

Institutionen för data och informationsteknik
LP3-2014/15, RoJ/RS/JS

Maskinorienterad programmering
Laborationer för DAI, EI och MEI (LEU500)

Laborationsserien omfattar totalt fem laborationsmoment som utförs i tur och ordning.

Det förutsätts att du inför varje laboration har genomfört omfattande laborationsförberedande hemuppgifter.
Vilka dessa uppgifter är, framgår av detta PM. Du ska vara beredd att visa upp och redogöra för dina förberedda
lösningar inför laborationstillfället. Bristfälliga förberedelser kan medföra att du avvisas från bokad
laborationstid.

Underskrifterna på detta försättsblad är ditt kvitto på att du är godkänd
på respektive laborationsmoment. Spara det, för säkerhets skull, tills
slutbetyg på kursen rapporterats. Börja med att skriva ditt namn och
personnummer med bläck.

_______________ __
Personnummer Namn (textat)

Följande tabell fylls i av laborationshandledare efter godkänd laboration.

Laboration
Godkännande av laboration

Datum Laborationshandledares underskrift

1

2

3

4

5

Godkännande – hel laborationsserie:

_____________ __
Datum Laborationshandledares underskrift

Laboration 1

2

Översikt av laborationsserien

Under laboration 1 bekantar du dig med laborationssystemet, konstruerar några enkla assemblerrutiner
som du kommer att ha glädje av senare. Du påbörjar konstruktion av ett programpaket för
övervakning och styrning av en liten borrmaskin.

Under laboration 2 färdigställer du ett komplett programpaket, i assemblerspråk, för borrmaskinen.

Under laboration 3 införs en enkel räknarkrets, programpaketet byggs ut att omfatta även
avbrottshantering, du implementerar en enklare så kallad tidsdelnings applikation (”time sharing”).

Observera: Inför laboration 4 ska du ha utfört och redovisat inlämningsuppgiften ”Goldbach
hypotes”. Redovisning kan ske vid någon simuleringsövning eller vid laborationstillfället.

Laboration 4 omfattar grundläggande C-programmering, du använder fält och pekare, du får också
tillfälle att praktisera test, felsökning och ”avlusning”.

Under laboration 5 övas framför allt dina kunskaper i maskinnära C-programmering men även hur du
kombinerar programdelar skrivna såväl i C som i assemblerspråk.

Kompletterande material

För laborationernas genomförande behöver du, utöver kurslitteraturen, program och diverse tekniska
beskrivningar. Du finner detta på kursens resurssida.

Vid laborationerna används följande program:
 ETERM 6 för MC12
 XCC12 för MC12
 CodeLite med GCC
Programmen bör du också installera på egna datorer för att underlätta ditt förberedelsearbete.

Följande beskrivningar finns tillgängliga på elektronisk form:
 Laborationskort ML4, multifunktionskort för MC12
 Laborationskort ML5, gränssnitt mot tangentbord/display (ML23), för MC12
 Laborationskort ML15, gränssnitt mot tangentbord/display (ML23), för MC12
 Laborationskort ML23, tangentbord/display, för MC12
 DBG12 monitor/debugger för MC12

Laboration 1

3

Laboration nr 1 behandlar
MC12 med monitor/debugger DBG12

Tangentbord som inmatningsenhet
Sifferindikator som utmatningsenhet

Borrmaskin som styrobjekt

Laborationens huvudsakliga syften är att du ska:
 bekanta dig med laborationssystemet, i första hand:

 mikrodator MC12 och dess monitor/debugger DBG12
 tangentbord ML3
 sifferindikator ML2
 borrmaskin

 förbereda de följande laborationerna genom att konstruera och testa grundläggande
programrutiner för

 inmatning från tangentbord,
 utmatning till sifferindikator
 styrning av borrmaskinens funktion

För laborationen finns speciellt följande fil tillgänglig via kursens resurssida: laddfil.s19

Följande uppgifter ur Arbetsbok för MC12 ska vara utförda innan laborationen påbörjas. Du ska på
begäran av laborationshandledare redovisa dessa.

Uppg. 39-43 71-81

Sign.

Utöver uppgifterna i arbetsboken ska följande hemuppgift (ges längre fram i detta PM) vara utförd
innan laborationen påbörjas:

Hem-
Uppgift

1.1

Följande laborationsuppgifter skall redovisas för en handledare för godkännande under laborationen.

Laborations-
uppgift

1.7 1.9

Sign.

Laboration 1

4

Laborationssystemet
Följande enheter ingår i laborationsmiljön:

 persondator med programvaran ETERM för MC12 och XCC12 för MC12

 laborationssystemet MC12 med monitor/debugger DBG12,

 borrmaskin, tangentbord och sifferindikatorer och olika typer av gränssnitt till dessa enheter.

Under laborationerna 1,2 och 3 använder du ETERM för att redigera, assemblera och testa dina
program. Under senare laborationer använder du XCC12 för att redigera, kompilera och testa dina
program.

Laboration 1

5

Anslutningar
Laborationsuppsättningen ska vara korrekt ansluten då du kommer till laborationsplatsen. Detta
avsnitt sammanfattar anslutningarna.

 Laborationssystemet MC12 ansluts till terminalfunktionen i ETERM via persondatorns COM-port.

 Borrmaskinen ansluts till MC12 via en 26-polig flatkabel.

 Tangentbordet (ML2) respektive sifferindikatorn (ML3) kan anslutas till MC12 via två olika typer
av gränssnitt, oberoende av varandra. Dessa gränssnitt kallas ML15 respektive ML5.

 Laborationskorten ML15 och/eller ML5 utgör den fysiska kopplingen mellan MC12 och
ML2/ML3. De ansluts till MC12 via en ”piggy-back” koppling som gör att flera laborationskort
ansluts genom att dessa staplas på MC12.

 Laborationskortet ML19 är speciellt anpassat för laborationer med MC12’s avbrottsmekanismer.
Kortet beskrivs i ”Arbetsbok för MC12” och i detta PM.

ML19

ML5

ML15
MC12

ML2
Tangentbord

ML3
Sifferindikator

Anslutning till seriell
(RS232) port hos
värddator

Anslutning, 26 polig, till
multifunktionskort ML4
eller borrmaskin

MC12 RESET
Spänningsindikator

Freescale 68HCS12 enchipsdator

10‐poliga kontakter (4 st.) för
anslutning av laborationskort

Strömförsörjning 5 Volt

Finsäkring

Anslutning externa avbrott

Laborationsuppsättning:
Laborationsdator med
laborationskort och
strömförsörjning

Laborationsdator MC12

Laboration 1

6

Monitor/debugger DBG12

När vi ansluter MC12 till en COM-port på PC’n och startar ett terminalfönster fungerar PC’n som en
”dum terminal” bestående av tangentbord och bildskärm. (ETERM = ”Emulera terminal” = härma
terminal).

Allt som skrivs på PC’ns tangentbord skickas direkt ner till MC12. I MC12 finns ett enkelt program
som kallas ”monitor/debugger” (DBG12). Programmet är, som namnet antyder avsett för övervakning
och test.

DBG12 ”lyssnar” hela tiden på kommandon från tangentbordet bortsett från när MC12 är upptaget av
något applikationsprogram. För att återgå till DBG12 i detta fall krävs RESET (omstart) av MC12.
Huvudprogrammet i DBG12 är utformat som en enkel kommandotolk, där en rad olika kommandon
accepteras.

Läsanvisning:

Läs om monitor/debugger’n ”DBG12 Användarbeskrivning”
finns som länk från ”resurssidan”:
”DBG12 monitor/debugger för MC12”

Laboration 1

7

Dispositionen av adressrummet hos MC12 bestäms av DBG12 och kan något förenklat beskrivas
enligt följande:

 I/O Adress $0000-$0FFF Med plats för I/O-kort och interna (HCS12) portar
 RWM Adress $1000-$3BFF Med plats för dina program och data (applikationer)
 RWM Adress $3C00-$3FFF Variabelarea för DBG12
 ROM Adress $4000-$FFFF Med plats för bland annat DBG12

Laborationsuppgift 1.1:

Starta ETERM och anslut en terminal under fliken Debug.

Tryck RESET på laborationssystemet MC12 och
kontrollera att DBG12 identifierar sig genom att text skrivs
till terminalfönstret.

Om ingen text skrivs till skärmen eller om texten är oläslig
 Kontakta en handledare.

Terminalfönstret bör se ungefär som följande figur.

Den sista raden kallas för monitorns prompter och innebär att DBG12 är redo att ta emot kommandon
från dig.

Varje gång du trycker <´ ska DBG12
skriva en ny prompter till terminalen.
Om så inte är fallet betyder det att
DBG12 är upptagen och kanske rentav
”hängt sig” eller ”spårat ur”.
Lösningen på detta problem är att göra
RESET på MC12.

