet.
Du får också använda bladet:

C Reference Card
samt en av böckerna:

Vägen till C,
Bilting, Skansholm

The C Programming Language,
Kerninghan, Ritchie

Endast rättelser och understrykningar får vara
införda i boken.

Tabellverk eller miniräknare får ej användas.

Lösningar
anslås senast dagen efter tentamen via kursens
hemsida.

Granskning
Tid och plats anges på kursens hemsida.

Allmänt
Siffror inom parentes anger full poäng på
uppgiften. För full poäng krävs att:

 redovisningen av svar och lösningar är
läslig och tydlig. Ett lösningsblad får
endast innehålla redovisningsdelar som
hör ihop med en uppgift.

 lösningen ej är onödigt komplicerad.
 du har motiverat dina val och

ställningstaganden
 assemblerprogram är utformade enligt de

råd och anvisningar som givits under
kursen och tillräckligt dokumenterade.

 C-program är utformade enligt de råd och
anvisningar som getts under kursen. I
programtexterna skall raderna dras in så
att man tydligt ser programmens struktur.

Betygsättning
För godkänt slutbetyg på kursen fordras att
både tentamen och laborationer är godkända.

Tentamenspoäng ger slutbetyg:
20p≤betyg 3 < 30p ≤ betyg 4 < 40p ≤ betyg 5

Programmering av inbyggda system - Tentamen exempel 2 2(8)

Uppgift 1 (6p) Assemblerprogrammering

En 8-bitars strömbrytare, ”DIP_SWITCH” är ansluten till adress $600 och en
displayenhet ”HEXDISPLAY” som visar en byte i form av två hexadecimala
siffror är ansluten till adress $400 i ett MC12 mikrodatorsystem.

Konstruera en subrutin DipHex som läser av strömbrytaren och indikerar den
minst signifikanta påslagna biten genom att skriva dess position, räknat från
höger, till displayenheten. Om exempelvis bitarna 2 och 4 utgör ettställda
strömbrytare ska positionen för bit 2, (dvs. 3) skrivas till displayenheten.
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen.
Speciellt gäller att endast symboler ska användas för absoluta adresser.

Uppgift 2 (10p) Användning av sammansatta datatyper/avbrottshantering

Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en
insignal, eller en utsignal. Portarna som används för insignaler kan dessutom konfigureras så att ett avbrott
genereras då en yttre enhet ändrat värdet hos insignalen. Porten har tre olika register, som specificeras enligt
följande:

Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$700
R 1=OUT

0=IN
1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDR Data Direction Register W

$701
R IF IF IF IF IF IF IF IF

ICIE Input Change Interrupt W IEA IEA IEA IEA IEA IEA IEA IEA

$702
R 0 0 0 0 0 0 0 0

DATA Data Register W 1 1 1 1 1 1 1 1

 DDR: 1 anger att positionen är en utsignal, 0 anger att positionen är en insignal. Bitarna kan programmeras oberoende
av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är både skrivbart och
läsbart i sin helhet.

 ICIE: Består av olika delar (R=IF/W=IEA).

o IEA (Interrupt Enable/Acknowledge). Biten är 0 efter RESET. Då 1 (Interrupt Enable) skrivs till biten aktiveras
avbrottsgenerering vid ändring av motsvarande bit i DATA-registret om denna programmerats som insignal.
Om motsvarande bit i DDR i stället programmerats som utsignal, genereras inga avbrott. IEA-biten har då
ingen funktion. Då 1 skrivs till en bit som tidigare satts till 1, fungerar detta i stället som en Interrupt
Acknowledge-funktion, dvs. IF (Interrupt Flag) nollställs. För att helt återställa avbrottsmekanismen för denna
bit i DATA-registret skrivs 0 till IEA.

o IF (Interrupt Flag) Biten är 0 efter RESET. Då motsvarande bit i DDR är programmerad som en insignal och
motsvarande IEA är 1, sätts IF till 1 och ett avbrott (IRQ) generereras, avbrottsvektor FFF2.

