22 ! CH ALMER Institutionen for data och informationsteknik
LP3-2014/15, RoJ/RS/JS

Maskinorienterad programmering
Laborationer for DAI, El och MEI (LEU500)

Laborationsserien omfattar totalt fem laborationsmoment som utfors i tur och ordning.

Det forutsatts att du infor varje laboration har genomfért omfattande laborationsférberedande hemuppgifter.
Vilka dessa uppgifter ar, framgar av detta PM. Du ska vara beredd att visa upp och redogéra for dina forberedda
I6sningar infor laborationstillfallet. Bristfalliga forberedelser kan medféra att du avvisas fran bokad
laborationstid.

Underskrifterna pa detta forsattsblad ar ditt kvitto pd att du ar godkand
pad respektive laborationsmoment. Spara det, for sakerhets skull, tills
slutbetyg pa kursen rapporterats. Boérja med att skriva ditt namn och
personnummer med black.

Personnummer Namn (textat)

Fo6ljande tabell fylls i1 av laborationshandledare efter godkand laboration.

Godkannande av laboration

Laboration Datum Laborationshandledares underskrift

1

2

3

A

)

Godkannande — hel laborationsserie:

Datum Laborationshandledares underskrift

Laboration 1

Oversikt av laborationsserien

Under laboration 1 bekantar du dig med laborationssystemet, konstruerar nagra enkla assemblerrutiner
som du kommer att ha gladje av senare. Du pabdrjar konstruktion av ett programpaket for
6vervakning och styrning av en liten borrmaskin.

Under laboration 2 fardigstaller du ett komplett programpaket, i assemblersprak, for borrmaskinen.

Under laboration 3 infors en enkel rdknarkrets, programpaketet byggs ut att omfatta dven
avbrottshantering, du implementerar en enklare sa kallad tidsdelnings applikation ("time sharing”).

Observera: Infor laboration 4 ska du ha utfort och redovisat inlamningsuppgiften ’Goldbach
hypotes™. Redovisning kan ske vid ndgon simuleringsévning eller vid laborationstillfallet.

Laboration 4 omfattar grundlaggande C-programmering, du anvéander falt och pekare, du far ocksa
tillfélle att praktisera test, felsokning och "avlusning”.

Under laboration 5 évas framfor allt dina kunskaper i maskinnédra C-programmering men &ven hur du
kombinerar programdelar skrivna saval i C som i assemblersprak.

Kompletterande material

For laborationernas genomférande behdver du, utéver kurslitteraturen, program och diverse tekniska
beskrivningar. Du finner detta pa kursens resurssida.

Vid laborationerna anvands féljande program:
ETERM 6 for MC12
XCC12 for MC12
CodeLite med GCC
Programmen bor du ocksa installera pa egna datorer for att underlatta ditt forberedelsearbete.

Foljande beskrivningar finns tillgangliga pa elektronisk form:

e Laborationskort ML4, multifunktionskort for MC12

Laborationskort ML5, granssnitt mot tangentbord/display (ML23), fér MC12
Laborationskort ML15, granssnitt mot tangentbord/display (ML23), for MC12
Laborationskort ML23, tangentbord/display, for MC12

DBG12 monitor/debugger for MC12

Laboration 1

Laboration nr 1 behandlar

MC12 med monitor/debugger DBG12
Tangentbord som inmatningsenhet
Sifferindikator som utmatningsenhet
Borrmaskin som styrobjekt

Laborationens huvudsakliga syften &r att du ska:

o bekanta dig med laborationssystemet, i férsta hand:
mikrodator MC12 och dess monitor/debugger DBG12
tangentbord ML3
sifferindikator ML2
borrmaskin

o forbereda de foljande laborationerna genom att konstruera och testa grundlaggande
programrutiner for
inmatning fran tangentbord,
utmatning till sifferindikator
styrning av borrmaskinens funktion

For laborationen finns speciellt féljande fil tillganglig via kursens resurssida: laddfil.s19

Foljande uppgifter ur Arbetsbok for MC12 ska vara utférda innan laborationen pabdrjas. Du ska pa
begéran av laborationshandledare redovisa dessa.

Uppg. |39-43|71-81

Sign.

Utover uppgifterna i arbetsboken ska féljande hemuppgift (ges langre fram i detta PM) vara utford
innan laborationen paborjas:

Hem-

Uppgift 11

Féljande laborationsuppgifter skall redovisas for en handledare for godk&dnnande under laborationen.

Laborations-

uppgift 1.7 1.9

Sign.

Laboration 1

Laborationssystemet

Foljande enheter ingar i laborationsmiljon:
e persondator med programvaran ETERM fér MC12 och XCC12 for MC12
e laborationssystemet MC12 med monitor/debugger DBG12,
e borrmaskin, tangentbord och sifferindikatorer och olika typer av granssnitt till dessa enheter.

Under laborationerna 1,2 och 3 anvander du ETERM for att redigera, assemblera och testa dina
program. Under senare laborationer anvénder du XCC12 for att redigera, kompilera och testa dina

program.

Laboration 1

Anslutningar

Laborationsuppsattningen ska vara korrekt ansluten da du kommer till laborationsplatsen. Detta
avsnitt sammanfattar anslutningarna.

e Laborationssystemet MC12 ansluts till terminalfunktionen i ETERM via persondatorns COM-port.
e Borrmaskinen ansluts till MC12 via en 26-polig flatkabel.

e Tangentbordet (ML2) respektive sifferindikatorn (ML3) kan anslutas till MC12 via tva olika typer
av granssnitt, oberoende av varandra. Dessa granssnitt kallas ML15 respektive ML5.

e Laborationskorten ML15 och/eller ML5 utgdr den fysiska kopplingen mellan MC12 och
ML2/ML3. De ansluts till MC12 via en ”piggy-back” koppling som gor att flera laborationskort
ansluts genom att dessa staplas pa MC12.

o Laborationskortet ML19 &r speciellt anpassat for laborationer med MC12’s avbrottsmekanismer.
Kortet beskrivs i ”Arbetsbok for MC12” och i detta PM.

Laborationsuppsattning:
Laborationsdator med
laborationskort och
stromforsorjning

~-ML3

’J'angeﬁtbqrd Sifferindikator.
,RAGE: oo

Laborationsdator MC12

Freescale 68HCS12 enchipsdator

Finsakring

Anslutning, 26 polig, till
multifunktionskort ML4
eller borrmaskin

Anslutning till seriell
(RS232) port hos

varddator
@ \| »
10-poliga kontakter (4 st.) for MC12 RESET
anslutning av laborationskort Spdnningsindikator

Laboration 1

Monitor/debugger DBG12

Nar vi ansluter MC12 till en COM-port pa PC’n och startar ett terminalfonster fungerar PC’n som en
“dum terminal” bestaende av tangentbord och bildskarm. (ETERM = "Emulera terminal” = harma

terminal).

Allt som skrivs pa PC’ns tangentbord skickas direkt ner till MC12. | MC12 finns ett enkelt program
som kallas "monitor/debugger” (DBG12). Programmet ar, som namnet antyder avsett for Gvervakning

och test.

DBG12 ”lyssnar” hela tiden pa kommandon fran tangentbordet bortsett fran nar MC12 ar upptaget av
nagot applikationsprogram. For att aterga till DBG12 i detta fall kravs RESET (omstart) av MC12.
Huvudprogrammet i DBG12 &r utformat som en enkel kommandotolk, dar en rad olika kommandon

accepteras.

RESET MC12
Start av DBG12

A

Y

!

!

!

\ligr?;gnzg modify memory - disassemble- trace- load-
dbg12: procedur procedur procedur procedur
A A A y
go-d Starta “applikationsprogram”.
procedur DBG12 kan aterstartas via RESET.

Léasanvisning:

Las om monitor/debugger’n ”DBG12 Anvandarbeskrivning”
finns som lank fran "resurssidan™:
”’DBG12 monitor/debugger for MC12”

Laboration 1

Dispositionen av adressrummet hos MC12 bestams av DBG12 och kan nagot forenklat beskrivas
enligt foljande:

/0 Adress $0000-$0FFF Med plats for 1/0-kort och interna (HCS12) portar
RWM Adress $1000-$3BFF Med plats for dina program och data (applikationer)
RWM Adress $3C00-$3FFF Variabelarea for DBG12

ROM Adress $4000-$FFFF Med plats for bland annat DBG12

Laborationsuppgift 1.1:

Starta ETERM och anslut en terminal under fliken Debug.

Tryck RESET pa laborationssystemet MC12 och File Edit | Debug Windows Help
kontrollera att DBG12 identifierar sig genom att text skrivs

till terminalfonstret. e

Om ingen text skrivs till skarmen eller om texten ar olaslig R

Kontakta en handledare.

Terminalfonstret bor se ungefar som foljande figur.

N (coM1:9600,N,8,1)

detta kallas DBG12’s "prompter”

Den sista raden kallas for monitorns prompter och innebar att DBG12 &r redo att ta emot kommandon
fran dig.

Varje gang du trycker +' ska DBG12
skriva en ny prompter till terminalen.
Om sd inte &r fallet betyder det att
DBG12 ar upptagen och kanske rentav
“hangt sig” eller “sparat ur”.
Losningen pa detta problem &r att géra
RESET pa MC12.

Skriv: help <

DBG12 skriver ut en hjélptext. Se
figuren till hoger.