Skriv: help< >

DBG12 skriver ut en hjälptext. Se
figuren till höger.

Undersök olika kommandon genom att skriva help kommando om du vill ha hjälp för något
specifikt kommando.

detta kallas DBG12’s ”prompter”

Laboration 1

8

Kommandot ”display memory” (dm)

Undersök nu minnesinnehållen i de olika minnesområden vi har i systemet.
 Skriv: dm 0 för att studera adressområdet där vi har in-och utenheter.
 Skriv: dm 1000 för att studera adressområdet där du kan placera dina program.
 Skriv: dm E000 för att studera adressområdet där vi har PROM (FLASH).

Adressangivelsen anges till vänster, minnesinnehåll i mitten och till höger tolkas minnesinnehållet
som ASCII-koder.

Kommandot ”modify memory” (mm)

Använd nu kommandot mm för att försöka ändra minnesinnehåll på några olika
ställen i MC12’s adressrum.

Ge kommandot: mm 1000 för att visa och ha möjlighet att ändra
minnesinnehållet på adress 1000.

Tryck  ett par gånger. Har du samma minnesinnehåll som i figuren till
höger?____________________

Tryck på + (plus) för att visa minnesinnehållet på nästa adress. Tryck på + på nytt och ändra
minnesinnehållet på adress 1002 till 55 genom att skriva 55. Prova även – (minus) tangenten.

Vilka två sätt kan du använda för att avsluta mm-kommandot och återgå till monitorns prompter?
 __ ___

Kan du ändra minnesinnehållet på adress 4000?

Prova att ändra ytterligare några minnesinnehåll inom adressintervallet 4000-FFFF. Kan du förklara
vad som händer?

Laboration 1

9

Kommandot “load application program” (l)
Kommandot “disassemble” (dasm)
Kommandot “run application program” (go)

ETERM’s terminalprogram har behändiga funktioner för att
underlätta kommunikation mellan värddator och
laborationsdator. Du kan läsa om sådana funktioner i
ETERM’s hjälpsystem.

På kursens resurssida, finns en laddfil.s19 som du ska
använda under nästa laborationsmoment. Filen innehåller
såväl program som data. Din uppgift är att undersöka detta
program.

Laborationsuppgift 1.2:

 Spara filen laddfil.s19 i din arbetskatalog.
 Ladda laddfil.s19 till MC12 (högerklicka i terminalfönstret).
 Disasssemblera, dvs. översätt från maskinkod till assemblerkod, genom att använda DBG12’s

dasm-kommando. Komplettera tabellen.

Adress Instruktion Operand

1000 LDX #$1020

100E JMP $C00F

101B RTS

 Utför nu programmet, starta med: go 1000 .

Följ programmets instruktion och skriv ditt svar här:

Laboration 1

10

Inmatning från tangentbord
I detta avsnitt använder vi tangentbordet ML2 tillsammans med gränssnittet ML15.

Läsanvisning:

Läs översiktligt om gränssnittet till tangentbord och sifferindikator i Teknisk beskrivning ML15 finns
som länk från ”resurssidan”:

”Laborationskort ML15, gränssnitt mot tangentbord/display (ML23), för MC12”

Laborationsuppgift 1.3:

Undersök tangentbordet ML2/ML15.
Använd mm-kommandot. ML15’s avkodning av tangentbordet, dvs. den kod som placeras i registret på
adress $9C0, beroende på vilken tangent som tryckts ned, illustreras av följande figur:

Prova nu samtliga tangenter och komplettera nedanstående tabell.
Observera vad du läser från tangentbordet när ingen tangent är nedtryckt. Har
föregående tangent-nedtryckning någon betydelse för avläsningen?

Nedtryckt tangent Avläst värde Nedtryckt tangent Avläst värde

a i
b j
c k
d l
e m
f n
g o
h p

Vi övergår nu till inledande programutveckling i assemblerspråk. För att underlätta test av ett
assemblerprogram introducerar vi ytterligare ett av DBG12’s kommandon:

Kommandot “step (trace) application program” (tr)

Laborationsuppgift 1.4:

Kontrollera din lösning av uppgift 41 i Arbetsbok för MC12, dvs. tangentbordsrutinen
CheckKbdML15. Använd samma testprogram som i arbetsboken

Vi använder TRACE-kommandot som fungerar så att den angivna instruktionen utförs, därefter
återförs kontrollen till DBG12 och du kan inspektera/ändra register- minnesinnehåll etc. Du ska nu
övertyga dig om att subrutinen CheckKbdML15 fungerar som den ska.

 Ladda ner programmet till MC12.

 Ge kommandot tr 1000 för att utföra programmets första instruktion.

 Utför programmet instruktionsvis, kontrollera programflödet, tryck ned någon tangent på ML2,
kontrollera inläsningen av tangentkoden.

 Verifiera slutligen att GetKbdML15 fungerar med MC12. (Uppgift 42 i arbetsboken).

a

e

i

m

b d c

f h g

j

n

k l

o p

Laboration 1

11

Fortsätt nu med att praktisera test och felsökning i assemblerprogram. En viktig metod är att sätta så
kallade brytpunkter på lämpligt valda ställen i programmet. För detta kan du använda DBG12’s
brytpunktshantering.

Kommandot “breakpoints” (bp)

Laborationsuppgift 1.5:

Testa nu CheckKbdML15 med användning av brytpunkt.

 Bestäm adressen för NOP-instruktionen i testprogrammet och sätt en brytpunkt på denna adress.

 starta programmet med go 1000, tryck ned någon tangent på ML2, programmet ska nu stanna
vid brytpunkten, vilket meddelande får du från DBG12?

Utmatning till sifferindikator
I detta avsnitt använder vi sifferindikatorn ML3 tillsammans med gränssnittet ML15.

Läsanvisning:

Läs översiktligt om gränssnittet till tangentbord och sifferindikator i
Teknisk beskrivning ML15 finns som länk från ”resurssidan”:

”Laborationskort ML15, gränssnitt mot tangentbord/display (ML23), för MC12”

I nästa uppgift kommer vi att använda oss av:

Kommandot “display/modify registers” (reg)

Laborationsuppgift 1.6:

Du ska undersöka hårdvaran ML3/ML15. För detta använder du en enkel instruktionssekvens för
initiering/visning:

 ORG $1000
 LDAA #1
 STAA $9C2
 LDAA #$D0
 STAA $9C3
 LDAA #0
 STAA $9C2

 LDAA #8
loop:
; Placera lämpligt värde i ackumulator B innan instruktionen utförs
 STAB $9C3
 DECA
 BNE loop
end:
 BRA end

 Redigera, assemblera programsekvensen ovan.

 Ladda till MC12.

Laboration 1

12

 Programmet ska utföras instruktionsvis (tr 1000 osv.)

 Omedelbart innan instruktionen STAB $9C3 utförs ska du placera lämpligt värde i register B
med kommandot reg B värde  .

Sifferindikatorn har bara 6 positioner, kan alltså bara visa 6 siffror men trots detta måste en sekvens
om 8 siffror ges till adress $9C3 för att indikatorerna ska tändas. Är det de 6 första, eller de 6 sista
siffrorna i sekvensen som visas på sifferindikatorn?

 Kontrollera din lösning av uppgift 43 (DisplayML15) i Arbetsbok för MC12.

 Kontrollera att DisplayML15 fungerar med MC12.

Laborationsuppgift 1.7:

Konstruera nu en subrutin GetPut, enligt följande specifikation:
; Subrutin GetPut
; Väntar på ny tangentnedtryckning
; Visar därefter tangentkod för senast nedtryckta tangent på ML2 som
; hexadecimala tecken på samtliga sifferindikatorer på ML3
;

Skriv nu följande huvudprogram, avsett för att testa utmatningsrutinen:
 ORG $1000
main: JSR GetPut ; Läs tangentbord, skriv till display
 BRA main

GetPut: … använder dina rutiner GetKbdML15 och DisplayML15

 Redigera, assemblera, rätta eventuella fel.

 Ladda programmet till MC12 för att testa GetPut.

 Starta programmet, go 1000, testa rutinen för alla möjliga tangentnedtryckningar och
verifiera korrekt funktion.

Visa upp din lösning för godkännande av en handledare.

Laboration 1

13

Styrobjekt borrmaskin

Huvuddelen av de fortsatta laborationsmomenten i maskinorienterad
programmering, såväl då det gäller programutveckling i
assemblerspråk, som programmering i maskinnära C kommer att
inbegripa styrobjektet ”borrmaskin”. Vi ska därför redan nu bekanta
oss med denna laborationsutrustning så att framtida
laborationsförberedelser (med hjälp av simulatorer) kan förstås mot
bakgrund av den hårdvara som används under laborationerna.

Läsanvisning:

Läs om borrmaskinen på sidorna 49 och 50 i Arbetsbok för MC12.

