
Institutionen för data- och informationsteknik
CHALMERS TEKNISKA HÖGSKOLA

Tentamen med lösningsförslag
Programmering av inbyggda system

Exempel 1

Examinator
Roger Johansson, tel. 772 57 29

Kontaktpersoner under tentamen
Roger Johansson

Tillåtna hjälpmedel

Häftet
Instruktionslista för CPU12

Inget annat än rättelser och understrykningar
får vara införda i häftet.
Du får också använda bladet:

C Reference Card
samt en av böckerna:

Vägen till C,
Bilting, Skansholm

The C Programming Language,
Kerninghan, Ritchie

Endast rättelser och understrykningar får vara
införda i boken.

Tabellverk eller miniräknare får ej användas.

Lösningar
anslås senast dagen efter tentamen via kursens
hemsida.

Granskning
Tid och plats anges på kursens hemsida.

Allmänt
Siffror inom parentes anger full poäng på
uppgiften. För full poäng krävs att:

 redovisningen av svar och lösningar är
läslig och tydlig. Ett lösningsblad får
endast innehålla redovisningsdelar som
hör ihop med en uppgift.

 lösningen ej är onödigt komplicerad.
 du har motiverat dina val och

ställningstaganden
 assemblerprogram är utformade enligt de

råd och anvisningar som givits under
kursen och tillräckligt dokumenterade.

 C-program är utformade enligt de råd och
anvisningar som getts under kursen. I
programtexterna skall raderna dras in så
att man tydligt ser programmens struktur.

Betygsättning
För godkänt slutbetyg på kursen fordras att
både tentamen och laborationer är godkända.

Tentamenspoäng ger slutbetyg:
20p≤betyg 3 < 30p ≤ betyg 4 < 40p ≤ betyg 5

Programmering av inbyggda system - Tentamen exempel 1 2(9)

Uppgift 1 (10p) Assemblerprogrammering

En C-funktion definieras enligt följande:

int bitcount(unsigned char value)
{
 unsigned char count;
 for (count=0; value != 0; value >>= 1);
 {
 if (value & 1)
 count++;
 }
 return count;
}

Skriv, i assemblerspråk för HCS12, en subrutin _bitcount som motsvarar C-funktionen. Du behöver alltså
inte göra någon regelrätt översättning av C-funktionen utan bara betrakta den som en specifikation av vad
assemblerrutinen ska utföra. För denna uppgift gäller alltså inga C-anropskonventioner utan följande
specifikation ska gälla för din subrutin:

; subrutin bitcount
; bestämmer antalet ettor i 'value' med storleken 'byte'.
; Indata:
; register B innehåller 'value'
; Returvärde:
; register B innehåller antalet ettor i 'value'

Uppgift 2 (6p) Användning av sammansatta datatyper

Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en
insignal, eller en utsignal. Porten har två olika register, som specificeras enligt följande:

Parallel port P (PORTP)

Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$700
R

0 0 0 0 0 0 0 0 DDR Data Direction Register W

$701
R 0 0 0 0 0 0 0 0

DATA Data Register W 1 1 1 1 1 1 1 1

 DDR: 0 anger att positionen är en utsignal, 1 anger att positionen är en insignal. Bitarna kan programmeras
oberoende av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är
både skrivbart och läsbart i sin helhet.

 DATA: Består i själva verket av två olika register (R,W):

o R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som
är programmerad som insignal.

o W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal läses
kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten.

a) Visa en lämplig deklaration av porten med användning av en struct. Visa också en funktion,
void portPinit(void) som initierar port P så att bitarna b7-b5 används som en 3-bitars
inport och bitarna b4-b0 används som en 5-bitars utport.

b) Visa en funktion, void outPortP(unsigned char c) som matar ut bitarna b4-b0, av c, till
port P.

c) Visa en funktion, unsigned char inPortP(void) som returnerar bitarna b7-b5 hos port P
som en unsigned char, dvs. värden i intervallet 0 t.o.m. 7.

Programmering av inbyggda system - Tentamen exempel 1 3(9)

Uppgift 3 (6p) In och utmatning beskriven i C

I denna uppgift ska du bland annat demonstrera hur
absolutadressering utförs i C. För full poäng ska du visa
hur preprocessordirektiv och typdeklarationer används för
att skapa begriplig programkod.

Två strömbrytare och en ljusdiodramp, enligt figuren till
höger, är anslutna till adresser 0x600 och 0x601,
respektive adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
 void DipSwitchEor(void)
som kontinuerligt bildar logiskt EXKLUSIVT ELLER (XOR) av värdena som läses från strömbrytarna och
därefter skriver detta värde till ljusdiodrampen.