Undersck olika kommandon genom att skriva help kommando<«! om du vill ha hjalp for nagot
specifikt kommando.

Laboration 1

Kommandot display memory” (dm)

Undersdk nu minnesinnehallen i de olika minnesomraden vi har i systemet.
e Skriv: dm O+ for att studera adressomradet dar vi har in-och utenheter.

e Skriv: dm 1000+ for att studera adressomradet dar du kan placera dina program.
e Skriv: dm EOOO<+for att studera adressomradet dér vi har PROM (FLASH).

X (coM1:9600,M,8,1) - 0] x|
Qo9 o0 00 00 00 00 00 00 00 00 OO0 00 o0 o0 00 00 0o

Q0A0 OO0 OO0 OO0 00 00 00 00 00 OO0 OO0 00 o0 o0 OO0 OO0 0o

O00ED OO0 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF

00CO FF FF FF FF 00 00 00 00 00 34 00 0OC 10 00 00 0D 4. ..

oo o0 oOo4 00 00 CO 00 00 OO0 04 0O 00 20 00 OO OO0 Qo0 L.

QOED OO0 00 OO0 &0 00 00 00 00 CO OO0 40 00 4% 00 00 0o G,

O00F0 04 00 00 20 00 O0 00 OO0 04 OO0 OO0 20 OO0 00 00 OO

dbgl2 :dm 1000

1000 33 89 A1l B4 C8 12 69 AC 7B 99 BF L6 2D 45 3F 57 3., .. i.{. V-E™W
1010 77 5C 77 1B 4A BY BE 38 B9 38 42 24 8D 1B 5B DA ww. J. .8 .8B3. . [.
1020 Ee 98 2E B4 ¥F A8 B8 B8 41 BD CEB 04 AB 02 DD 56 hhd i
1030 54 C&8 7B DC C4 3B Bl C9 D9 C1 9E 1E 68 6B 01 &0 Z.{. .:...... hl . .

Adressangivelsen anges till vanster, minnesinnehall i mitten och till hoger tolkas minnesinnehallet
som ASCII-koder.

Kommandot modify memory” (mm) dbgl12 mm 1000
1000 33
Anvand nu kommandot mm for att forsoka andra minnesinnehall pa nagra olika j1000 33 :

5 i ’ 1000 33 :+
stallen i MC12’s adressrum. 1001 89 .+
Ge kommandot: mm 1000« for att visa och ha méjlighet att andra %gg% *;*é 193
minnesinnehallet pa adress 1000. 1002 55 - —

o . . 0 - . 1001 89 :—
Tryck «' ett par ganger. Har du samma minnesinnehall som i figuren till §ypgn 33 =

Tryck pa + (plus) for att visa minnesinnehallet pa nasta adress. Tryck pa + pa nytt och andra
minnesinnehallet pa adress 1002 till 55 genom att skriva 55+ Prova dven — (minus) tangenten.

Vilka tva satt kan du anvanda for att avsluta mm-kommandot och aterga till monitorns prompter?

Kan du dndra minnesinnehallet pa adress 4000?

Prova att dndra ytterligare nagra minnesinnehall inom adressintervallet 4000-FFFF. Kan du forklara
vad som hander?

Laboration 1

Kommandot “load application program” (1)
Kommandot “disassemble” (dasm)
Kommandot “run application program” (go)

ETERM’s terminalprogram har behandiga funktioner for att E - =laix
underlatta kommunikation mellan varddator och |t Bk P optows _
laborationsdator. Du kan lasa om s&dana funktioner i %' M
ETERM’s hjélpsystem. it =freriearind

E-2Y Teminal 1 This section _explams how to operate

BB fOperation a Terminal Window.

E-L10 Smitor The Terminal menu

° . . - If you right click the mouse when the

Pa kursens resurssida, finns en laddfil.s19 som du ska B OE e paya! window 3
anvanda under nasta laborationsmoment. Filen innehaller o
saval program som data. Din uppgift r att underséka detta e / —
program. K1 N o

Laborationsuppgift 1.2:
o Spara filen laddfil.s19 i din arbetskatalog.
e Ladda laddfil.s19till MC12 (hogerklicka i terminalfonstret).

e Disasssemblera, dvs. versatt fran maskinkod till assemblerkod, genom att anvanda DBG12’s
dasm-kommando. Komplettera tabellen.

Adress |Instruktion |[Operand
1000 LDX #$1020
100E JMP $Co0F
101B RTS

e Utfor nu programmet, starta med: go 1000+,

Fo6lj programmets instruktion och skriv ditt svar har:

Laboration 1

Inmatning fran tangentbord

| detta avsnitt anvander vi tangentbordet ML2 tillsammans med granssnittet ML15.

Lasanvisning:

Las dversiktligt om granssnittet till tangentbord och sifferindikator i Teknisk beskrivning ML15 finns
som lank fran “resurssidan”:

”Laborationskort ML15, granssnitt mot tangentbord/display (ML23), for MC12”

Laborationsuppgift 1.3:

Undersok tangentbordet ML2/ML15.
Anvand mm-kommandot. ML15’s avkodning av tangentbordet, dvs. den kod som placeras i registret pa
adress $9CO, beroende pa vilken tangent som tryckts ned, illustreras av féljande figur:

NIRN(~NA 4N\ Provanu samtliga tangenter och komplettera nedanstdende tabell.
Observera vad du laser fran tangentbordet néar ingen tangent ar nedtryckt. Har
foregaende tangent-nedtryckning nagon betydelse for avlasningen?
OOWO
D)

Nedtryckt tangent Avlast varde Nedtryckt tangent Avlast varde
a [
b j
c k
d I
e m
f n
g 0
h p

Vi 6vergar nu till inledande programutveckling i assemblersprak. For att underlatta test av ett
assemblerprogram introducerar vi ytterligare ett av DBG12’s kommandon:

Kommandot “step (trace) application program” (tr)

Laborationsuppgift 1.4:

Kontrollera din 16sning av uppgift 41 i Arbetsbok for MC12, dvs. tangentbordsrutinen

CheckKbdML15. Anvand samma testprogram som i arbetsboken

Vi anvander TRACE-kommandot som fungerar sa att den angivna instruktionen utfors, darefter

aterfors kontrollen till DBG12 och du kan inspektera/andra register- minnesinnehall etc. Du ska nu

Overtyga dig om att subrutinen CheckKbdML15 fungerar som den ska.

e Ladda ner programmet till MC12.

e Ge kommandot tr 1000+ for att utféra programmets forsta instruktion.

e Utfor programmet instruktionsvis, kontrollera programflddet, tryck ned nagon tangent pa ML2,
kontrollera inldsningen av tangentkoden.

o Verifiera slutligen att GetKbdML15 fungerar med MC12. (Uppgift 42 i arbetsboken).

10

Laboration 1

Fortsatt nu med att praktisera test och felsokning i assemblerprogram. En viktig metod ar att satta sa
kallade brytpunkter pa lampligt valda stallen i programmet. For detta kan du anvanda DBG12’s
brytpunktshantering.

Kommandot “breakpoints” (bp)
Laborationsuppgift 1.5:
Testa nu CheckKbdML15 med anvandning av brytpunkt.

e Bestam adressen for NOP-instruktionen i testprogrammet och sétt en brytpunkt pa denna adress.

e starta programmet med go 1000+, tryck ned ndgon tangent pa ML2, programmet ska nu stanna
vid brytpunkten, vilket meddelande far du fran DBG12?

Utmatning till sifferindikator

| detta avsnitt anvander vi sifferindikatorn ML3 tillsammans med granssnittet ML15.

L&sanvisning:

Lé&s oversiktligt om granssnittet till tangentbord och sifferindikator i
Teknisk beskrivning ML15 finns som lank fran resurssidan”:

”Laborationskort ML15, granssnitt mot tangentbord/display (ML23), for MC12”

I nésta uppgift kommer vi att anvanda oss av:

Kommandot “display/modify registers” (reg)

Laborationsuppgift 1.6:

Du ska undersoka hardvaran ML3/ML15. For detta anvander du en enkel instruktionssekvens for
initiering/visning:

ORG $1000

LDAA #1

STAA $9C2

LDAA #$DO

STAA $9C3

LDAA #0

STAA $9C2

LDAA #8
loop:
; Placera lampligt vadrde i1 ackumulator B innan instruktionen utfors
STAB $9C3
DECA
BNE loop
end:
BRA end

e Redigera, assemblera programsekvensen ovan.
e Laddatill MC12.

11

Laboration 1

e Programmet ska utforas instruktionsvis (tr 1000 osv.)

e Omedelbart innan instruktionen STAB $9C3 utfors ska du placera lampligt vérde i register B
med kommandot reg B varde +«'.

Sifferindikatorn har bara 6 positioner, kan alltsa bara visa 6 siffror men trots detta maste en sekvens
om 8 siffror ges till adress $9C3 for att indikatorerna ska tdndas. Ar det de 6 forsta, eller de 6 sista
siffrorna i sekvensen som visas pa sifferindikatorn?

o Kontrollera din l6sning av uppgift 43 (DisplayML15) i Arbetsbok for MC12.

o Kontrollera att DisplayML15 fungerar med MC12.