Du kan också studera avsnittet om borrmaskinen i ETERM’s hjälpsystem.

Laborationsuppgift 1.8:

Studera borrmaskinen på laborationsplatsen framför dig. Vänd maskinen så att du ser ljusdioderna.
Undersök hårdvaran med hjälp av följande programsekvens (Jämför med uppgifterna 71 och 72 i
arbetsboken):
 ORG $1000
Loop NOP ; Ge indata till register A
 STAA $400 ; Skriv till borrmaskinen
 LDAB $600 ; Läs statusregistret
 BRA Loop

 Stega genom programmet med trace när du undersöker borrmaskinen.

 Vid NOP-instruktionen kan du använda reg-kommandot för att placera lämpligt värde i register
A.

 Testa att starta borret och sänka det. Observera lysdioderna på borrmaskinen. Gröna lysdioder är
statusregistret och gula är styrregistret. Observera att bit 3-7 i statusregistret inte är definierade
och kan anta vilka värden som helst.

 Vrid även på arbetsstycket för att ställa detta i referensposition och observera att lysdioden på
borrmaskinen aktiveras – och – att du läser status till register B.

 Tryck RESET på MC12. Studera lysdioderna (statusregistret) på borrmaskinen och pressa ner
borret för hand till bottenläge. Observera hur statusbitarna ändras. (Kanske är tryckfjädern som
lyfter borret lite klen – lyft borret upp i så fall)

Det finns några skillnader mellan borrmaskinen i simulatorn och laborationssystemets borrmaskin
som visserligen verkar små men har stor praktisk betydelse. Här får du några tips som kan hjälpa dig
åtskilligt då du kommer till laborationsplatsen.

Adresser: Tänk på att simulatorns register mot borrmaskinen är konsekutiva (typiskt använder du här
adresserna 40016 och 40116). I laborationssystemet motsvaras 40116 i simulatorn i stället av adress

Laboration 1

14

60016. För att minska risken för bortkastad felsökningstid i laborationslokalen kan du införa en
villkorlig assembleringssats i filen Labdefs.s12, exempelvis enligt:

#ifdef SIMULATOR
DrillStatus EQU $401
#else
DrillStatus EQU $600
#endif

I ditt huvudprogram, innan filen Labdefs.s12 inkluderas, kan du definiera

#define SIMULATOR

när du kommer till laborationen kommenterar du bort detta på följande sätt:

; #define SIMULATOR

Vi har en liknande problematik då det gäller fördröjningssekvensen i subrutinen Delay, som du ska
göra som ett led i förberedelserna.

Hemuppgift 1.1:

Du har tidigare (i arbetsbokens första avsnitt) experimentellt bestämt fördröjningskonstanter för den
simulerade miljön och ska nu bestämma fördröjningskonstanten i laborationsdatorn med liknande
metod. Anledningen till att vi inte kan använda den tidigare fördröjningsrutinen är att denna använder
8-bitars fördröjningskonstant, vilket fungerar i simulatorn men blir alldeles för liten i hårdvara. Vi
utformar därför fördröjningsrutinen med 16-bitars register. Använd följande programsekvens för dina
tidsuppskattningar:

DelayConst:

EQU
ORG

???
$1000

Start: CLRA
DELAY: LDX #DelayConst
NEXT: LEAX -1,X
 LDY #100
NEXT2: LEAY -1,Y
 CPY #0
 BNE NEXT2
 CPX #0
 BNE NEXT
 COMA
 STAA $400
 BRA DELAY

 Gör ett antal praktiska försök, dvs. prova olika värden på DelayConst (xx respektive yy nedan,
zz bestäms vid laborationstillfället) så att ljusdioderna tänds och släcks en gång per sekund (en
sekund mellan varje tändning), då du tycker noggrannheten är tillräcklig har du bestämt
fördröjningskonstanten för 500 ms fördröjning, dividera den därför med 2 och du har den
fördröjningskonstant (250 ms) som ska användas av Delay i laborationssystemet.

Redigera den villkorliga assembleringssatsen i Labdefs.s12 enligt följande:

#ifdef SIMULATOR
#ifdef RUNFAST
DelayConst EQU xx ; har du bestämt under förberedelserna
#else
DelayConst EQU yy ; har du bestämt under förberedelserna
#endif
#else
DelayConst EQU zz ; din konstant för laborationssystemet
#endif

Laboration 1

15

Laborationsuppgift 1.9:

Du ska nu avslutningsvis bestämma en fördröjningskonstant som fungerar även i laborationsdatorn:

 Anslut ML4 till laborationsdatorn, kontrollera att sektionen Parallel Output är kopplad på kortet.

 Gör ett antal praktiska försök, dvs. prova olika värden på DelayConst så att ljusdioderna tänds
och släcks en gång per sekund (en sekund mellan varje tändning), då du tycker noggrannheten är
tillräcklig har du bestämt fördröjningskonstanten för 500 ms fördröjning, dividera den därför med
2 och du har den fördröjningskonstant (250 ms) som ska användas av Delay i
laborationssystemet.

Visa upp din lösning för godkännande av en handledare.

Sammanfattning av laboration 1

Du ha undersökt och provat hårdvara:

 laborationssystemet MC12 med DBG12

 I/O-enheter ML2, ML3, med gränssnitt ML15 och styrobjekt ”borrmaskin”

Du har konstruerat och testat programdelar som ska användas i kommande laborationer:

 Inmatning från tangentbord

 Utmatning till sifferindikator

 speciellt, dimensionerat en fördröjningsrutin som är central i den fortsatta utvecklingen av
programpaketet.

Laboration 2

16

Laboration nr 2 behandlar

Styrning/övervakning av en borrmaskin

Följande uppgifter ur Arbetsbok för MC12 ska vara utförda innan laborationen påbörjas. Du ska på
begäran av laborationshandledare redovisa dessa.

Följande laborationsuppgift ur denna del av laborations-PM skall redovisas för en handledare för
godkännande under laborationen.

Laborationsuppgift 2.1:

Du skall nu arbeta med filen Main.s12 från de obligatoriska uppgifterna i arbetsboken.

Kontrollera att du använder rätt I/O-adresser.

Lägg till en NOP-instruktion direkt efter ORG $1000 för att få en bättre utskrift på skärmen när du
kör trace.

Assemblera och rätta eventuella fel. Ladda programmet till MC12 genom att högerklicka i
terminalfönstret och välja filnamn.

Undersökning av programmet i MC12.

Maskinprogrammet är nu laddat till MC12. Öppna listfilen Main.lst och ha denna
tillgänglig på skärmen framför dig.

Kontrollera nu att programmet är placerat i minnet på MC12 genom att utnyttja monitorns
disassembleringskommando.

Ge kommandot dasm 1000. Jämför det du ser på skärmen med listfilen.

Leta upp startadressen för subrutinen COMMAND i listfilen och använd dasm-kommandot på
nytt för denna adress. Troligen ser de dissassemblerade instruktionerna efter RTS-
instruktionen konstiga ut. Kan du förklara varför?

 __

__

Adresserna till subrutinerna som används för att styra borrmaskinen ligger i en tabell i minnet
med begynnelseadressen JUMPTAB. Eftersom adresserna är 16 bitar breda krävs det 2 st.
minnesord för att rymma varje adress. Adresserna lagras på standardformat med den mest

Uppg. 82-101

Sign.

Laborations-
uppgift

2.2 2.3

Sign.

Laboration 2

17

signifikanta byten på minnesadressen med lägst värde. Använd mm-kommandot för att studera
JUMPTAB i minnet och jämför dessa startadresser med vad du erhöll med dasm-kommandot
ovan. Diskutera med en handledare (nu eller sedan) om du är osäker.

Studera listfilen och identifiera startadresser (med start på JUMPTAB) för de subrutiner du
implementerat. Använd därefter dasm-kommandot och verifiera att tabellen verkligen
innehåller startadresser till dina subrutiner.

Test av huvudprogrammet ”main”

Du ska nu använda brytpunkter för att verifiera huvudprogrammet.

Se följande utdrag av huvudprogrammet i Main.s12. Lägg till en NOP–instruktion efter
anropet av tangentbordsrutinen och före anrop av kommandotolken. Assemblera och rätta
eventuella fel i programmet.

Studera därefter listfilen och undersök vilken adress NOP-instruktionen i huvudprogrammet
är placerad på, sätt en brytpunkt på denna adress.

; Main.s12
; Operatörsstyrd borrautomat

; Definitioner
 USE Labdefs.s12
 ORG $1000
main:
 --- Initiera borrmaskin
; Huvudprogram, invänta vald operation
main_loop:
 JSR CheckKbdML15
* Tangentkod nu i register B...
* Utför vald operation
 NOP
 JSR Command
 BRA main_loop

Starta nu programmet med go 1000.