Uppgift 4 (8p) Programmering med pekare

Skriv en C-funktion med följande deklaration:
 char *xcpy(const char *q1, char *q2);

Funktionen skall kopiera den text q1 pekar på till det utrymme som pekas ut av q2, men vid kopieringen skall
alla inledande och avslutande s.k. vita tecken utelämnas. Med vita tecken menas mellanslag, tabulator och
nyradstecken. Tänk på att det kan finnas vita tecken inne i den text som skall kopieras. Dessa tecken skall
förstås tas med i kopieringen.

Funktionen xcpy skall som resultat ge en pekare till kopian av texten. Du får inte använda dig av någon av
C:s standardfunktioner, utan du måste skriva all kod själv.

Tips. Leta först framifrån efter första icke vita tecken. Sök sedan upp slutet på texten och leta därifrån bakåt
efter sista icke vita tecken. Kopiera sedan den mellanliggande texten till det utrymme som pekas ut av q2.

Uppgift 5 (10p) Kodningskonventioner (C/assemblerspråk)

I denna uppgift ska du förutsätta samma konventioner som i XCC12, (se bilaga 1).

a) I ett C-program har vi följande deklarationer:

struct namn;
void func(char adam, unsigned int bertil, struct namn * ceasar)
{
 char a = adam;
 int b = bertil;
 long *c = ceasar;
 /* Övrig kod i funktionen är bortklippt eftersom vi bara
 betraktar anropskonventionerna. */
}

 Översätt funktionen func, som den är beskriven till HCS12 assemblerspråk.
 Speciellt ska du börja med att beskriva aktiveringsposten, dvs. stackens utseende i funktionen.
 Visa tydligt riktningen för minskande adresser hos aktiveringsposten. (6p)

b) I samma C-program har vi dessuton följande deklarationer givna på ”toppnivå” (global synlighet):

 struct namn * cilla;
 int bertina;
 char adamo;

 Visa hur variabeldeklarationerna översätts till assemblerdirektiv.
 Beskriv dessutom hur följande funktionsanrop översätts till assemblerkod. (4p)

func(adamo , bertina , cilla);

Programmering av inbyggda system - Tentamen exempel 1 4(9)

Uppgift 6 (10p) Maskinnära programmering i C

En utrustning för automatisk övervakning av inbrottslarm har åtta ingångar. Till sju av dessa kopplar
man sensorer. Till den åttonde ingången kopplas en knapp. Utrustningen har också en utgång till
vilken en högtalare (siren) har kopplats. Utrustningen styrs av en dator via två åttabitars register: ett
styrregister och ett dataregister på de hexadecimala adresserna 500 resp. 501. Styrregistret är endast
skrivbart. Följande bitar används:

Bit 0: (ONOFF), huvudströmbrytare för utrustningen (1 == ON, 0 == OFF)
Bit 1: (Sound_ONOFF), anger om utgången till högtalaren ska vara aktiv (1) eller passiv (0)
Bit 2. (IE) anger om utrustningen ska generera avbrott när någon av insignalerna blir hög (1)

Dataregistret är både läs- och skrivbart. När en insignal till utrustningen blir hög sätts automatiskt
motsvarande bit i dataregistret till 1. Bitarna 0-6 används för sensorerna och bit nr 7 till knappen. Om
biten IE är påslagen genereras ett avbrott när någon av insignalerna blir hög. Avbrottsvektorn har
den hexadecimala adressen FFE0. Ett avbrott kvitteras genom att man nollställer dataregistret.

Förutom övervakningsutrustningen finns också en display med lampor. Displayen används för att
indikera vilka sensorer som givit utslag och styrs via ett skrivbart åttabitars register på den
hexadecimala adressen 600. Genom att skriva en etta eller nolla i en bit i detta register tänds resp.
släcks motsvarande lampa på displayen.

Din uppgift är att skriva en modul som styr övervakningsutrustningen. För att förenkla det hela något
är följande assemblerfil given:

 segment text
 export _sensortrap
 export _cli
 import _sensorinter
_sensortrap: JSR _sensorinter
 RTI
_cli: CLI
 RTS

Din modul ska skrivas helt i C. Den ska innehålla de två funktionerna alarm_on och alarm_off
vilka ska kunna anropas från en annan del av programmet. Dessutom ska det finnas kod som tar hand
om avbrott från övervakningsutrustningen. Funktionen alarm_on ska göra alla initieringar som
behövs för att aktivera övervakningsutrustningen. I detta ingår att se till att avbrott aktiveras och
styrs till lämplig avbrottsrutin. Funktionen alarm_off ska helt enkelt stänga av utrustningen.