Laborationsuppgift 1.7:

Konstruera nu en subrutin GetPut, enligt féljande specifikation:

; Subrutin GetPut

; Vantar pad ny tangentnedtryckning

; Visar darefter tangentkod for senast nedtryckta tangent pa ML2 som
; hexadecimala tecken pa& samtliga sifferindikatorer pa ML3

Skriv nu féljande huvudprogram, avsett for att testa utmatningsrutinen:

ORG $1000

main: JSR GetPut ; Las tangentbord, skriv till display
BRA main

GetPut: .. anvdnder dina rutiner GetkKbdML15 och DisplayML15

o Redigera, assemblera, ratta eventuella fel.
o Ladda programmet till MC12 for att testa GetPut.

e Starta programmet, go 1000+, testa rutinen for alla mojliga tangentnedtryckningar och
verifiera korrekt funktion.

Visa upp din 16sning for godk&nnande av en handledare.

12

Laboration 1

Styrobjekt borrmaskin

Huvuddelen av de fortsatta laborationsmomenten i maskinorienterad
programmering, saval da det géller programutveckling i
assemblersprak, som programmering i maskinnara C kommer att
inbegripa styrobjektet ”borrmaskin”. Vi ska darfoér redan nu bekanta
oss med denna laborationsutrustning sa att framtida
laborationsforberedelser (med hjalp av simulatorer) kan forstas mot
bakgrund av den hardvara som anvénds under laborationerna.

Lasanvisning:
Las om borrmaskinen pa sidorna 49 och 50 i Arbetsbok for MC12.

Du kan ocksa studera avsnittet om borrmaskinen i ETERM’s hjalpsystem.

Laborationsuppgift 1.8:

Studera borrmaskinen pa laborationsplatsen framfor dig. Vand maskinen sa att du ser ljusdioderna.
Undersok hardvaran med hjalp av féljande programsekvens (Jamfor med uppgifterna 71 och 72 i

arbetsboken):
ORG $1000

Loop NOP ; Ge iIndata till register A
STAA $400 ; Skriv till borrmaskinen
LDAB $600 ; Las statusregistret
BRA Loop

e Stega genom programmet med trace nar du undersoker borrmaskinen.

¢ Vid NOP-instruktionen kan du anvdnda reg-kommandot for att placera l&mpligt vérde i register
A.

e Testa att starta borret och sanka det. Observera lysdioderna pa borrmaskinen. Grona lysdioder &r
statusregistret och gula &r styrregistret. Observera att bit 3-7 i statusregistret inte &r definierade
och kan anta vilka véarden som helst.

e Vrid dven pa arbetsstycket for att stalla detta i referensposition och observera att lysdioden pa
borrmaskinen aktiveras — och — att du l&ser status till register B.

e Tryck RESET pa MC12. Studera lysdioderna (statusregistret) pa borrmaskinen och pressa ner
borret for hand till bottenldge. Observera hur statusbitarna &ndras. (Kanske ar tryckfjadern som
lyfter borret lite klen — lyft borret upp i sa fall)

Det finns nagra skillnader mellan borrmaskinen i simulatorn och laborationssystemets borrmaskin
som visserligen verkar sma men har stor praktisk betydelse. Har far du nagra tips som kan hjalpa dig
atskilligt da du kommer till laborationsplatsen.

Adresser: Tank pa att simulatorns register mot borrmaskinen ar konsekutiva (typiskt anvander du har
adresserna 400, och 401¢). | laborationssystemet motsvaras 401, i simulatorn i stéllet av adress

13

Laboration 1

600,6. FOr att minska risken for bortkastad felsokningstid i laborationslokalen kan du inféra en
villkorlig assembleringssats i filen Labdefs .s12, exempelvis enligt:

#ifdef SIMULATOR
DrillStatus EQU $401
#else

DrillStatus EQU $600
#endif

I ditt huvudprogram, innan filen Labdefs_s12 inkluderas, kan du definiera
#define SIMULATOR

nar du kommer till laborationen kommenterar du bort detta pa foljande satt:
; #define SIMULATOR

Vi har en liknande problematik da det géller fordrojningssekvensen i subrutinen Delay, som du ska
gora som ett led i forberedelserna.

Hemuppgift 1.1:

Du har tidigare (i arbetsbokens forsta avsnitt) experimentellt bestdmt férdréjningskonstanter for den
simulerade miljon och ska nu bestdmma férdréjningskonstanten i laborationsdatorn med liknande
metod. Anledningen till att vi inte kan anvédnda den tidigare fordrdjningsrutinen &r att denna anvander
8-bitars fordrojningskonstant, vilket fungerar i simulatorn men blir alldeles for liten i hardvara. Vi
utformar dérfor fordréjningsrutinen med 16-bitars register. Anvand féljande programsekvens for dina
tidsuppskattningar:

DelayConst: EQU ??7?
ORG $1000

Start: CLRA

DELAY: LDX #DelayConst

NEXT: LEAX -1,X
LDY #100

NEXT2: LEAY -1,Y
CPY #0
BNE NEXT2
CPX #0
BNE NEXT
COMA
STAA $400
BRA DELAY

e Gor ett antal praktiska forsok, dvs. prova olika varden pa DelayConst (xx respektive yy nedan,
zz bestams vid laborationstillfallet) sa att ljusdioderna tands och slacks en gang per sekund (en
sekund mellan varje tandning), da du tycker noggrannheten ér tillracklig har du bestamt
fordréjningskonstanten for 500 ms fordrdjning, dividera den darfér med 2 och du har den
fordrgjningskonstant (250 ms) som ska anvéndas av De lay i laborationssystemet.

Redigera den villkorliga assembleringssatsen i Labdefs.s12 enligt foljande:

#ifdef SIMULATOR

#ifdef RUNFAST

DelayConst EQU xx ; har du bestamt under forberedelserna
#else

DelayConst EQU vyy ; har du bestamt under forberedelserna
#endiF

#else
DelayConst EQU zz ; din konstant for laborationssystemet
#endif

14

Laboration 1

Laborationsuppgift 1.9:

Du ska nu avslutningsvis bestdmma en fordrojningskonstant som fungerar aven i laborationsdatorn:
e Anslut ML4 till laborationsdatorn, kontrollera att sektionen Parallel Output &r kopplad pa kortet.

e GoOr ett antal praktiska forsok, dvs. prova olika varden pa DelayConst sa att ljusdioderna tands
och slacks en gang per sekund (en sekund mellan varje tandning), da du tycker noggrannheten &r
tillracklig har du bestdmt fordrojningskonstanten for 500 ms fordrgjning, dividera den dérfor med
2 och du har den fordréjningskonstant (250 ms) som ska anvandas av Delay i
laborationssystemet.

Visa upp din l6sning for godkannande av en handledare.

Sammanfattning av laboration 1
Du ha undersokt och provat hardvara:

e laborationssystemet MC12 med DBG12
e |/O-enheter ML2, ML3, med gréanssnitt ML15 och styrobjekt "borrmaskin”
Du har konstruerat och testat programdelar som ska anvéandas i kommande laborationer:
e Inmatning fran tangentbord
e Utmatning till sifferindikator

e speciellt, dimensionerat en fordréjningsrutin som &r central i den fortsatta utvecklingen av
programpaketet.

15

Laboration 2

LLaboration nr 2 behandlar

Styrning/6vervakning av en borrmaskin

Foljande uppgifter ur Arbetsbok for MC12 ska vara utférda innan laborationen pabdrjas. Du ska pa
begéran av laborationshandledare redovisa dessa.

Uppg. |82-101

Sign.

Foljande laborationsuppgift ur denna del av laborations-PM skall redovisas for en handledare for
godkannande under laborationen.

Laborations-

uppgift 2.2 2.3

Sign.

Laborationsuppgift 2.1:
Du skall nu arbeta med filen Main.s12 fran de obligatoriska uppgifterna i arbetshoken.
Kontrollera att du anvander rétt 1/0-adresser.

Lagg till en NOP-instruktion direkt efter ORG ~ $1000 for att fa en battre utskrift pa skarmen nér du
kor trace.

Assemblera och rétta eventuella fel. Ladda programmet till MC12 genom att hégerklicka i
terminalfonstret och vélja filnamn.

Undersokning av programmet i MC12.

Maskinprogrammet ar nu laddat till MC12. Oppna listfilen Main. Ist och ha denna
tillganglig pa skarmen framfor dig.

Kontrollera nu att programmet &r placerat i minnet pA MC12 genom att utnyttja monitorns
disassembleringskommando.

Ge kommandot dasm 1000+ Jamfor det du ser pa skarmen med listfilen.

Leta upp startadressen for subrutinen COMMAND i listfilen och anvand dasm-kommandot pa
nytt for denna adress. Troligen ser de dissassemblerade instruktionerna efter RTS-
instruktionen konstiga ut. Kan du forklara varfor?

Adresserna till subrutinerna som anvénds for att styra borrmaskinen ligger i en tabell i minnet
med begynnelseadressen JUMPTAB. Eftersom adresserna ar 16 bitar breda krévs det 2 st.
minnesord for att rymma varje adress. Adresserna lagras pa standardformat med den mest

16

Laboration 2

signifikanta byten pa minnesadressen med lagst véarde. Anvand mm-kommandot for att studera
JUMPTAB i minnet och jamfor dessa startadresser med vad du erh6ll med dasm-kommandot
ovan. Diskutera med en handledare (nu eller sedan) om du ar osaker.

Studera listfilen och identifiera startadresser (med start pA JUMPTAB) for de subrutiner du
implementerat. Anvand darefter dasm-kommandot och verifiera att tabellen verkligen
innehaller startadresser till dina subrutiner.