Tryck ner tangent med kod ’7’ (ej implementerad Auto-funktion), efter det att du tryckt ner
tangenten på tangentbordet ska programmet stanna vid brytpunkten och DBG12 ger en
utskrift till skärmen.

Om dette INTE händer, tryck RESET på MC12 och starta om programmet med
instruktionsvis exekvering tr 1000, tr osv, kontrollera tangentborsrutin och rätta
fel.

Vid brytpunkten, kontrollera innehållet i register B, det valda kommandonumret (7).

Ge kommandot go för att nu testa tangent med kod ’0’ (starta borrmotor), fortsätt från
brytpunkt med instruktionsvis exekvering (tr), försök även följa med i listfilen, kontrollera
att borrmaskinens motor startar. (Kontrollera ev. strömbrytaren till borrmotorn).

Med detta har du kontrollerat att huvudprogrammet fungerar som det ska och det återstår nu
att även kontrollera de implementerade funktionerna.

Laboration 2

18

Laborationsuppgift 2.2:

Test av implementerade subrutiner

Du ska nu systematiskt testa de fyra första subrutinerna. Då du övertygat dig om att en
subrutin fungerar korrekt fyller du i ”kontrollkolumnen” i följande tabell. Glöm inte att även
testa alarmfunktionen, detta gör du i samband med test av subrutinen Step.

tangent kod Operation subrutin kontroll
0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sänk borret DrillDown
3 höj borret DrillUp
4 rotera arbetsstycket medurs

ett steg
Step

5 borra ett hål DrillHole
6 stega arbetsstycket till

referensposition
RefPos

7 borra hål längs cirkeln enligt
mönster

DoAuto

Tänk på att fördröjningsrutinen nu ska vara anpassad till den verkliga miljön och inte den
simulerade.

Tryck RESET på MC12, ta bort eventuella brytpunkter och starta programmet, go 1000.

Kontrollera de fyra olika funktionerna.

Rätta eventuella fel, spara alla dina filer och visa upp resultatet för en handledare.

Laborationsuppgift 2.3:

Kontrollera funktionen hos återstående funktioner DrillHole, RefPos och Auto i MC12.

tangent kod Operation subrutin kontroll
0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sänk borret DrillDown
3 höj borret DrillUp
4 rotera arbetsstycket medurs

ett steg
Step

5 borra ett hål DrillHole
6 stega arbetsstycket till

referensposition
RefPos

7 borra hål längs cirkeln enligt
mönster

DoAuto

Rätta eventuella fel, spara alla dina filer och visa upp resultatet för en handledare.

Du har nu

 Färdigställt ett operatörsstyrt (interaktivt) program i assemblerspråk. Programmet realiserar en rad
funktioner som krävs för att styra en borrmaskin. Under laboration 5 ska du realisera samma
funktioner men då genom att använda programspråket 'C'.

Laboration 3

19

Laboration nr 3 behandlar
Pseudoparallell exekvering

Följande uppgifter ur Arbetsbok för MC12 ska vara utförda innan laborationen påbörjas. Du ska på
begäran av laborationshandledare redovisa dessa.

Följande hemuppgifter ska vara utförda innan laborationen påbörjas.

Hem-
Uppgift

3.1 3.2

Följande laborationsuppgift ur denna del av laborations-PM skall utföras och redovisas för en
handledare för godkännande.

Övrigt:

Subrutinen DISPLAY som ska användas i laborationsuppgift 3.3 finns färdig (Display_ML5.s12),
hämta den från ”resurssidan”.

Laborationsuppgift 3.1:

Studera komponenttrycket (vita texter och figurer) på ML19 och jämför med bilden i I/O-simulatorn.
Du har två tryckknappar , S1 och S2, på ML19 som motsvarar Event1 och Event2 hos I/O-simulatorn.
Du kan själv lista ut ljusdiodernas funktion när du fortsätter denna laborationsuppgift.

Tryck på S1 och på S2. Om lysdioderna på ML19 var släckta från början tänds dessa nu. Avbrotten
var/är aktiverade och avbrottsvipporna var/är ettställda.

För att kvittera ett avbrott, gör en skrivning med mm-kommandot på adress DC216 och därefter en
skrivning på adress DC316. Avbrottsvipporna nollställs oberoende av vilket värde du skriver och
ljusdioderna släcks.

Gör en läsning på adress DC016 som är ML19’s statusregister. Detta skall nu vara nollställt. Studera
ljusdioderna på ML19 och tryck på S1. Gör därefter en ny läsning av statusregistret och verifiera att b0
är ettställd.

Studera ljusdioderna på nytt och tryck på S2. Gör därefter ännu en läsning av statusregistret och
verifiera att b1 också är ettställd.

Parallell programexekvering

Den sista uppgiften under denna laboration är att utföra borrprogrammet och displayrutinen på MC12
så att det verkar som att dessa körs "samtidigt", de körs pseudoparallellt.

Uppg. 65-67

Sign.

Laborations-
uppgift

3.3

Sign.

Laboration 3

20

Vi inför ett avbrottsdrivet system där processorn växelvis styr det ena och sedan det andra
programmet. Växlingen går så snabbt att användaren upplever att de styrs parallellt. De båda
programmen som ska utföras på detta sätt är:

 Programmet BORR (Laborationsuppgift 2.3)

 Programmet DISPLAY (Display_ML5.s12) som du hämtar från ”resurssidan”

På laborationskortet ML19 finns en klockgenerator med frekvensen 400 Hz. Denna används för att
generera avbrott till processorn. Detta innebär att avbrott sker var 2,5 ms. Varje gång avbrott sker
startas avbrottsrutinen som växlar program. Vi kallar detta processbyte.
I vår miljö definierar vi det program som för tillfället exekveras av processorn att vara i tillståndet
RUNNING. Det program som inte exekveras och är redo att startas om på nytt, säger vi är i tillståndet
READY. Så alltså när BORR är i tillstånd RUNNING så är DISPLAY i tillstånd READY och vice versa.

Avbrottsrutinen som åstadkommer processbytet ska utformas så att den andra processen återstartas
genom att avbrottsrutinen utför RTI-instruktionen.

Följande beskriver då huvudsakligen vad som ska utföras i avbrottsrutinen:

BORR avbryts: DISPLAY avbryts:
BORR’s status placeras på stacken DISPLAY’s status placeras på stacken
BORR’s stackpekare skall sparas DISPLAY’s stackpekare skall sparas
DISPLAY’s stackpekare till SP BORR’s stackpekare till SP

Orsaken till avbrottet måste avlägsnas (nollställa avbrottsvippan)
Slutligen, RTI

Hemuppgift 3.1:

Implementera parallell exekvering av BORR och DISPLAY.
Det är lämpligt att först isolera hela borrmaskinprogrammet (BORR) i en källtextfil Drill.s12.
Programmet DISPLAY hämtar du från resurssidan, källtextfilen Display_ML5.s12.

Figur 3.2

BORR

DISPLAY

SWITCH

2,5 ms 2,5ms 2,5ms RTI

IRQ

Figur 3.1

BORR

DISPLAY

process-
byte

2,5 ms 2,5ms 2,5ms

RUNNING

READY

READY

RUNNING

Laboration 3

21

Din ”programkärna” som innehåller initieringssekvens, data och avbrottsrutin placerar du i filen
Kernel.s12 som lämpligen bör ha följande struktur:

 ORG $1000

Kernel:
; här placerar du initieringskoden

; därefter följer data arean

; slutligen inkluderar du filerna med programmen:
 use Drill.s12
 use Display.s12

Assemblera Kernel.s12 och rätta eventuella fel. Glöm inte att avlägsna eventuella ORG-direktiv i
borrmaskinprogrammet. Kontrollera listfilen och försäkra dig om att programmen inte överlappar
varandra i minnet.

Hemuppgift 3.2: Testa ditt program i simulatorn

I den simulerade miljön är svårt att behandla snabba
processbyten (400 processbyten per sekund) och dessutom
omöjligt att följa händelseförloppet. Därför är det lämpligt
att under simuleringsarbetet utnyttja en av de avbrottsvippor
som finns tillgängliga i IO-simulatorn.

Genom att ersätta pulsgeneratorn med knapptryckningar (klicka på Event-knappen i I/O-simulatorn)
bestämmer du när processbytet ska ske. Du kan därför lugnt studera händelseförloppet när du själv
klickar i fönstret för avbrottsvippan. BORR kommer att stanna, processbytet utförs och DISPLAY
startas.

Laboration 3

22

I laborationssystemet har vi en pulsgenerator som är ansluten till processorns avbrottsingång.

Att generera 400 avbrott per sekund har vi tyvärr inte möjlighet till i vår simulerade miljö så vi får
nöja oss med den verifiering vi genomfört ovan och testa våra program BORR och DISPLAY på ett
verkligt system i laborationsmiljö i stället.