 DATA: Består i själva verket av två olika register (R,W):

o R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som är
programmerad som insignal.

o W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal läses
kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten.

a) Visa en lämplig deklaration av porten med användning av en struct. Visa också en funktion,
void portPinit(void) som initierar port P, så att bitarna b7-b4 används som en 4-bitars
inport och bitarna b3-b0 används som en 4-bitars utport. Då någon av inportens bitar ändras ska
avbrott genereras. (3p)

b) Visa en funktion, void outPortP(unsigned char c) som matar ut bitarna b3-b0, av c, till
port P. (1p)

c) Visa hur du implementerar en avbrottsfunktion, void irqPortP(void) som kvitterar ett
avbrott från någon av portens ingångar. (3p)

d) Visa nödvändiga programdelar i assemblerspråk, dvs. hur avbrottsrutinen definieras,
avbrottsvektorn initieras (antag att FFF2 är läs- och skrivbart minne) och hur processorn förbereds
för att acceptera avbrotten i ett huvudprogram. Använd endast standard-C konstruktioner och/eller
assemblerspråk för HCS12. (3p)

Programmering av inbyggda system - Tentamen exempel 2 3(8)

Uppgift 3 (10p) Kodningskonventioner (C/assemblerspråk)

I denna uppgift ska du förutsätta samma konventioner som i XCC12, (se bilaga 1).

a) I ett C-program har vi följande deklarationer:

void func(unsigned int adam, char bertil, unsigned short * ceasar)
{
 char a = bertil;
 int b = adam;
 long *c = ceasar;
 /* Övrig kod i funktionen är bortklippt eftersom vi bara
 betraktar anropskonventionerna. */
}

Översätt hela funktionen func, som den är beskriven till HCS12 assemblerspråk. Speciellt ska du börja med att
beskriva aktiveringsposten, dvs. stackens utseende i funktionen och där riktningen för minskande adresser hos
aktiveringsposten framgår. (6p)

b) I samma C-program har vi dessuton följande deklarationer givna på ”toppnivå” (global synlighet):

 short * c;
 int a;
 char b;

Visa hur variabeldeklarationerna översätts till assemblerdirektiv. Beskriv dessutom hur följande
funktionsanrop översätts till assemblerkod. (4p)

 func(a , b , c);

Uppgift 4 (6p) In och utmatning beskriven i C

I denna uppgift ska du bland annat demonstrera hur absolutadressering utförs i C.
För full poäng ska du visa hur preprocessordirektiv och typdeklarationer används för
att skapa begriplig programkod.

Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.
Konstruera en funktion
 void AddSigned8bitTo16(void)
som adderar de två värdena som läses från strömbrytarna (tolka som tal med tecken)
och därefter presenterar resultatet som ett 16 bitars tal på displayindikatorerna.

Uppgift 5 (8p) Programmering med pekare

I standarden för C beskrivs funktionen qsort på följande sätt:

 void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

The qsort function sorts an array of nmemb objects, the initial element of which is pointed to by base. The size of
each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function pointed to by compar,
which is called with two arguments that point to the objects being compared. The function shall return an integer less
than, equal to, or greater than zero if the first argument is considered to be respectively less than, equal to, or greater
than the second. If two elements compare as equal, their order in the resulting sorted array is unspecified.

The qsort function returns no value.

Din uppgift är nu att skriva en egen sorteringsfunktion, mysort, som fungerar på samma sätt som qsort
och alltså kan anropas på samma sätt. Du behöver inte använda sorteringsalgoritmen quicksort utan kan
utnyttja vilken algoritm som helst, t.ex. den enklare bubble sort. Du får inte anropa några standardfunktioner
utan måste skriva all kod själv. Du får inte heller använda indexering utan måste utnyttja pekare. Tips: Arbeta
internt i funktionen med typen char. (Du får förutsätta att en variabel av denna typ är en byte lång.)

Programmering av inbyggda system - Tentamen exempel 2 4(8)

Uppgift 6 (10p) Maskinnära programmering i C

En signalenhet som läser externa signaler är ansluten till en dator. Signalenheten har 64 ingångar
(kanaler), numrerade från 0 till 63. Signalenheten kan bara avläsa en ingång i taget. Det avlästa
värdet ges som ett positivt 16-bitars tal. Varje läsning tar normalt högst 2 ms.
Signalenheten kopplas till datorn via ett dataregister och ett styrregister. Dessa register består båda
av 16-bitar och de har de oktala adresserna 270000 resp. 270002. Dataregistret innehåller det avlästa
värdet. Styrregistret används för att initiera avläsningar och kontrollera signalenhetens tillstånd.
Styrregistret innehåller följande bitar:

Bit Namn Användning
15 Error Sätts till 1 av signalenheten om avläsningen misslyckades.
8-13 Channel number Här anger man vilken av de 64 ingångarna som skall avläsas.
7 Done Skall sättas till 0 före avläsningen. Sätts automatiskt till 1 när

avläsningen är klar.
6 Interrupt enable Om en etta skrivs i detta ges ett avbrott när avläsningen är klar.
0 Start När en etta skrivs i detta startas en avläsning.