Test av huvudprogrammet “main”
Du ska nu anvénda brytpunkter for att verifiera huvudprogrammet.

Se foljande utdrag av huvudprogrammet i Main.s12. Lagg till en NOP—instruktion efter
anropet av tangentbordsrutinen och fére anrop av kommandotolken. Assemblera och réatta
eventuella fel i programmet.

Studera darefter listfilen och undersok vilken adress NOP-instruktionen i huvudprogrammet
ar placerad pa, satt en brytpunkt pa denna adress.

; Main.sl2
; Operatorsstyrd borrautomat

Definitioner
USE Labdefs.s12
ORG $1000

main:

-—- Initiera borrmaskin
; Huvudprogram, invanta vald operation
main_loop:
JSR CheckKbdML15
* Tangentkod nu 1 register B...
* Utfor vald operation

NOP
JSR Command
BRA main_loop

Starta nu programmet med go 1000+

Tryck ner tangent med kod *7’ (ej implementerad Auto-funktion), efter det att du tryckt ner
tangenten pa tangentbordet ska programmet stanna vid brytpunkten och DBG12 ger en
utskrift till skarmen.

Om dette INTE hénder, tryck RESET pa MC12 och starta om programmet med
instruktionsvis exekvering tr 1000+ tr+<' osv, kontrollera tangentborsrutin och rétta
fel.

Vid brytpunkten, kontrollera innehallet i register B, det valda kommandonumret (7).

Ge kommandot go for att nu testa tangent med kod 0’ (starta borrmotor), fortsatt fran
brytpunkt med instruktionsvis exekvering (tr), forsok &ven folja med i listfilen, kontrollera
att borrmaskinens motor startar. (Kontrollera ev. strombrytaren till borrmotorn).

Med detta har du kontrollerat att huvudprogrammet fungerar som det ska och det aterstar nu
att dven kontrollera de implementerade funktionerna.

17

Laboration 2

Laborationsuppgift 2.2:
Test av implementerade subrutiner

Du ska nu systematiskt testa de fyra forsta subrutinerna. Da du 6vertygat dig om att en
subrutin fungerar korrekt fyller du i ”kontrollkolumnen” i féljande tabell. GI6m inte att dven
testa alarmfunktionen, detta gor du i samband med test av subrutinen Step.

tangent kod |Operation subrutin kontroll
0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sank borret DrillDown
3 hoj borret Drillup
4 rotera arbetsstycket medurs |Step
ett steg
5 borra ett hal DrillHole
6 stega arbetsstycket till RefPos
referensposition
7 borra hal langs cirkeln enligt |DoAuto
monster

Tank pa att fordrojningsrutinen nu ska vara anpassad till den verkliga miljon och inte den
simulerade.

Tryck RESET pa MC12, ta bort eventuella brytpunkter och starta programmet, go 1000.
Kontrollera de fyra olika funktionerna.
Ratta eventuella fel, spara alla dina filer och visa upp resultatet for en handledare.

Laborationsuppgift 2.3:

Kontrollera funktionen hos aterstdende funktioner DrillHole, RefPos och Auto i MC12.

tangent kod |Operation subrutin kontroll
0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sank borret DrillDown
3 hoj borret Drillup
4 rotera arbetsstycket medurs |Step
ett steg
5 borra ett hal DrillHole
6 stega arbetsstycket till RefPos
referensposition
7 borra hal langs cirkeln enligt |DoAuto
monster

Ratta eventuella fel, spara alla dina filer och visa upp resultatet for en handledare.

Du har nu

o Fardigstallt ett operatorsstyrt (interaktivt) program i assemblersprak. Programmet realiserar en rad
funktioner som krévs for att styra en borrmaskin. Under laboration 5 ska du realisera samma
funktioner men da genom att anvanda programspréket 'C'.

18

Laboration 3

Laboration nr 3 behandlar
Pseudoparallell exekvering

Foljande uppgifter ur Arbetsbok for MC12 ska vara utférda innan laborationen pabérjas. Du ska pa
begéran av laborationshandledare redovisa dessa.

Uppg. | 65-67

Sign.

Foljande hemuppgifter ska vara utforda innan laborationen paborjas.

Hem-

Uppaift 3.1 3.2

Féljande laborationsuppgift ur denna del av laborations-PM skall utféras och redovisas for en
handledare for godkannande.

Laborations-

uppgift 3.3

Sign.

Ovrigt:

Subrutinen DISPLAY som ska anvéndas i laborationsuppgift 3.3 finns fardig (Display_ML5.s12),
hamta den fran “resurssidan”.

Laborationsuppgift 3.1:

Studera komponenttrycket (vita texter och figurer) pa ML19 och jamfér med bilden i 1/0-simulatorn.
Du har tva tryckknappar , S1 och S2, pd ML19 som motsvarar Eventl och Event2 hos 1/O-simulatorn.
Du kan sjalv lista ut ljusdiodernas funktion nér du fortsatter denna laborationsuppgift.

Tryck pad S1 och pa S2. Om lysdioderna pa ML19 var slackta fran borjan tands dessa nu. Avbrotten
var/ar aktiverade och avbrottsvipporna var/ar ettstallda.

For att kvittera ett avbrott, gor en skrivning med mm-kommandot pa adress DC2, och dérefter en
skrivning pa adress DC3,4. Avbrottsvipporna nollstélls oberoende av vilket varde du skriver och
ljusdioderna slécks.

Gor en lasning pa adress DCOy¢ som dr ML19’s statusregister. Detta skall nu vara nollstéllt. Studera
ljusdioderna pa ML19 och tryck pa S1. Gor darefter en ny ldsning av statusregistret och verifiera att by
ar ettstalld.

Studera ljusdioderna pa nytt och tryck pa S2. Gor darefter &nnu en lasning av statusregistret och
verifiera att b; ocks ar ettstalld.

Parallell programexekvering

Den sista uppgiften under denna laboration &r att utféra borrprogrammet och displayrutinen pa MC12
sd att det verkar som att dessa kors "samtidigt", de kors pseudoparallelit.

19

Laboration 3

Vi infor ett avbrottsdrivet system dér processorn véxelvis styr det ena och sedan det andra
programmet. Véaxlingen gar sa snabbt att anvandaren upplever att de styrs parallellt. De bada
programmen som ska utforas pa detta satt ar:

e Programmet BORR (Laborationsuppgift 2.3)
e Programmet DISPLAY (Display_ML5.s12) som du hamtar fran “resurssidan”

Pa laborationskortet ML19 finns en klockgenerator med frekvensen 400 Hz. Denna anvands for att
generera avbrott till processorn. Detta innebér att avbrott sker var 2,5 ms. Varje gang avbrott sker
startas avbrottsrutinen som vaxlar program. Vi kallar detta processbyte.

I var miljo definierar vi det program som for tillfallet exekveras av processorn att vara i tillstandet
RUNNING. Det program som inte exekveras och &r redo att startas om pa nytt, sager vi ar i tillstandet
READY. Sa alltsa nar BORR ar i tillstand RUNNING sa &r DISPLAY i tillstind READY och vice versa.

RUNNING READY

BORR ————h ————————————— —— - - - - - - - - - —— - - - -
READY RUNNING
DISPLAY = -----=-==---- - - —— - - - - - — - = -H/- ————————— — — —
process- @ ------------ e D o E 4 -------- F -------- --
byte -« > > >
2,5ms 2,5ms 2,5ms
Figur 3.1

Avbrottsrutinen som astadkommer processbytet ska utformas sa att den andra processen aterstartas
genom att avbrottsrutinen utfér RT I-instruktionen.

BORR ————h ————————————— —
DISPLAY = -----=-==---=- - - —— - - - - - - - - -
SWITCH — <--cmmcmmem- o o
2,5ms 2,5ms 2,5ms RTI/
Figur 3.2

Foljande beskriver da huvudsakligen vad som ska utforas i avbrottsrutinen:

BORR avbryts: DISPLAY avbryts:
BORR’s status placeras pa stacken DISPLAY’s status placeras pa stacken
BORR’s stackpekare skall sparas DISPLAY’s stackpekare skall sparas
DISPLAY’s stackpekare till SP BORR’s stackpekare till SP
Orsaken till avbrottet maste avlagsnas (nollstélla avbrottsvippan)
Slutligen, RT1

Hemuppgift 3.1:

Implementera parallell exekvering av BORR och DISPLAY.
Det &r lampligt att forst isolera hela borrmaskinprogrammet (BORR) i en kélltextfil Drill .s12.
Programmet DISPLAY hamtar du fran resurssidan, kalltextfilen Display_ML5.s12.

20

Laboration 3

Din "programkarna” som innehaller initieringssekvens, data och avbrottsrutin placerar du i filen
Kernel .s12 som lampligen bor ha foljande struktur:

ORG $1000

Kernel:
; har placerar du initieringskoden

; darefter foljer data arean

; slutligen inkluderar du filerna med programmen:
use Drill._.sl12
use Display.si12

Assemblera Kernel . s12 och rétta eventuella fel. GIom inte att avlagsna eventuella ORG-direktiv i
borrmaskinprogrammet. Kontrollera listfilen och férsakra dig om att programmen inte 6verlappar
varandra i minnet.