Laborationsuppgift 3.2:

Modifiera eventuellt konstanterna i din programvara så att det fungerar i hårdvaran.

Kontrollera att du använder avbrottsvektorn $3FF2

Ladda och testa din Kernel.s12 på hårdvaran.

Testa programmen i hårdvaran på samma sätt som du gjorde tidigare i simulatorn. Sätt brytpunkter i
BORR och DISPLAY. Verifiera att programmet stoppas vid dessa brytpunkter när du trycker på S1. Se
till att hela programpaketet fungerar.

Ett bra visuellt sätt att se programväxlingen är att starta upp REFPO för borrmaskinen när du trycker
på S1. Det ser då ut som borrmaskinen ”dör” och DISPLAY startas upp när du trycker på S1. Då du gör
ännu ett tryck på S1 verkar det som DISPLAY ”dör” och borrmaskinen fortsätter. Ge ett antal tryck på
S1 och studera förloppet.

När du känner dig nöjd, kontakta då en handledare som hjälper dig att växla till pulsgeneratorn så att
du får ca 400 avbrott i sekunden.

Testa rutinen REFPO, går denna långsammare än tidigare?
Studera även DISPLAY. Verkar det som om denna blinkar på ett annat sätt nu än vad den gjorde i förra
labbet?

Diskutera resultatet med din labbkompis, försök förklara vad som sker. Visa upp resultatet
och redogör för era slutsatser för en handledare.

Du har nu

 Implementerat ett tidsdelningssystem i miniatyr, där du kört två program "samtidigt" (två processer)
med endast en CPU. Metoden kan enkelt utvidgas till attt omfatta flera processer. Den här typen av
tidsdelning är grundläggande för alla operativsystem bestyckade med enkelprocessorer.

C1

1D

R

Puls-
generator
400 Hz

1

Q' Till
processorns

IRQ’CS’ vid skrivning

Laboration 4

23

Laboration nr 4 behandlar

C-programmering
Prioritetskö

Följande hemuppgift ska vara utförd innan
laborationen påbörjas.

Följande laborationsuppgift ur denna del av laborations-PM skall utföras
och redovisas för en handledare för godkännande.

Programmeringsmiljö

Använd utvecklingsmiljön CodeLite som bland annat finns på resurssidan. Där hittar du också en
kortfattad ”tutorial” om hur du kommer i gång med att använda CodeLite.

För laborationen finns speciellt följande fil tillgänglig via kursens resurssida:
Lab4_linkedlist.zip

Hemuppgift 4.1:

 Om du inte tidigare använd CodeLite, arbeta igenom den ”tutorial” som finns på resurssidan.
 Skapa ”arbetsutrymme” och ”projekt” för denna laboration
 Läs noga igenom laborationsuppgifterna 4.1 och 4.2 så att du förstår vad du skall göra och hur

problemen skall lösas.
 Skriv programkoden i förväg, innan laborationstillfället.

I programspråket C finns det varken klasser eller generiska enheter, men trots detta kan man, om man
programmerar på ett disciplinerat sätt, konstruera hyggligt återanvändbara programmoduler. I denna
laboration får du implementera en prioritetskö. Prioritetsköer används exempelvis internt i
realtidsoperativsystem för att hålla reda på de olika processer som står i tur att exekveras och
möjliggör en mer avancerad schemaläggning än den round-robin schemaläggning som används i
laboration 3. Under laboration 4 används speciellt pekare, dynamiskt allokerade objekt och länkade
datastrukturer.

Programmeringsmiljö

Även för denna laboration är det lämpligt att använda CodeLite. Du ska också ladda ner och packa
upp Lab4_linkedList.zip, som innehåller testprogram, skelett och h-fil för laborationen. Börja
sedan med att skapa ett CodeLite -”projekt” bestående av filerna qtest.c, queue.h och queue.c.

Godkännande

Din kömodul skall provköras med programmet i filen qtest.c. När programmet fungerar skall det
visas upp för en handledare för godkännande. För att laborationen skall bli godkänd räcker det inte
med att programmet fungerar. Dina funktioner måste också vara skrivna på ett snyggt och begripligt
sätt. Programraderna skall t.ex. indenteras (dras in) på det sätt som lärs ut i kursen.

Hem-
Uppgift

4.1

Laborations-
uppgift

4.1

Sign.

Laboration 4

24

Laborationsuppgift 4.1

Uppgiften är att konstruera en programmodul som kan användas för att skapa prioritetsköer. En modul
i C skall som bekant alltid byggas upp med hjälp av två filer, en .h-fil som innehåller deklarationer av
funktioner och typer och en .c-fil som innehåller funktionsdefinitionerna, dvs. implementeringen av
funktionerna. I denna uppgift skall modulen bestå av de två filerna queue.h och queue.c. Filen
queue.h är redan färdigskriven och finns på kursens webbsida. På kursens webbsida finns också ett
färdigskrivet testprogram i filen qtest.c. Detta skall du använda för att provköra din kömodul.

 Din uppgift är att skriva filen queue.c.

 I denna fil skall du implementera alla de funktioner som deklareras i filen queue.h.

Obs! Du får inte ändra något i filen queue.h. Du måste också i filen queue.c använda dig av de
typdefinitioner som ges i avsnittet Implementering nedan. De skall användas precis som de är.

Gränssnittet
I filen queue.h specificeras kömodulens gränssnitt mot andra programdelar:

Typen QueuePtr definieras som pekare till typen struct QueueElement. Det gör det lite enklare
att läsa argumenten till funktionerna, men är annars ekvivalent med att skriva ut struct
QueueElement*.

För att skapa en ny kö anropar man funktionen new_queue(). Man kan sedan lägga in element i kön
med hjälp av funktionen add. När man anropar funktionen add() styr prioriteten var det nya elemen-
tet läggs in. Ett element med hög prioritet placeras före ett med lägre prioritet och om flera element
har samma prioritet hamnar dessa i s.k. FIFO-ordning (first in first out). Funktionen add() har tre
parametrar: kön, prioriteten och en pekare till data (för element som skall läggas in i kön). (Det är
egentligen inte datan som hamnar i kön, utan pekare till dem.) Den sista parametern har typen
DataPtr och är en egendefinierad typ (via typedef), vilket gör kön flexibel om man vill
återanvända den för olika ändåmål. Om man t.ex. vill skapa prioritesköer av poster av typen struct
Person, så skall man istället definiera DataPtr till på följande sätt:

typedef struct Person *DataPtr;

// Filen queue.h
// Datatyp definierar typen för datan som skall läggas i kön.
#ifndef QUEUE_H
#define QUEUE_H

#define MAX_PRIO 100
typedef const char *DataPtr;

struct QueueElement { // typen för ett köelement
 struct QueueElement *next; // pekare till nästa köelement
 int prio; // prioritet (ger köns ordning)
 DataPtr data; // pekare till dataelement
};

typedef struct QueueElement *QueuePtr;

QueuePtr new_queue(); // Skapar en ny (tom) kö
void delete_queue(QueuePtr q); // tar bort kön helt och hållet
void clear(QueuePtr q); // tar bort köelementen men behåller
kön
int size(QueuePtr q); // räknar köns aktuella längd
void add(QueuePtr q, int prio, DataPtr d); // lägger in d på rätt plats
DataPtr get_first(QueuePtr q); // avläser första dataelementet
void remove_first(QueuePtr q); // tar bort första köelementet

#endif

Laboration 4

25

Funktionen get_first() avläser det första elementet i kön, utan att ta bort det, och funktionen
remove_first() tar bort det första elementet. Funktionen size() ger köns längd. Funktionen
clear() tar bort alla element ur kön, dvs. egentligen alla pekarna till elementen. Kön blir då tom,
men kan användas igen. Funktionen delete_queue() tar bort kön helt och hållet.

Implementering

Du skall implementera prioritetskön med hjälp av en enkellänkad lista. En sådan består av ett antal
sammanlänkade poster, s.k. köelement. Varje köelement innehåller en pekare sompekar på nästa
köelement. I denna laboration skall varje köelement dessutom innehålla ett heltal som anger
köelementets prioritet samt en pekare till ett dataelement. Köelementen beskrivs av typen struct
QueueElement, vilken redan är definierad i queue.h.

Figuren visar hur en prioritetskö, som för ögonblicket innehåller två dataelement, byggs upp. De två
dataelementen (vilka kan ha vilken typ som helst) har markerats med skuggade rektanglar.

När man arbetar med länkade listor visar det sig att fallen att en lista är tom eller att man skall sätta in
eller ta ut ett element först eller sist ofta måste specialbehandlas. Detta gör att funktionerna som
hanterar listor kan blir ganska komplicerade. För att slippa ifrån dessa problem är det praktiskt att låta
varje enkellänkad lista ha ett speciellt startelement som sitter först i listan. Då blir funktionerna
mycket enklare.Vi skall utnyttja denna teknik i denna laboration. Det är därför det finns tre köelement
i figuren ovan (av typen struct QueueElement) , trots att bara två dataelement har lagts in i kön.
Observera att startelementet inte pekar till något dataelement (den pekar på NULL). Sista elementet i
listan pekar inte heller ut något nästa element (den pekar också på NULL).