När utrustningen ger avbrott ska det fungera på följande sätt: Om avbrottet kommer från någon av de
sju ingångar som är kopplade till sensorer ska motsvarande lampa på displayen tändas. De eventuella
lampor som tidigare tänts ska förbli tända. Om användaren inte tryckt på knappen ska högtalaren
också kopplas på. När användaren trycker på knappen första gången ska högtalaren stängas av, men
de lampor som är ända på displayen ska förbli tända. Om användaren trycker på knappen en andra
gång ska alla lampor på displayen släckas. Man ska då återkomma till utgångsläget. Tanken är alltså
att när ett larm inträffas så uppmärsammas användaren på detta genom att högalaren tjuter. Han
trycker då en gång på knappen för att stänga av ljudet och kan sedan i lugn och ro på displayen se
vilken eller vilka sensorer som givit utslag. När orsaken till larmet klargjorts kan han trycka en gång
till på knappen för att återställa allt.

Observera att du måste skriva all C-kod, inklusive de deklarationer och definitioner som behövs.
Ange också i vilka filer koden lämpligen placeras.

Programmering av inbyggda system - Tentamen exempel 1 5(9)

Bilaga 1: Kompilatorkonvention XCC12:
 Parametrar överförs till en funktion via stacken och den anropande funktionen återställer stacken efter

funktionsanropet.
 Då parametrarna placeras på stacken bearbetas parameterlistan från höger till vänster.
 Lokala variabler översätts i den ordning de påträffas i källtexten.
 Prolog kallas den kod som reserverar utrymme för lokala variabler.
 Epilog kallas den kod som återställer (återlämnar) utrymme för lokala variabler.
 Den del av stacken som används för parametrar och lokala variabler kallas aktiveringspost.
 Beroende på datatyp används för returparameter HC12:s register enligt följande tabell:

Storlek Benämning C-typ Register

8 bitar byte char B

16 bitar word short int
och
pekartyp

D

32 bitar long
float

long int
float

Y/D

Bilaga 2 - Assemblerdirektiv för MC68HC12.
Assemblerspråket använder sig av mnemoniska beteckningar som tillverkaren Freescale specificerat för
maskininstruktioner och instruktioner till assemblatorn, s.k. pseudoinstruktioner eller assemblerdirektiv.
Pseudoinstruktionerna framgår av följande tabell:

Direktiv Förklaring
 ORG N Placerar den efterföljande koden med början på adress N (ORG för ORiGin =

ursprung)
L RMB N Avsätter N bytes i följd i minnet (utan att ge dem värden), så att programmet

kan använda dem. Följden placeras med början på adress L. (RMB för Reserve
Memory Bytes)

L EQU N Ger label L konstantvärdet N (EQU för EQUates = beräknas till)
L FCB N1, N2 Avsätter i följd i minnet en byte för varje argument. Respektive byte ges

konstantvärdet N1, N2 etc. Följden placeras med början på adress L. (FCB för
Form Constant Byte)

L FDB N1, N2 Avsätter i följd i minnet ett bytepar (två bytes) för varje argument. Respektive
bytepar ges konstantvärdet N1, N2 etc. Följden placeras med början på adress
L. (FDB för Form Double Byte)

L FCS "ABC" Avsätter en följd av bytes i minnet, en för varje tecken i teckensträngen
"ABC". Respektive byte ges ASCII-värdet för A, B, C etc. Följden placeras
med början på adress L. (FCS för Form Caracter String)

Programmering av inbyggda system - Tentamen exempel 1 6(9)

Lösningsförslag
Uppgift 1:

_bitcount:
; 4 | {
; Registerallokering:
; reg B: value
; reg A: count
; 5 | unsigned char count;
; 6 |
; 7 | for (count=0; value != 0; value >>= 1)
 CLRA ; count=0
bitcount_2:
 TSTB ; value != 0
 BNE bitcount_4
 BRA bitcount_5

bitcount_3:
 LSRB ; value >>= 1
 BRA bitcount_2

bitcount_4:
; 8 | {
; 9 | if (value & 01)
 BITB #1
 BEQ bitcount_3
; 10 | count++;
 INC A
; 11 | }
 BRA bitcount_3

bitcount_5:
; 12 |
; 13 | return count;
; 14 | }
 TFR A,B
 RTS

Uppgift 2a (2p):

typedef struct sPortP{
 volatile unsigned char ddr;
 volatile unsigned char data;
}PORTP, *PPORTP;