Hemuppgift 3.2: Testa ditt program i simulatorn £ $DCo B

| den simulerade miljon ar svart att behandla snabba OUETE
processbyten (400 processbyten per sekund) och dessutom
omdjligt att folja handelseforloppet. Dérfor &r det lampligt
att under simuleringsarbetet utnyttja en av de avbrottsvippor
som finns tillgéngliga i 10-simulatorn.

Genom att ersatta pulsgeneratorn med knapptryckningar (klicka pa Event-knappen i 1/0-simulatorn)
bestdmmer du nér processbytet ska ske. Du kan darfor lugnt studera handelseforloppet nar du sjélv
klickar i fonstret for avbrottsvippan. BORR kommer att stanna, processbytet utférs och DISPLAY
startas.

21

Laboration 3

I laborationssystemet har vi en pulsgenerator som ar ansluten till processorns avbrottsingang.

Lho
Puls-
generator JUUL.. Loy
400 Hz
Q Till
qR pD—>= processorns
CS' vid skrivning IRQ

Att generera 400 avbrott per sekund har vi tyvarr inte méjlighet till i var simulerade miljo sa vi far
noja oss med den verifiering vi genomfort ovan och testa vara program BORR och DISPLAY pa ett
verkligt system i laborationsmiljo i stéllet.

Laborationsuppgift 3.2:
Modifiera eventuellt konstanterna i din programvara sa att det fungerar i hardvaran.

Kontrollera att du anvander avbrottsvektorn $3FF2
Ladda och testa din Kernel . s12 pa hardvaran.

Testa programmen i hardvaran pa samma satt som du gjorde tidigare i simulatorn. Sétt brytpunkter i
BORR och DISPLAY. Verifiera att programmet stoppas vid dessa brytpunkter nér du trycker pa S1. Se
till att hela programpaketet fungerar.

Ett bra visuellt sétt att se programvaxlingen &r att starta upp REFPO for borrmaskinen nér du trycker
pa S1. Det ser da ut som borrmaskinen ”dor” och DISPLAY startas upp nar du trycker pa S1. Da du gor
annu ett tryck pa S1 verkar det som DISPLAY d6r” och borrmaskinen fortsatter. Ge ett antal tryck pa
S1 och studera forloppet.

Néar du kanner dig n6jd, kontakta da en handledare som hjalper dig att véxla till pulsgeneratorn sa att
du far ca 400 avbrott i sekunden.

Testa rutinen REFPO, gar denna langsammare &n tidigare?
Studera &ven DISPLAY. Verkar det som om denna blinkar pa ett annat satt nu an vad den gjorde i forra
labbet?

Diskutera resultatet med din labbkompis, forsok forklara vad som sker. Visa upp resultatet
och redogor for era slutsatser for en handledare.

Du har nu

e Implementerat ett tidsdelningssystem i miniatyr, dar du kért tva program "samtidigt” (tva processer)
med endast en CPU. Metoden kan enkelt utvidgas till attt omfatta flera processer. Den hér typen av
tidsdelning &r grundldggande for alla operativsystem bestyckade med enkelprocessorer.

22

Laboration 4

LLaboration nr 4 behandlar

C-programmering
Prioritetsko

Féljande hemuppgift ska vara utférd innan Hem-
laborationen pabdrjas. Uppgift 4.1
Féljande laborationsuppgift ur denna del av laborations-PM skall utféras Laborations- 41
och redovisas for en handledare for godkannande. uppgift

Sign.

Programmeringsmiljo
Anvand utvecklingsmiljon CodeLite som bland annat finns pa resurssidan. Dér hittar du ocksa en
kortfattad “tutorial” om hur du kommer i gang med att anvanda CodeLite.

For laborationen finns speciellt féljande fil tillganglig via kursens resurssida:
Lab4 linkedlist.zip

Hemuppgift 4.1:

e Omdu inte tidigare anvand CodeLite, arbeta igenom den "tutorial” som finns pa resurssidan.
o Skapa "arbetsutrymme” och "projekt” for denna laboration
Lés noga igenom laborationsuppgifterna 4.1 och 4.2 sa att du forstar vad du skall géra och hur
problemen skall I0sas.
e Skriv programkoden i foérvédg, innan laborationstillfallet.

| programspraket C finns det varken klasser eller generiska enheter, men trots detta kan man, om man
programmerar pa ett disciplinerat satt, konstruera hyggligt ateranvandbara programmoduler. | denna
laboration far du implementera en prioritetsk. Prioritetskder anvéands exempelvis internt i
realtidsoperativsystem for att halla reda pa de olika processer som star i tur att exekveras och
maojliggér en mer avancerad schemaldggning an den round-robin schemaldggning som anvands i
laboration 3. Under laboration 4 anvéands speciellt pekare, dynamiskt allokerade objekt och lankade
datastrukturer.

Programmeringsmiljo

Aven for denna laboration ar det lampligt att anvanda CodeLite. Du ska ocksd ladda ner och packa
upp Lab4_linkedList.zip, som innehaller testprogram, skelett och h-fil for laborationen. Borja
sedan med att skapa ett CodeL.ite -"projekt” bestaende av filerna qtest. c, queue.h och queue. c.

Godkannande

Din kdmodul skall provkoras med programmet i filen gtest.c. Nar programmet fungerar skall det
visas upp for en handledare for godkénnande. For att laborationen skall bli godkéand récker det inte
med att programmet fungerar. Dina funktioner maste ocksa vara skrivna pa ett snyggt och begripligt
satt. Programraderna skall t.ex. indenteras (dras in) pa det sétt som lars ut i kursen.

23

Laboration 4

Laborationsuppgift 4.1

Uppgiften &r att konstruera en programmodul som kan anvéndas for att skapa prioritetskder. En modul
i C skall som bekant alltid byggas upp med hjalp av tva filer, en . h-fil som innehaller deklarationer av
funktioner och typer och en . c-fil som innehéller funktionsdefinitionerna, dvs. implementeringen av
funktionerna. | denna uppgift skall modulen besta av de tva filerna queue.h och queue.c. Filen
queue. h ar redan fardigskriven och finns pa kursens webbsida. P& kursens webbsida finns ocksa ett
fardigskrivet testprogram i filen qtest. c. Detta skall du anvanda for att provkdra din kdmodul.

o Din uppgift &r att skriva filen queue.c.
o | denna fil skall du implementera alla de funktioner som deklareras i filen queue.h.

Obs! Du far inte dndra nagot i filen queue.h. Du maste ocksa i filen queue.c anvanda dig av de
typdefinitioner som ges i avsnittet Implementering nedan. De skall anvandas precis som de ar.

Granssnittet
| filen queue. h specificeras kdmodulens granssnitt mot andra programdelar:

// Filen queue.h
// Datatyp definierar typen for datan som skall ldggas i kon.
#ifndef QUEUE_H
#define QUEUE_H

#define MAX_PRIO 100
typedef const char *DataPtr;

struct QueueElement { // typen for ett koelement
struct QueueElement *next; // pekare till ndsta koelement
int prio; // prioritet (ger kons ordning)
DataPtr data; // pekare till dataelement

}s

typedef struct QueueElement *QueuePtr;

QueuePtr new_queue(); // Skapar en ny (tom) ko

void delete_queue(QueuePtr q); // tar bort kén helt och hallet

void clear(QueuePtr q); // tar bort koelementen men behdller
kon

int size(QueuePtr q); // rdknar kons aktuella langd

void add(QueuePtr g, int prio, DataPtr d); // ladgger in d pa ratt plats

DataPtr get_first(QueuePtr q); // avlaser forsta dataelementet

void remove_first(QueuePtr q); // tar bort forsta kdelementet
#tendif

Typen QueuePtr definieras som pekare till typen struct QueueElement. Det gor det lite enklare
att ldsa argumenten till funktionerna, men &r annars ekvivalent med att skriva ut struct
QueueElement*.

For att skapa en ny ko anropar man funktionen new_queue (). Man kan sedan lagga in element i kén
med hjélp av funktionen add. Nar man anropar funktionen add () styr prioriteten var det nya elemen-
tet laggs in. Ett element med hog prioritet placeras fore ett med lagre prioritet och om flera element
har samma prioritet hamnar dessa i s.k. FIFO-ordning (first in first out). Funktionen add() har tre
parametrar: kon, prioriteten och en pekare till data (for element som skall l&ggas in i kon). (Det &r
egentligen inte datan som hamnar i kon, utan pekare till dem.) Den sista parametern har typen
DataPtr och &r en egendefinierad typ (via typedef), vilket gor kon flexibel om man vill
ateranvanda den for olika andamal. Om man t.ex. vill skapa prioriteskder av poster av typen struct
Person, sa skall man istallet definiera DataPtr till pa foljande satt:

typedef struct Person *DataPtr;

24

Laboration 4

Funktionen get first() avldser det forsta elementet i kon, utan att ta bort det, och funktionen
remove_first() tar bort det forsta elementet. Funktionen size() ger kons ldngd. Funktionen
clear() tar bort alla element ur kon, dvs. egentligen alla pekarna till elementen. Kon blir da tom,
men kan anvéndas igen. Funktionen delete_queue() tar bort kon helt och hallet.

Implementering

Du skall implementera prioritetskon med hjalp av en enkellankad lista. En sadan bestar av ett antal
sammanlankade poster, s.k. koelement. Varje koelement innehaller en pekare sompekar pa néasta
koelement. | denna laboration skall varje koelement dessutom innehalla ett heltal som anger
kdelementets prioritet samt en pekare till ett dataelement. Kéelementen beskrivs av typen struct
QueueElement, vilken redan &r definierad i queue. h.