När man lägger in ett nytt dataelement i en kö skall man skapa ett nytt köelement (allokera det
dynamiskt) och låta det peka på det nya dataelementet. Därefter skall man länka in det nya köele-
mentet på rätt ställe i den enkellänkade listan. Prioriteten avgör placeringen. Högst prioritet först i
listan och för enkelthetens skull så har startelementet den hösta möjliga prioriteten MAX_PRIO som
definieras i queue.h.

En tom lista har endast ett startelement och ser ut som Figuren
till höger.

När man tar bort ett dataelement från kön skall man länka ur
motsvarande köelement ur listan och därefter frisläppa det
allokerade minnesutrymmet.

next

prio

data

MAX_PRIO

0

7

0

5

next

prio

data

0

MAX_PRIO

0

Laboration 4

26

Test programmet (i qtest.c) består av tre test. Man anger hur många test man vill testa genom att
definiera TESTS_TO_TRY till ett tal mellan noll och tre. De tre testen är:

1. Skapa kö, lägga till element och beräkna storlek.

2. Ta bort först elementet och ta bort alla element.

3. Ta bort kön och kontroll av minnesläckor.

För att bli godkänd måste alla tre avklaras, men man kan testa sin kö implementation i steg.

För test 1 måste man implementera new_queue(), add(), size(), och get_first().

För test 2 måste man implementera remove_first(), och clear().

För test 3 måste man implementera: delete_queue() och använda det externa verktyget
DrMemory som inkluderats i zip-filen. För att testa ditt program så drar du ditt färdigkomilerade
program (.exe) och släpper det på drmemory.exe som finns i mappen drMemory/bin/. Ditt
program kommer då att köras som vanligt, men alla anrop till malloc() och free() kommer att
registreras av DrMemory. När ditt program terminerar öppnas en textfil med statistik över felaktig
minnesanvändning med referenser till vilka rader som orsakar dessa. Se till att fixa eventuella läckor
och felaktiga minnes accesser.

Laboration 5

27

Laboration nr 5 behandlar

Användning av XCC12 för korskompilering till MC12

Styrning av borrmaskin

Följande hemuppgift ska vara utförd innan
laborationen påbörjas.

Följande laborationsuppgift ur denna del av laborations-PM skall utföras
och redovisas för en handledare för godkännande.

Läsanvisningar:

Laborationen förutsätter att du arbetat igenom avsnitt 5, sidorna 63-74, i Arbetsbok för MC12. Det är
lämpligt, dock ej obligatoriskt, att utföra uppgifterna 102-107.

I denna laboration får du lära dig hur man med hjälp av en korskompilator kan utveckla C-program
för en dator som direkt styr hårdvara.

Programmeringsmiljö
Korskompilatorn XCC12 skall användas. Tänk på att denna skiljer sig från GCC genom att den är
C89-kompatibel (”ANSI”) snarare än C99. Den stora fördelen med XCC12 är att utvecklingsmiljön,
vid sidan av källtextdebugger, också innehåller simulatorer, på samma sätt som i ETERM, vilket gör
det enklare för dig att förbereda laborationen med borrmaskinen.

Godkännande

När programmet fungerar skall det visas upp för en handledare för godkännande. För att laborationen
skall bli godkänd räcker det inte med att programmet fungerar. Det måste också vara skrivet på ett
snyggt och begripligt sätt. Programraderna skall t.ex. indenteras (dras in) på det sätt som lärs ut i
kursen. Du måste också ha delat in det i moduler med användning av include-filer så som beskrivits i
detta lab-pm.

Hemuppgift 5.1:

Läs noga igenom laborationsuppgifter 5.1-5.4 så att du förstår vad du skall göra och hur problemen
skall lösas. Du måste ha arbetat igenom avsnitt 5 i ”Arbetsbok för MC12”. För att hinna göra
laborationen är det nödvändigt att du före laborationstillfället har skrivit C-programmen och testat
dem in källkodsdebuggern i XCC12.
Läs också igenom avsnittet om CRG-kretsen, i häftet ”Maskinnära programmering med HC12”.

Hem-
Uppgift

5.1

Laborations-
uppgift

5.4

Sign.

Laboration 5

28

Mer om portadressering (absolut adressering) i C
Portadresser i minnet kan enkelt adresseras. För att göra det på ett snyggt sätt i C är det lämpligt att
börja med att definiera en typ som beskriver portar. Om man, som i MC12, har 8-bitars portar kan
man göra deklarationen:

typedef unsigned char * port8ptr; // pekare till 8-bitars port

För 16-bitars portar ska man i stället använda

typedef unsigned short * port16ptr; // pekare till 16-bitars port
och hade man haft 32-bitars portar hade man skrivit

typedef unsigned long * port32ptr; // pekare till 32-bitars port

då den aktuella kompilatorn, så som XCC12, använder 32 bitar för typen long.

Typen port8ptr kan alltså användas som en pekare till en 8-bitars port. En utport på ML4 har
adressen 40016. För att inte behöva lägga denna sifferkonstant inne i programmet definierar man
lämpligen en macro:

#define ML4OUT_ADDRESS 0x400

För att enkelt kunna skriva till den 8-bitars porten kan man definiera ytterligare en macro:

#define ML4OUT *((port8ptr) ML4OUT_ADDRESS)

Uttrycket

(port8ptr) ML4OUT_ADDRESS

är en explicit typomvandling från int (konstanten 0x400) till typen portptr. Den inledande
asterisken innebär att man tar det som denna pekare pekar på, dvs. utregistret på ML4.
Vill man kunna läsa från inporten på ML4 som har adressen 60016 kan man på motsvarande sätt
definiera följande två macron:

#define ML4IN_ADDRESS 0x600
#define ML4IN *((port8ptr) ML4IN_ADDRESS)

Nu kan man använda sig av dessa macron för att komma åt portarna. Följande sekvens visar t.ex. hur
man deklarerar en variabel, tilldelar denna värde från ML4’s inport, skiftar bitarna i variabeln ett steg
åt höger och slutligen skriver variabelns värde till ML4’s utport:

port8 r;
r = ML4IN ;
r = r >> 1;
ML4OUT = r;

Macrona ML4IN och ML4OUT beskriver då egentligen att man avläser det som finns på adressen
60016 och skriver till adressen 40016. Naturligtvis går det att göra detta utan att införa typerna port8
och port8ptr och utan att definiera några macron, men om man gör på det sätt som beskrivits här
blir programmen mycket tydligare och därför lättare att få felfria.
Man bör lägga alla makron av detta slag i en inkluderingsfil som t.ex. heter ports.h. I denna
bör man också lägga typdefinitionerna. Fördelen med detta är att det är lätt att hittta en
portadress och ändra den om konfigurationen ändras.

Som exempel på en port vars adress varierar med den använda miljön har vi statusregistret
hos "borrmaskinen" som du laborerat med tidigare och som du återkommer till i denna
laboration. I simulatorn har detta register adress 40116 medan i laborationssystemet finns det
på adress 60016. Med villkorlig kompilering skapar du definitioner så att du sedan, på ett
enkelt sätt, kan skapa versioner för den simulerade miljön, såväl som den fysiska
laborationsmiljön:

#ifdef SIMULATOR
 #define DRILLSTATUS_ADDRESS 0x401
#else
 #define DRILLSTATUS_ADDRESS 0x600
#endif

Laboration 5

29

Man kan naturligtvis använda C:s alla olika operatorer för att manipulera de enskilda bitarna i
en port när man skriver till den. För att kunna göra detta på ett bekvämt sätt kan man
definiera följande macron:

#define set(x, mask) (x) = (x) | (mask)
#define clear(x, mask) (x) = (x) & ~(mask)

alternativt (samma betydelse)

#define set(x, mask) (x) |= (mask)
#define clear(x, mask) (x) &= ~(mask)

För att t.ex. sätta bitarna b0 och b1 hos ML4:s utport kan man ledas att tro att man ska skriva

set(ML4OUT, 0x3);

vilket på många sätt är riktigt tänkt. Dock är det fel i detta fallet eftersom det inte går att
avläsa värden som man tidigare skrivit till en utport. Ibland händer det också att man vill göra
flera ändringar i en port när man skriver till den, men att alla ändringarna måste ske samtidigt
i porten.