#define PORTP_BASE 0x700

#define portP ((PORTP *)(PORTP_BASE))

void portPinit(void)
{
 portP->ddr = 0xE0;
}

Uppgift 2b (2p):

unsigned char inPortP(void)
{
 return ((portP->data & 0xE0)>> 5) ;
}

Uppgift 2c (2p):

void outPortP(unsigned char c)
{
 portP->data = c & 0x1F ;
}

Programmering av inbyggda system - Tentamen exempel 1 7(9)

Uppgift 3:

typedef unsigned char *port8ptr;

#define OUT *((port8ptr) 0x400)
#define IN1 *((port8ptr) 0x600)
#define IN2 *((port8ptr) 0x601)

void DipSwitchEor(void)
{
 while(1)
 {
 OUT = IN1 ^ IN2;
 }
}

Uppgift 4:

char *xcpy(const char *s1, char *s2) {
 const char *p1;
 char *p2;
 /* Hoppa över inledande vita tecken */
 while (*s1 && *s1 == ' ' || *s1 == '\t' || *s1 == '\n')
 s1++;
 /* Leta reda slutet av texten */
 for (p1=s1; *p1; p1++)
 ;
 /* Sök sista icke-vita tecken */
 for (p1--; p1>s1 && *p1 == ' ' || *p1 == '\t' || *p1 == '\n'; p1--)
 ;
 /* Kopiera till s2 */
 for (p2=s2; s1<=p1;)
 *p2++ = *s1++;
 *p2 = '\0';
 return s2;
 }

Uppgift 5a:

Beskrivning av aktiveringspost

 minnesanvändning stackoffset

ceasar

10,SP

bertil

8,SP

 adam 7,SP

PC (vid JSR)

 a 4,SP

b

2,SP

c

0,SP

_func:
 LEAS -5,SP
; char a = adam;
 LDAB 7,SP
 STAB 4,SP
; int b = bertil;
 LDD 8,SP
 STD 2,SP
; long *c = ceasar;
 LDD 10,SP
 STD 0,SP
 LEAS 5,SP
 RTS

Programmering av inbyggda system - Tentamen exempel 1 8(9)

Uppgift 5b:

_cilla: RMB 2
_bertina: RMB 2
_adamo: RMB 1

 LDD _cilla
 PSHD
 LDD _bertina
 PSHD
 LDAB _adamo
 PSHB
 JSR _func
 LEAS 5,SP

Uppgift 6:

/* Filen alarm.h */
extern void alarm_on(void);
extern void alarm_off(void);
extern void sensorinter(void);

/* Filen definitioner.h */
typedef unsigned char port;
typedef port *portptr;
typedef void (*vec) (void); // avbrottsvektor
typedef vec *vecptr; // pekare till // avbrottsvektor

#define SENSOR_ADR 0x500
#define SENSOR_CTRL (*((portptr) SENSOR_ADR))
#define SENSOR_ON 0x1
#define SOUND_ON 0x2
#define SENSOR_IE 0x4
#define SENSOR_DATA (*((portptr) (SENSOR_ADR+1)))
#define BUTTON_PUSHED 0x80
#define SENSOR_VEC_ADR 0xFFE0
#define SENSOR_VEC (*((vecptr) SENSOR_VEC_ADR))
#define DISPLAY_ADR 0x600
#define DISPLAY (*((portptr) DISPLAY_ADR))

/* Filen assembler.h */
extern void sensortrap(void);
extern void cli(void);

/* Filen alarm.c */
#include "alarm.h"
#include "definitioner.h"
#include "assembler.h"

void alarm_on(void) {
 SENSOR_VEC = sensortrap;
 SENSOR_CTRL = SENSOR_ON | SENSOR_IE;
 cli();
}

extern void alarm_off() {
 SENSOR_CTRL = 0;
}

static port data = 0; // skuggregister
static int pushed = 0; // har knappen tryckts in en gång tidigare?

void sensorinter(void) {
 if (!(SENSOR_DATA & BUTTON_PUSHED)) { // avbrott från en sensor
 data = data | SENSOR_DATA;
 if (!pushed)
 SENSOR_CTRL = SENSOR_CTRL | SOUND_ON; // slå på ljudet
 }
 else { // avbrott från knappen
 if (!pushed) // första tryckning
 SENSOR_CTRL = SENSOR_CTRL & ~SOUND_ON; // stäng av ljudet
 else // andra tryckning
 data = 0; // återställ

Programmering av inbyggda system - Tentamen exempel 1 9(9)

 pushed = (pushed+1) % 2; // ändra tillstånd
 }
 SENSOR_DATA = 0; // kvittera avbrottet
 DISPLAY = data; // visa indikatorer
}