Figuren visar hur en prioritetskd, som for 6gonblicket innehaller tva dataelement, byggs upp. De tva
dataelementen (vilka kan ha vilken typ som helst) har markerats med skuggade rektanglar.

next > >] ——F—>
prio MAX_PRIO 7 5
data %]

Y mem

Né&r man arbetar med l&nkade listor visar det sig att fallen att en lista &r tom eller att man skall sétta in
eller ta ut ett element forst eller sist ofta maste specialbehandlas. Detta gor att funktionerna som
hanterar listor kan blir ganska komplicerade. For att slippa ifran dessa problem &r det praktiskt att lata
varje enkellankad lista ha ett speciellt startelement som sitter forst i listan. Da blir funktionerna
mycket enklare.Vi skall utnyttja denna teknik i denna laboration. Det &r darfor det finns tre koelement
i figuren ovan (av typen struct QueueElement) , trots att bara tva dataelement har lagts in i kon.
Observera att startelementet inte pekar till nagot dataelement (den pekar pa NULL). Sista elementet i
listan pekar inte heller ut nagot nésta element (den pekar ocksa pa NULL) .

N&r man ldgger in ett nytt dataelement i en ko skall man skapa ett nytt kdelement (allokera det
dynamiskt) och lata det peka pa det nya dataelementet. Darefter skall man lanka in det nya koele-
mentet pa ratt stalle i den enkellankade listan. Prioriteten avgor placeringen. Hogst prioritet forst i
listan och for enkelthetens skull sa har startelementet den hdsta majliga prioriteten MAX_PRIO som
definieras i queue. h.

. i next 0 —F—>
En tom lista har endast ett startelement och ser ut som Figuren
till hoger. prio | MAX_PRIO

data (4]

N&r man tar bort ett dataelement fran kon skall man lanka ur
motsvarande koelement ur listan och darefter frislappa det
allokerade minnesutrymmet.

25

Laboration 4

Test programmet (i qtest.c) bestar av tre test. Man anger hur manga test man vill testa genom att
definiera TESTS_TO_TRY till ett tal mellan noll och tre. De tre testen &r:

1. Skapa ko, lagga till element och berdkna storlek.
2. Ta bort forst elementet och ta bort alla element.

3. Tabort kdn och kontroll av minneslackor.

For att bli godkand maste alla tre avklaras, men man kan testa sin ké implementation i steg.
For test 1 maste man implementera new_queue(), add(), size(), och get_first().
For test 2 maste man implementera remove_first(), och clear().

For test 3 maste man implementera: delete_queue() och anvanda det externa verktyget
DrMemory som inkluderats i zip-filen. For att testa ditt program sa drar du ditt fardigkomilerade
program (.exe) och slapper det pd drmemory.exe som finns i mappen drMemory/bin/. Ditt
program kommer da att koras som vanligt, men alla anrop till malloc() och free() kommer att
registreras av DrMemory. Nar ditt program terminerar éppnas en textfil med statistik dver felaktig
minnesanvéndning med referenser till vilka rader som orsakar dessa. Se till att fixa eventuella lackor
och felaktiga minnes accesser.

26

Laboration 5

LLaboration nr 5 behandlar

Anvandning av XCC12 for korskompilering till MC12

Styrning av borrmaskin

Foljande hemuppgift ska vara utférd innan Hem-
laborationen paborjas. Uppagift 5.1
Foljande laborationsuppgift ur denna del av laborations-PM skall utféras Laboratilons- 54
och redovisas for en handledare for godkannande. uppgift

Sign.

Lasanvisningar:

Laborationen forutsatter att du arbetat igenom avsnitt 5, sidorna 63-74, i Arbetsbok for MC12. Det &r
lampligt, dock ej obligatoriskt, att utfora uppgifterna 102-107.

| denna laboration far du lara dig hur man med hjalp av en korskompilator kan utveckla C-program
for en dator som direkt styr hardvara.

Programmeringsmiljo
Korskompilatorn XCC12 skall anvandas. Tank pa att denna skiljer sig fran GCC genom att den &r
C89-kompatibel (”ANSI”) snarare &n C99. Den stora fordelen med XCC12 &r att utvecklingsmiljon,

vid sidan av kalltextdebugger, ocksa innehaller simulatorer, pa samma sétt som i ETERM, vilket gor
det enklare for dig att forbereda laborationen med borrmaskinen.

Godkannande

Né&r programmet fungerar skall det visas upp for en handledare for godkénnande. For att laborationen
skall bli godkand racker det inte med att programmet fungerar. Det maste ocksa vara skrivet pa ett
snyggt och begripligt satt. Programraderna skall t.ex. indenteras (dras in) pa det satt som lars ut i
kursen. Du maste ocksa ha delat in det i moduler med anvandning av include-filer sa som beskrivits i
detta lab-pm.

Hemuppgift 5.1:

Las noga igenom laborationsuppgifter 5.1-5.4 sa att du forstar vad du skall géra och hur problemen
skall l6sas. Du maste ha arbetat igenom avsnitt 5 i Arbetshok for MC12”. For att hinna gora
laborationen &r det nodvéandigt att du fore laborationstillfallet har skrivit C-programmen och testat
dem in kallkodsdebuggern i XCC12.

Las ocksa igenom avsnittet om CRG-kretsen, i haftet "Maskinnara programmering med HC12”.

27

Laboration 5

Mer om portadressering (absolut adressering) i1 C

Portadresser i minnet kan enkelt adresseras. For att gora det pa ett snyggt satt i C ar det lampligt att
borja med att definiera en typ som beskriver portar. Om man, som i MC12, har 8-bitars portar kan
man gora deklarationen:

typedef unsigned char * port8ptr; // pekare till 8-bitars port

For 16-bitars portar ska man i stallet anvanda

typedef unsigned short * portl6ptr; // pekare till 16-bitars port
och hade man haft 32-bitars portar hade man skrivit

typedef unsigned long * port32ptr; // pekare till 32-bitars port
da den aktuella kompilatorn, sa som XCC12, anvander 32 bitar for typen long.

Typen port8ptr kan alltsd anvandas som en pekare till en 8-bitars port. En utport pa ML4 har
adressen 40046 FOr att inte behdva lagga denna sifferkonstant inne i programmet definierar man
lampligen en macro:

#define ML4OUT_ADDRESS 0x400

For att enkelt kunna skriva till den 8-bitars porten kan man definiera ytterligare en macro:
#define MLAOUT *((port8ptr) ML4OUT_ADDRESS)

Uttrycket
(port8ptr) ML40UT_ADDRESS

ar en explicit typomvandling fran int (konstanten 0x400) till typen portptr. Den inledande
asterisken innebér att man tar det som denna pekare pekar pa, dvs. utregistret pa ML4.

Vill man kunna lasa fran inporten pd ML4 som har adressen 600;5 kan man pa motsvarande satt
definiera foljande tva macron:

#define ML4IN_ADDRESS 0x600
#define ML4IN *((port8ptr) ML4IN_ADDRESS)

Nu kan man anvénda sig av dessa macron for att komma at portarna. Foljande sekvens visar t.ex. hur
man deklarerar en variabel, tilldelar denna varde fran ML4’s inport, skiftar bitarna i variabeln ett steg
at hoger och slutligen skriver variabelns varde till ML4’s utport:

port8 r;

r = ML4IN ;

r=r > 1;

ML4OUT = r;

Macrona ML4IN och ML40OUT beskriver da egentligen att man avlaser det som finns pa adressen
60046 och skriver till adressen 400;6. Naturligtvis gar det att gora detta utan att inféra typerna port8
och port8ptr och utan att definiera ndgra macron, men om man gor pa det satt som beskrivits har
blir programmen mycket tydligare och darfor lattare att fa felfria.

Man bor lagga alla makron av detta slag i en inkluderingsfil som t.ex. heter ports.h. | denna
bor man ocksa lagga typdefinitionerna. Fordelen med detta ar att det &ar latt att hittta en
portadress och andra den om konfigurationen &ndras.