I sådana här fall är det lämpligt att använda ett s.k. skuggregister. Detta är en vanlig variabel
som man hela tiden låter innehålla en kopia av porten. Om man t.ex. vill ha ett skuggregister
för ML4:s utport kan man göra deklarationen

unsigned char ML4shadow = 0; // deklaration av kopia

Vill man göra ändringar i utporten utför man sedan först dessa på skuggregistret och sedan
kopierar man skuggregistrets värde till porten i en enda tilldelningsoperation. Antag t.ex. att
man som ovan vill sätta b0 och b1 i ML4:s utport men att man även vill nollställa b7. Då kan
man skriva

set(ML4shadow, 0x3);
clear(ML4shadow, 0x80);
ML4OUT = ML4shadow;

Laboration 5

30

Avbrottshantering i C
När debuggern DBG12 körs i MC12 fångar denna avbrotten på de ”riktiga” avbrottsvektorerna. Men
avbrotten skickas vidare till avbrottsvektorer som har samma adress som de riktiga, fast med adresser
som börjar på 3 istället för F. Avbrott med vektor på adress FFF216 skickas t.ex. vidare till adressen
3FF216.

En avbrottsvektor innehåller adressen (en pekare) till en avbrottsrutin som skall anropas när avbrott av
ett visst slag inträffar. En avbrottsrutin är en parameterlös funktion som inte ger något returvärde.
Man kan alltså i C göra följande typdefinition som beskriver typen för en avbrottsvektor:

typedef void (*vec) (void); // avbrottsvektor

För att kunna ändra en avbrottsvektor behöver man en pekare till den. En sådan pekare har typen

typedef vec *vecptr; // pekare till avbrottsvektor

Som exempel visas hur man kan lägga in en pekare till en avbrottsrutin i avbrottsvektorn på adressen
3FF216 i MC12. Man börjar med att göra definitionerna

#define IRQ_VEC_ADR 0x3FF2
#define IRQ_VEC *((vecptr) IRQ_VEC_ADR)

Adressen till avbrottsrutinen kan nu läggas in genom att man gör en enkel tilldelning till IRQ_VEC.
Antag t.ex. att avbrottsrutinen heter inthandler och är deklarerad på följande sätt i en .h-fil som
man har inkluderat i sitt program

void inthandler (void);

För att styra avbott på avbrottsvektorn 3FF216 till denna rutin kan man göra tilldelningen

IRQ_VEC = inthandler;

När en avbrottsrutin anropas går inte anropet till på samma sätt som när man gör ett vanligt
funktionsanrop. I MC68HC12 sparas t.ex. alla processorns register på stacken innan anropet. Detta
betyder att man inte kan återvända från en avbrottsrutin på det sätt som man gör från vanliga
funktioner. En speciell instruktion (RTI) måste användas. Av denna anledning måste funktionen
inthandler vara skriven i assembler. En standard C-kompilator kan nämligen bara generera kod för
vanliga funktioner. Men det finns inget som hindrar att avbrottsrutinen bara innehåller att anrop av en
vanlig C-funktion, vilken får göra själva jobbet.

För att MC68HC12skall acceptera avbrott måste man i programmets början se till att nollställa I-
flaggan. Detta kan inte heller göras i standard-C. Man måste antingen anropa en assemblerfunktion
som utför denna operation eller så kan man använda (icke standardiserad) inbäddad assemblerkod.

Anmärkning:

Längre fram ska du använda avbrott från CRG-kretsen, tänk då speciellt på att denna krets använder
avbrottsvektor 3FF016.

I XCC finns visserligen ett icke standardiserat nyckelord __interrupt som man kan använda för att
få en funktion att avslutas som en avbrottsrutin och man kan då skriva även undantagshantering helt
och hållet i C. Under denna laboration måste du dock följa ANSI-C89, varför du inte får använda
detta nyckelord i din lösning.

Laboration 5

31

Laborationsuppgift 5.1
Starta programmet XCC och välj alternativet File | New Workspace. Kalla din nya workspace
lab6.w12. I denna workspace skall du sedan skapa ett nytt projekt för varje uppgift i denna laboration.
Börja därför nu med att lägga in ett nytt projekt. Kalla det nya projektet uppgift1.m12.

Kortet ML4 skall nu anslutas istället för borrmaskinen till mikrodatorsystemet. På kortet ML4 finns
bl.a. en s.k. DIP-switch. Det är en enhet med åtta små switchar. Man kan från ett program avläsa
switcharnas lägen via inporten ML4IN som har adressen 0x600. Porten har åtta bitar och varje bit
motsvarar läget för en switch. Kortet ML4 har också en s.k. Parallell output. Det är en enhet med åtta
lysdioder. Man kan tända och släcka lysdioderna i denna enhet genom att skriva till utporten
ML4OUT vilken har adressen 0x400.

Uppgiften är att skriva ett program som avläser switcharnas lägen på ML4-kortet och som visar de
avlästa lägena genom att skriva till Parallell output-enheten.

Programmet skall utformas som en “Stand alone” applikation. Detta betyder att du inte får använda
Standard startup när du anger egenskaperna för ditt program i dialogrutan Settings. Du skall istället
skriva en egen startsekvens i assembler. Denna sekvens skall anropa din main-funktion. Läsningen
och skrivningen av ML4-portarna skall ske i main. Du skall skapa en speciell fil med namnet
ports.h. Denna skall innehålla en typdefinition som anger portarnas typer samt definitioner av
makron som beskriver portadresserna. (Gör på det sätt som visas i ”Arbetsbok för MC12”.) Inga
explicita portadresser får användas i funktionen main. Ditt projekt skall alltså bestå av tre filer, filen
port.h, en assemblerfil med startsekvensen samt en C-fil med funktionen main. Skapa dessa filer
och lägg dem till projektet.

Innan du kompilerar ditt program skall du kontrollera att konfigurationen är satt till Debug. (Man
bestämmer konfiguration med menyalternativet Build | Configuration. Om Debug är gråmarkerat är
konfigurationen redan satt till Debug.) Testa din lösning i källkodssimulatorn i XCC. För att kunna
göra detta måste du ansluta en ML4 Dip-switch och en ML4 Parallell output-enhet med hjälp av
knappen Simulator setup på simulatorns verktygslist. Du skall inte ansluta något Console-fönster.

När du är i laborationslokalen och har tillgång till hårdvaran skall du kontrollera att kortet ML4 är
anslutet till MC12-kortet och att strömtillförseln för ML4 är inkopplad. Ändra sedan konfiguration för
ditt projekt till Final och välj Build | Build all på menyn. Välj därefter menyalternativet Debug | Open
Terminal. Du får då ett terminalfönster i vilket du kan kommunicera med monitorn DBG12 som
exekverar i MC12. Ladda ner ditt program till MC12. (Högerklicka i terminalfönstret.) Starta ditt
program med go-kommandot.

När du fått denna uppgift att fungera har du en fungerande startsekvens som du kan återanvända i alla
de följande uppgifterna i denna laboration. Du har också lärt dig hur man skapar projekt och hur man
kör och konfigurerar simulatorn. Detta kommer du att ha nytta av i fortsättningen. Om du sitter i
laborationslokalen har du dessutom fått kommunikationen med MC12 att fungera och du vet hur man
laddar ner och startar sitt program.

Laboration 5

32

Laborationsuppgift 5.2
Skapa nu ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet uppgift2.m12 och
gör det till det aktiva projektet. Du kan börja med att lägga din assemblerfil med startsekvensen till det
nya projektet. Resten av programkoden i projektet skall skrivas i C.

Uppgiften är att läsa från tangentbordet ML2 och visa det avlästa värdet på displayen ML3. Tang-
entbordet har 16 knappar numrerade från 0 till 15. När programmet körs skall det varje gång
användaren trycker på någon av knapparna visa knappens nummer på displayen. Numret skall visas
på decimal form. Programmet skall alltså inte avslutas när en knapp tryckts ner, utan det skall tillåta
ett godtyckligt antal knapptryckningar.

Läsning från tangentbordet skall ske med hjälp av kortet ML15. På detta finns inporten Key Decode
Register (adress 0x9C0). Beskrivning av bitarna på denna port finns i hjälptexten till XCC. Ditt
program skall innehålla en inläsningsmodul bestående av filerna keyboardML15.c och
keyboardML15.h. Modulen skall bara innehålla funktionen get_key. När denna anropas skall
den vänta tills någon tangent tryckts ner. Därefter skall den som resultat ge numret på den nedtryckta
tangenten.