Styrregistret måste uppdateras atomärt, dvs. vid initiering måste alla 16-bitarna ska vara korrekt satta och
skrivas samtidigt.

Skriv en modul (med en .h fil och en .c fil) som innehåller två C-funktioner, sig_read, som
initierar avläsning och sig_get_value som ger det avlästa värdet som resultat. Du måste också
skriva de definitioner av typer och portar som behövs. (Dessa definitioner kan med fördel läggas i en
separat fil.) Avbrottsmekanismen ska inte användas.
Funktionen sig_read skall som parameter få numret på den ingång som skall avläsas. Detta värde
skall ligga i intervallet 0 till 63. Om ett felaktigt värde ges skall ingen avläsning initieras.
Resultattypen skall vara void.
Funktionen sig_get_value skall ge värdet -1 om avläsningen ännu inte är klar och värdet -9 om
avläsningen misslyckades. Dessa två värden skall definieras som makron med namnen BUSY resp.
ERROR i .h filen så att det anropande programmet kan använda dessa.

Programmering av inbyggda system - Tentamen exempel 2 5(8)

Bilaga 1: Kompilatorkonvention XCC12:
 Parametrar överförs till en funktion via stacken och den anropande funktionen återställer stacken efter

funktionsanropet.
 Då parametrarna placeras på stacken bearbetas parameterlistan från höger till vänster.
 Lokala variabler översätts i den ordning de påträffas i källtexten.
 Prolog kallas den kod som reserverar utrymme för lokala variabler.
 Epilog kallas den kod som återställer (återlämnar) utrymme för lokala variabler.
 Den del av stacken som används för parametrar och lokala variabler kallas aktiveringspost.
 Beroende på datatyp används för returparameter HC12:s register enligt följande tabell:

Storlek Benämning C-typ Register

8 bitar byte char B

16 bitar word short int
och
pekartyp

D

32 bitar long
float

long int
float

Y/D

Bilaga 2 - Assemblerdirektiv för MC68HC12.
Assemblerspråket använder sig av mnemoniska beteckningar som tillverkaren Freescale specificerat för
maskininstruktioner och instruktioner till assemblatorn, s.k. pseudoinstruktioner eller assemblerdirektiv.
Pseudoinstruktionerna framgår av följande tabell:

Direktiv Förklaring
 ORG N Placerar den efterföljande koden med början på adress N (ORG för ORiGin =

ursprung)
L RMB N Avsätter N bytes i följd i minnet (utan att ge dem värden), så att programmet

kan använda dem. Följden placeras med början på adress L. (RMB för Reserve
Memory Bytes)

L EQU N Ger label L konstantvärdet N (EQU för EQUates = beräknas till)
L FCB N1, N2 Avsätter i följd i minnet en byte för varje argument. Respektive byte ges

konstantvärdet N1, N2 etc. Följden placeras med början på adress L. (FCB för
Form Constant Byte)

L FDB N1, N2 Avsätter i följd i minnet ett bytepar (två bytes) för varje argument. Respektive
bytepar ges konstantvärdet N1, N2 etc. Följden placeras med början på adress
L. (FDB för Form Double Byte)

L FCS "ABC" Avsätter en följd av bytes i minnet, en för varje tecken i teckensträngen
"ABC". Respektive byte ges ASCII-värdet för A, B, C etc. Följden placeras
med början på adress L. (FCS för Form Caracter String)

Programmering av inbyggda system - Tentamen exempel 2 6(8)

Lösningsförslag
Uppgift 1:

; Symboliska adresser
DipSwitch EQU $600
HexDisp EQU $400

; Subrutin DipHex
DipHex: LDAA DipSwitch
 CLRB

DipHex10: TSTA
 BEQ DipHex20

 INCB
 LSRA
 BCC DipHex10

DipHex20: STAB HexDisp
 RTS

Uppgift 2a (3p):
typedef struct sPortP{
 volatile unsigned char ddr;
 volatile unsigned char icie;
 volatile unsigned char data;
}PORTP;
#define PORTP_BASE 0x700
#define portP ((PORTP *)(PORTP_BASE))

void portPinit(void)
{
 portP->ddr = 0x0F; /* b7-b4 inport, b3-b0 utport */
 portP->icie = 0xF0; /* b7-b4 inportar, avbrott aktiveras */
}

Uppgift 2b (1p):

void outPortP(unsigned char c)
{
 portP->data = c & 0x0F ; /* b7-b4 ska vara 0 */
}

Uppgift 2c (3p):

void irqPortP(void)
{
 switch(portP->data & 0cF0) /* bestäm avbrottskälla */

{ /* kvittera avbrott */
 case 0x80: portP-> icie = 0x80; break;
 case 0x40: portP-> icie = 0x40; break;
 case 0x20: portP-> icie = 0x20; break;
 case 0x10: portP-> icie = 0x10; break;
}

}

Uppgift 2d (3p):

Assembler:
 ; initieringar i huvudprogram...
 IMPORT _irqPortP

 MOVW #PortPirq,$FFF2
 CLI

; avbrottsrutin
PortPirq:
 JSR _irqPortP
 RTI

Programmering av inbyggda system - Tentamen exempel 2 7(8)

Uppgift 3a:

Beskrivning av aktiveringspost

 minnesanvändning stackoffset

ceasar

10,SP

bertil

9,SP

 adam 7,SP

PC (vid JSR)

 a 4,SP

b

2,SP

c

0,SP

_func:
 LEAS -5,SP
; char a = bertil;
 LDAB 9,SP
 STAB 4,SP
; int b = adam;
 LDD 7,SP
 STD 2,SP
; long *c = ceasar;
 LDD 10,SP
 STD 0,SP

 LEAS 5,SP
 RTS

Uppgift 3b:

_c: RMB 2
_a: RMB 2
_b: RMB 1

 LDD _c
 PSHD
 LDAB _b
 PSHB
 LDD _a
 PSHD
 JSR _func
 LEAS 5,SP

Uppgift 4:

typedef char *port8ptr;
typedef short *port16ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT16 *((port16ptr) ML4OUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void AddSigned8bitTo16(void)
{
 short s;
 while(1)
 {
 s = (short) ML4IN1;
 s = s + (short) ML4IN2;
 ML4OUT16 = s;
 }
}

Programmering av inbyggda system - Tentamen exempel 2 8(8)

Uppgift 5:

void mycpy(char *to, const char *from, size_t size) {
 while (size-- > 0)
 *to++ = *from++;
}

void mysort(void *base, size_t n, size_t size,
 int (*compare) (const void *, const void *)) {

 char *b = base;
 char temp[size];
 _Bool swapped;
 do {
 swapped = 0;
 for (char *p = b; p < b+(n-1)*size; p += size) {
 if (compare(p, p+size) > 0) {
 mycpy(temp, p, size);
 mycpy(p, p+size, size);
 mycpy(p+size, temp, size);
 swapped = 1;
 }
 }
 } while (swapped);
}

Uppgift 6:

typedef unsigned short int port;
typedef unsigned short int *portptr;
#define SIGDATA_ADR 0270000
#define SIGCTRL_ADR 0270002
#define SIGDATA *((portptr) SIGDATA_ADR)
#define SIGCTRL *((portptr) SIGCTRL_ADR)
#define start 0x0001
#define int_enable 0x0040
#define done 0x0080
#define channel 0x3f00
#define error 0x8000

// Filen sig_reader.h
#define BUSY -1
#define ERROR -9
extern void sig_read(int channel);
extern int sig_get_value(void);

// Filen sig_reader.c
#include "sig_reader.h"
#include "sig.h"

void sig_read(int chan) {
 port shadow = 0;
 if (chan >= 0 && chan <= 63) {
 shadow |= start;
 chan <<= 8;
 shadow |= chan;
 SIGCTRL = shadow;
 }
}

int sig_get_value(void) {
 if (SIGCTRL & error)
 return ERROR;
 else if (SIGCTRL & done)
 return SIGDATA;
 else
 return BUSY;
}