Som exempel pa en port vars adress varierar med den anvanda miljon har vi statusregistret
hos "borrmaskinen” som du laborerat med tidigare och som du aterkommer till i denna
laboration. | simulatorn har detta register adress 401, medan i laborationssystemet finns det
pa adress 600:6. Med villkorlig kompilering skapar du definitioner sa att du sedan, pa ett
enkelt satt, kan skapa versioner for den simulerade miljon, sdvdal som den fysiska
laborationsmiljon:

#ifdef SIMULATOR

#define DRILLSTATUS_ADDRESS 0x401
#else

#define DRILLSTATUS ADDRESS 0x600
#endi

28

Laboration 5

Man kan naturligtvis anvénda C:s alla olika operatorer for att manipulera de enskilda bitarna i
en port nar man skriver till den. For att kunna gora detta pa ett bekvamt satt kan man
definiera foljande macron:

#define set(x, mask))
#define clear(x, mask))

) | (mask)
x) & ~(mask)

alternativt (samma betydelse)

#define set(x, mask)) |= (mask)
#define clear(x, mask) (x) &= ~(mask)

For att t.ex. satta bitarna by och b; hos ML4:s utport kan man ledas att tro att man ska skriva
set(ML40OUT, 0x3);

vilket pd manga satt ar riktigt tankt. Dock ar det fel i detta fallet eftersom det inte gar att
avlasa varden som man tidigare skrivit till en utport. Ibland hénder det ocksa att man vill géra
flera andringar i en port nar man skriver till den, men att alla &ndringarna maste ske samtidigt
I porten.

| sddana har fall &r det lampligt att anvanda ett s.k. skuggregister. Detta ar en vanlig variabel
som man hela tiden later innehalla en kopia av porten. Om man t.ex. vill ha ett skuggregister
for ML4:s utport kan man gora deklarationen

unsigned char ML4shadow = 0; // deklaration av kopia

Vill man gora andringar i utporten utfor man sedan forst dessa pa skuggregistret och sedan
kopierar man skuggregistrets varde till porten i en enda tilldelningsoperation. Antag t.ex. att
man som ovan vill sétta by och by i ML4:s utport men att man dven vill nollstélla b;. Da kan
man skriva

set(ML4shadow, 0x3);
clear(ML4shadow, 0x80);
ML40UT = ML4shadow;

29

Laboration 5

Avbrottshantering 1 C

Nar debuggern DBG12 kors i MC12 fangar denna avbrotten pa de “riktiga” avbrottsvektorerna. Men
avbrotten skickas vidare till avbrottsvektorer som har samma adress som de riktiga, fast med adresser
som borjar pa 3 istéllet for F. Avbrott med vektor pa adress FFF2;4 skickas t.ex. vidare till adressen
3FF24.

En avbrottsvektor innehaller adressen (en pekare) till en avbrottsrutin som skall anropas nar avbrott av
ett visst slag intraffar. En avbrottsrutin ar en parameterlos funktion som inte ger nagot returvérde.
Man kan alltsa i C gora foljande typdefinition som beskriver typen for en avbrottsvektor:

typedef void (*vec) (void); // avbrottsvektor

For att kunna dndra en avbrottsvektor behdver man en pekare till den. En sadan pekare har typen
typedef vec *vecptr; // pekare till avbrottsvektor

Som exempel visas hur man kan lagga in en pekare till en avbrottsrutin i avbrottsvektorn pa adressen
3FF216 i MC12. Man bérjar med att gora definitionerna

#define IRQ_VEC _ADR Ox3FF2
#define IRQ_VEC *((vecptr) IRQ_VEC ADR)

Adressen till avbrottsrutinen kan nu l&dggas in genom att man gor en enkel tilldelning till 1RQ_VEC.
Antag t.ex. att avbrottsrutinen heter inthandler och ar deklarerad pa féljande satt i en .h-fil som
man har inkluderat i sitt program

void inthandler (void);

For att styra avbott pa avbrottsvektorn 3FF2;4 till denna rutin kan man gora tilldelningen
IRQ_VEC = inthandler;

Nér en avbrottsrutin anropas gar inte anropet till pA samma satt som nar man gor ett vanligt
funktionsanrop. | MC68HC12 sparas t.ex. alla processorns register pa stacken innan anropet. Detta
betyder att man inte kan atervanda fran en avbrottsrutin pa det satt som man gor fran vanliga
funktioner. En speciell instruktion (RT1) maste anvandas. Av denna anledning maste funktionen
inthandler vara skriven i assembler. En standard C-kompilator kan ndmligen bara generera kod for
vanliga funktioner. Men det finns inget som hindrar att avbrottsrutinen bara innehaller att anrop av en
vanlig C-funktion, vilken far gora sjélva jobbet.

For att MC68HC12skall acceptera avbrott maste man i programmets borjan se till att nollstalla 1-
flaggan. Detta kan inte heller goras i standard-C. Man maste antingen anropa en assemblerfunktion
som utfor denna operation eller sa kan man anvéanda (icke standardiserad) inbaddad assemblerkod.

Anmarkning:

Léangre fram ska du anvanda avbrott fran CRG-kretsen, tank da speciellt pa att denna krets anvander
avbrottsvektor 3FF0qg.

I XCC finns visserligen ett icke standardiserat nyckelord __interrupt som man kan anvéanda for att
fa en funktion att avslutas som en avbrottsrutin och man kan da skriva dven undantagshantering helt
och héllet i C. Under denna laboration maste du dock félja ANSI-C89, varfor du inte far anvanda
detta nyckelord i din 16sning.

30

Laboration 5

Laborationsuppgift 5.1

Starta programmet XCC och vélj alternativet File | New Workspace. Kalla din nya workspace
lab6.w12. | denna workspace skall du sedan skapa ett nytt projekt for varje uppgift i denna laboration.
Borja darfor nu med att lagga in ett nytt projekt. Kalla det nya projektet uppgiftl.m12.

Kortet ML4 skall nu anslutas istallet for borrmaskinen till mikrodatorsystemet. Pa kortet ML4 finns
bl.a. en s.k. DIP-switch. Det &r en enhet med atta sma switchar. Man kan fran ett program avlasa
switcharnas lagen via inporten ML4IN som har adressen 0x600. Porten har atta bitar och varje bit
motsvarar laget for en switch. Kortet ML4 har ocksa en s.k. Parallell output. Det ar en enhet med atta
lysdioder. Man kan tédnda och slécka lysdioderna i denna enhet genom att skriva till utporten
MLA4OUT vilken har adressen 0x400.

Uppgiften &r att skriva ett program som avlaser switcharnas lagen pd ML4-kortet och som visar de
avlésta lagena genom att skriva till Parallell output-enheten.

Programmet skall utformas som en “Stand alone” applikation. Detta betyder att du inte far anvanda
Standard startup nar du anger egenskaperna for ditt program i dialogrutan Settings. Du skall istallet
skriva en egen startsekvens i assembler. Denna sekvens skall anropa din main-funktion. Lasningen
och skrivningen av ML4-portarna skall ske i main. Du skall skapa en speciell fil med namnet
ports.h. Denna skall innehalla en typdefinition som anger portarnas typer samt definitioner av
makron som beskriver portadresserna. (Gor pa det satt som visas i “Arbetshok for MC12”.) Inga
explicita portadresser far anvandas i funktionen main. Ditt projekt skall alltsa besta av tre filer, filen
port.h, en assemblerfil med startsekvensen samt en C-fil med funktionen main. Skapa dessa filer
och 1agg dem till projektet.

Innan du kompilerar ditt program skall du kontrollera att konfigurationen ar satt till Debug. (Man
bestammer konfiguration med menyalternativet Build | Configuration. Om Debug ar gramarkerat ar
konfigurationen redan satt till Debug.) Testa din 16sning i kallkodssimulatorn i XCC. For att kunna
gora detta maste du ansluta en ML4 Dip-switch och en ML4 Parallell output-enhet med hjélp av
knappen Simulator setup pa simulatorns verktygslist. Du skall inte ansluta ndgot Console-fonster.

N&r du ar i laborationslokalen och har tillgang till hardvaran skall du kontrollera att kortet ML4 ar
anslutet till MC12-kortet och att stromtillforseln for ML4 &r inkopplad. Andra sedan konfiguration for
ditt projekt till Final och valj Build | Build all pa menyn. Valj darefter menyalternativet Debug | Open
Terminal. Du far da ett terminalfonster i vilket du kan kommunicera med monitorn DBG12 som
exekverar i MC12. Ladda ner ditt program till MC12. (Hogerklicka i terminalfonstret.) Starta ditt
program med go-kommandot.

Nar du fatt denna uppgift att fungera har du en fungerande startsekvens som du kan ateranvénda i alla
de foljande uppgifterna i denna laboration. Du har ocksa lart dig hur man skapar projekt och hur man
kor och konfigurerar simulatorn. Detta kommer du att ha nytta av i fortsattningen. Om du sitter i
laborationslokalen har du dessutom fatt kommunikationen med MC12 att fungera och du vet hur man
laddar ner och startar sitt program.

31

Laboration 5

Laborationsuppgift 5.2

Skapa nu ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet uppgift2.m12 och
gor det till det aktiva projektet. Du kan bdrja med att lagga din assemblerfil med startsekvensen till det
nya projektet. Resten av programkoden i projektet skall skrivas i C.

Uppgiften ar att lasa fran tangentbordet ML2 och visa det avléasta vardet pa displayen ML3. Tang-
entbordet har 16 knappar numrerade fran O till 15. Nar programmet kors skall det varje gang
anvandaren trycker pa nagon av knapparna visa knappens nummer pa displayen. Numret skall visas
pa decimal form. Programmet skall alltsa inte avslutas nar en knapp tryckts ner, utan det skall tillata
ett godtyckligt antal knapptryckningar.

Lasning fran tangentbordet skall ske med hjalp av kortet ML15. Pa detta finns inporten Key Decode
Register (adress 0x9CO0). Beskrivning av bitarna pa denna port finns i hjalptexten till XCC. Ditt
program skall innehalla en inlasningsmodul bestdende av filerna keyboardML15.c och
keyboardML15.h. Modulen skall bara innehalla funktionen get_key. Nar denna anropas skall
den vanta tills ndgon tangent tryckts ner. Darefter skall den som resultat ge numret pa den nedtryckta
tangenten.