Utskrift till displayen skall göras med hjälp av en modul bestående av filerna displayML15.c och
displayML15.h. Denna modul skall innehålla två funktioner. Den första av dessa är
display_digits. Denna får som parameter ett fält med sex element där varje element är en byte
långt. (Använd typen unsigned char.) Varje element i fältet skall innehålla ett heltal i intervallet
0 till 9. Funktionen display_digits skall visa de sex talen i fältet i displayen ML3. Detta skall
göras med hjälp av kortet ML15. ML15 har två utportar Display Mode Register och Display Data
Register. Dessa ligger på adresserna 0x9C2 resp. 0x9C3. Du hittar beskrivning av ML3 och ML15 i
hjälptexterna till XCC, men en liten förklaring av hur utskriften till Display Data Register går till
behövs kanske ändå. Talen som skall visas på displayen skall skrivas till Display Data Register ett i
taget. (De skall alltså skrivas till samma port i tur och ordning.) Därefter måste man skriva ytterligare
två bytes till porten. Dessa skall båda innehålla värdet noll och de kommer inte att synas på displayen.

Den andra funktionen i displaymodulen skall heta display_dec. Den skall få en unsigned int
som parameter. Dess uppgift är att visa parameterns värde på displayen i decimal form. Detta gör den
naturligtvis genom att plocka ut de sista sex siffrorna i parametern en och en, placera dem i ett fält
med bytes och därefter anropa funktionen display_digits.

Definitioner av makron för portadresserna skall läggas i filen ports.h från uppgift 5.1.

Testa ditt program i källkodssimulatorn. När du ansluter enheterna ML2 och ML3 till simulatorn skall
du vara noga med att för båda välja Interface | ML15. Innan du kör ditt program på MC12 i
laborationslokalen bör du kontrollera att kortet med tangentbordet och displayen är anslutet till kortet
ML15.

När du klarat av detta steg har du två moduler med vilkas hjälp du kan läsa indata respektive visa
utdata. Du kommer att behöva båda modulerna i de övriga stegen i laborationen.

Laboration 5

33

Laborationsuppgift 5.3

Skapa ytterligare ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet
uppgift3.m12 och gör det till det aktiva projektet. Även denna gång kan du börja med att lägga din
assemblerfil med startsekvensen till det nya projektet.

I kurslitteraturen beskrivs en CRG-krets som kan generera periodiska avbrott. I detta steg skall du
skapa en klockmodul som använder sig av dessa avbrott. Din klockmodul skall bestå av filerna
clock.h och clock.c. Modulen skall internt innehålla en räknare (en klocka) som räknar antalet
avbrott som skett. Eftersom antalet avbrott kan bli stort duger inte typen int. Definiera istället en
egen typ, time_type, som är lika med unsigned long int och låt räknaren ha denna typ. Räknaren
skall deklareras på sådant sätt att den inte kan påverkas från någon funktion som ligger utanför
klockmodulen. Den bör också markeras som flyktig, eftersom den ändras varje gång ett avbrott
inträffar och detta inte syns i den “vanliga” koden. I klockmodulen skall det finnas fyra funktioner:

• init_clock. Nollställer klockan och initierar CRG-kretsen så att den genererar ett avbrott
ungefär var 10:e ms.

• clock_inter. Anropas av avbrottsrutinen varje gång ett avbrott inträffar. Tickar upp klockan.

• get_time. Ger som resultat det ungefärliga antalet ms som gått sedan klockan initierades.
Observera att resultatet inte skall vara antalet avbrott utan antalet ms. Resultattypen skall vara
time_type.

• hold. Innehåller en repetitionssats som fördröjer exekveringen ett visst antal ms. Får som
parameter ett heltal av typen time_type som anger hur många ms fördröjningen skall vara.
Funktionen skall använda sig av avbrottsräknaren i klockmodulen för att avgöra hur länge
fördröjningen skall vara.

För att lösa denna uppgift måste du skriva en avbrottrutin i assembler vilken anropar funktionen
clock_inter. Du måste också initiera avbrottsvektorn för CRG-kretsen så att din avbrottsrutin
anropas. Tänk också på att man i MC12 måste nollställa I-flaggan för att avbrott skall tillåtas. Detta
måste göras i en assemblerrutin som anropas från init_clock.

Observera att du i denna uppgift inte får använda några icke-standardiserade specialegenskaper för
kompilatorn XCC, såsom inbäddad assemblerkod eller speciella markörer för funktioner. Endast
sådant som kan skrivas i standard-C är tillåtet. Det som inte går att göra i standard-C skall göras i
separata assemblerrutiner.

Alla macron för att definiera portar och avbrottsvektorer skall förstås läggas i filen ports.h från de
tidigare stegen.

När klockmodulen är klar skall du testa den genom att skriva ett program som visar en sekundräknare
på display-enheten ML3. (Använd displaymodulen från uppgift 5.2.) Värdet på displayen skall alltså
ökas med ett varje sekund (ungefär).

När du skall testa din lösning i källkodssimulatorn finns ett litet problem. Avbrotten genereras där
mycket långsammare än när man kör programmet “på riktigt”. För att det skall bli möjligt att testa
programmet i simulatorn måste du därför sätta CRG-kretsens avbrottsintervall till det kortast möjliga
värdet. Ett bra tips är också att i funktionen hold bara vänta tills nästa avbrott kommer. För att du
inte skall behöva ändra i programkoden när du växlar mellan simulatorversionen och den slutliga
versionen av programmet kan du använda dig av s.k. villkorlig kompilering (se kursboken). Du kan
t.ex. i dialogrutan Debug | Settings för simulatorversionen i rutan DEFINES för C-kompilatorn lägga
till macron SIMULERING. Denna kan du sedan testa på i programkoden. När du nu fått
klockmodulen att fungera har du alla verktyg du behöver för att på ett enkelt sätt klara av det sista
steget i laborationen.

Laboration 5

34

Laborationsuppgift 5.4

Skapa ett nytt projekt i samma workspace som tidigare. Kalla det nya projektet uppgift4.m12 och gör
det till det aktiva projektet.

I denna uppgift skall du skriva ett program som hanterar borrmaskinen du stiftade bekantskap med i
laborationen i assembler. Det program du skall skriva skall göra samma sak som det assem-
blerprogram som diskuterades där. Skillnaden är att programmet nu skall skrivas i C. De enda
undantagen från detta är de tre assemblerrutiner du redan konstruerat i de tidigare uppgifterna i denna
laboration (startsekvensen, avbrottsrutinen och funktionen som nollställer I-flaggan).

Funktionerna som styr borrmaskinen skall samlas i en modul bestående av de två filerna drill.c
och drill.h. Modulen skall bland annat innehålla följande funktioner:

• void MotorStart(void)
• void MotorStop(void)
• void DrillDown(void)
• void DrillUp(void)
• int Nstep(int)
• int DrillDownTest(void)
• void Alarm(int)
• DrillHole
• int RefPos(void)
• void DoAuto(void)

Dessa funktioner skall utföra exakt samma ting som motsvarande assemblerfunktioner, men de skall
vara skrivna i C. De ska implementeras med parameterlistor och returtyper enligt ovan. Observera att
funktionsnamnet Auto är olämpligt att använda i C-programmet (varför då?).

Följande funktioner ska också konstrueras och testas för att därefter konsekvent användas då styrord
ges till borrmaskinen:

• void Outzero(int bit);
• void Outone(int bit);

Specifikationen för dessa är den samma som i laboration 1.

När du konstruerar funktionerna för borrmaskinen behöver du ibland lägga in fördröjningar. Då skall
du använda dig av klockmodulen från uppgift 5.3. Glöm inte att initiera denna i main. Nu skall
borrmaskinen kopplas in igen, på samma sätt som i assemblerlaborationen. Den skall styras via
utporten som har adressen 0x400. Naturligtvis skall alla makrodefinitioner läggas i filen ports.h.
Använd ett skuggregister vid skrivning till porten.

Ditt program skall läsa från tangentbordet och om någon av tangenterna 0-7 trycktes ner skall en av
funktionerna start, stop, down, up, step, drill, refpo resp. auto_drill anropas. Om
någon annan tangent tryckts ner skall inget utföras. (Här är det lämpligt att använda en switch-sats.)
För att läsa från tangentbordet använder du förstås inläsningsmodulen från uppgift 5.2.

Appendix

35

Appendix: MC12 IO-adresser för laborationskort

Laborationskort
Noter

Register/Port
Symboliska namn

Adress
(hexadecimal

form)

Simulator
(lämpligt val)

ML4
“Borrmaskin” är också ansluten
till dessa adresser.
OBS: Skillnad mellan IO-
simulator och fysisk hårdvara.

Out 0400 0400

In 0600 0401

ML5
De här angivna adresserna för
ML5 gäller PAL-revision 2.

Out 0C00 0C00

In 0C01 0C01

Out 0C02 0C02

Out 0C03 0C03

ML13

 Ctrl/Status 0B00 0B00

 IRQ Ctrl/Status 0B01 0B01

ML15

 Kbd Data 09C0 09C0

 Kbd Status 09C1 09C1

 Led Mode 09C2 09C2

 Led Ctrl/Data 09C3 09C3

ML19

 Status 0DC0 0DC0

 Kvittera händelse 1 0DC2 0DC2

 Kvittera händelse 2 0DC3 0DC3