Utskerift till displayen skall goras med hjalp av en modul bestaende av filerna displayML15.c och
displayML15.h. Denna modul skall innehdlla tva funktioner. Den forsta av dessa éar
display_digits. Denna far som parameter ett falt med sex element dar varje element &r en byte
langt. (Anvénd typen unsigned char.) Varje element i féltet skall innehalla ett heltal i intervallet
0 till 9. Funktionen display_digits skall visa de sex talen i faltet i displayen ML3. Detta skall
goras med hjalp av kortet ML15. ML15 har tva utportar Display Mode Register och Display Data
Register. Dessa ligger pa adresserna 0x9C2 resp. 0x9C3. Du hittar beskrivning av ML3 och ML15 i
hjélptexterna till XCC, men en liten forklaring av hur utskriften till Display Data Register gar till
behdvs kanske anda. Talen som skall visas pa displayen skall skrivas till Display Data Register ett i
taget. (De skall alltsa skrivas till samma port i tur och ordning.) Darefter maste man skriva ytterligare
tva bytes till porten. Dessa skall bada innehalla vérdet noll och de kommer inte att synas pa displayen.

Den andra funktionen i displaymodulen skall heta display_dec. Den skall fa en unsigned int
som parameter. Dess uppgift ar att visa parameterns vérde pa displayen i decimal form. Detta gér den
naturligtvis genom att plocka ut de sista sex siffrorna i parametern en och en, placera dem i ett falt
med bytes och dérefter anropa funktionen display_digits.

Definitioner av makron for portadresserna skall laggas i filen ports. h fran uppgift 5.1.

Testa ditt program i kéllkodssimulatorn. Nar du ansluter enheterna ML2 och ML3 till simulatorn skall
du vara noga med att for bada valja Interface | ML15. Innan du kor ditt program pa MC12 i
laborationslokalen bér du kontrollera att kortet med tangentbordet och displayen ar anslutet till kortet
ML15.

Nar du klarat av detta steg har du tva moduler med vilkas hjalp du kan lasa indata respektive visa
utdata. Du kommer att behéva bada modulerna i de 6vriga stegen i laborationen.

32

Laboration 5

Laborationsuppgift 5.3

Skapa ytterligare ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet
uppgift3.m12 och gor det till det aktiva projektet. Aven denna gang kan du bérja med att lagga din
assemblerfil med startsekvensen till det nya projektet.

I kurslitteraturen beskrivs en CRG-krets som kan generera periodiska avbrott. | detta steg skall du
skapa en klockmodul som anvander sig av dessa avbrott. Din klockmodul skall bestd av filerna
clock.h och clock.c. Modulen skall internt innehalla en raknare (en klocka) som raknar antalet
avbrott som skett. Eftersom antalet avbrott kan bli stort duger inte typen int. Definiera istallet en
egen typ, time_type, som ar lika med unsigned long int och Iat réaknaren ha denna typ. Réknaren
skall deklareras pa sadant satt att den inte kan paverkas fran ndgon funktion som ligger utanfor
klockmodulen. Den bor ocksa markeras som flyktig, eftersom den andras varje gang ett avbrott
intraffar och detta inte syns i den “vanliga” koden. | klockmodulen skall det finnas fyra funktioner:

« init_clock. Nollstéller klockan och initierar CRG-kretsen sa att den genererar ett avbrott
ungefar var 10:e ms.

« clock_inter. Anropas av avbrottsrutinen varje gang ett avbrott intraffar. Tickar upp klockan.

« get_time. Ger som resultat det ungefarliga antalet ms som gatt sedan klockan initierades.
Observera att resultatet inte skall vara antalet avbrott utan antalet ms. Resultattypen skall vara
time_type.

« hold. Innehaller en repetitionssats som fordrojer exekveringen ett visst antal ms. Far som
parameter ett heltal av typen time_type som anger hur manga ms fordréjningen skall vara.

Funktionen skall anvéanda sig av avbrottsraknaren i klockmodulen for att avgora hur lange
fordrojningen skall vara.

For att 16sa denna uppgift maste du skriva en avbrottrutin i assembler vilken anropar funktionen
clock_inter. Du maste ocksa initiera avbrottsvektorn for CRG-kretsen sa att din avbrottsrutin
anropas. Tank ocksa pa att man i MC12 maste nollstélla I-flaggan for att avbrott skall tillatas. Detta
maste goras i en assemblerrutin som anropas fran init_clock.

Observera att du i denna uppgift inte far anvanda nagra icke-standardiserade specialegenskaper for
kompilatorn XCC, sasom inbaddad assemblerkod eller speciella markorer for funktioner. Endast
sadant som kan skrivas i standard-C &r tillatet. Det som inte gar att gora i standard-C skall goras i
separata assemblerrutiner.

Alla macron for att definiera portar och avbrottsvektorer skall férstas laggas i filen ports.h fran de
tidigare stegen.

Né&r klockmodulen &r Klar skall du testa den genom att skriva ett program som visar en sekundréknare
pa display-enheten ML3. (Anvénd displaymodulen fran uppgift 5.2.) Vardet pa displayen skall alltsa
Okas med ett varje sekund (ungefar).

Né&r du skall testa din lsning i kallkodssimulatorn finns ett litet problem. Avbrotten genereras dar
mycket langsammare an nar man kor programmet “pa riktigt”. For att det skall bli mojligt att testa
programmet i simulatorn maste du darfor satta CRG-kretsens avbrottsintervall till det kortast mojliga
vardet. Ett bra tips dr ocksa att i funktionen holld bara vanta tills nasta avbrott kommer. For att du
inte skall behdva &ndra i programkoden ndr du véxlar mellan simulatorversionen och den slutliga
versionen av programmet kan du anvénda dig av s.k. villkorlig kompilering (se kursboken). Du kan
t.ex. i dialogrutan Debug | Settings for simulatorversionen i rutan DEFINES fér C-kompilatorn lagga
till macron SIMULERING. Denna kan du sedan testa pa i programkoden. Nar du nu fatt
klockmodulen att fungera har du alla verktyg du behover for att pa ett enkelt satt klara av det sista
steget i laborationen.

33

Laboration 5

Laborationsuppgift 5.4

Skapa ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet uppgift4.m12 och gor
det till det aktiva projektet.

I denna uppgift skall du skriva ett program som hanterar borrmaskinen du stiftade bekantskap med i
laborationen i assembler. Det program du skall skriva skall géra samma sak som det assem-
blerprogram som diskuterades dar. Skillnaden &r att programmet nu skall skrivas i C. De enda
undantagen fran detta ar de tre assemblerrutiner du redan konstruerat i de tidigare uppgifterna i denna
laboration (startsekvensen, avbrottsrutinen och funktionen som nollstéller I-flaggan).

Funktionerna som styr borrmaskinen skall samlas i en modul bestaende av de tva filerna drill .c
och drill_h. Modulen skall bland annat innehalla féljande funktioner:

 void MotorStart(void)
 void MotorStop(void)

« void DrillDown(void)

e void DrillUp(void)

* Int Nstep(iInt)

e int DrillDownTest(void)
« void Alarm(Int)
 DrillHole

e int RefPos(void)
 void DoAuto(void)

Dessa funktioner skall utféra exakt samma ting som motsvarande assemblerfunktioner, men de skall
vara skrivna i C. De ska implementeras med parameterlistor och returtyper enligt ovan. Observera att
funktionsnamnet Auto &r olampligt att anvanda i C-programmet (varfor da?).

Foljande funktioner ska ocksa konstrueras och testas for att darefter konsekvent anvéandas da styrord
ges till borrmaskinen:

* void Outzero(int bit);
 void Outone(int bit);

Specifikationen for dessa ar den samma som i laboration 1.

Néar du konstruerar funktionerna for borrmaskinen behéver du ibland lagga in fordréjningar. Da skall
du anvéanda dig av klockmodulen fran uppgift 5.3. GI6m inte att initiera denna i main. Nu skall
borrmaskinen kopplas in igen, pd samma satt som i assemblerlaborationen. Den skall styras via
utporten som har adressen 0x400. Naturligtvis skall alla makrodefinitioner laggas i filen ports.h.
Anvind ett skuggregister vid skrivning till porten.

Ditt program skall lasa fran tangentbordet och om nagon av tangenterna 0-7 trycktes ner skall en av
funktionerna start, stop, down, up, step, drill, refpo resp. auto_drill anropas. Om
nagon annan tangent tryckts ner skall inget utféras. (Har ar det lampligt att anvanda en switch-sats.)
For att lasa fran tangentbordet anvander du forstas inlasningsmodulen fran uppgift 5.2.

34

Appendix

Appendix: MC12 10-adresser for laborationskort

Laborationskort Register/Port Adress Simulator
Noter Symboliska namn (hexadecimal (lampligt val)
form)
ML4
“Borrmaskin” ar ocksa ansluten Out 0400 0400
till dessa adresser.
OBS: Skillnad mellan 10- In 0600 0401
simulator och fysisk hardvara.
ML5
De hét angivna adr_e_sserna for Out 0CO00 0CO00
ML5 galler PAL-revision 2. In 0CO1L 0CO1
Out 0C02 0C02
Out 0C03 0C03
ML13
Ctrl/Status 0BOO 0B0OO
IRQ Ctrl/Status 0BO1 0BO1
ML15
Kbd Data 09Co 09CO0
Kbd Status 09C1 09C1
Led Mode 09C2 09C2
Led Ctrl/Data 09C3 09C3
ML19
Status 0DCO 0DCO
Kvittera handelse 1 0DC2 0DC2
Kvittera handelse 2 0DC3 0DC3

35

