
Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 1

Programmering av inbyggda system

Genomgång inför laborationer 1-3:
”Programutveckling i assembler”

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 2

Laborationsmoment 2 - En Borrautomat

Tangentbord
för borrkommando

Anpassnings-
elektronik

Borrmaskin
Mikrodator

Operatör

Klocka

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Borrmaskin-Robot

Givare för detektering
av referensmärke på
arbetsstycke

Borrmotor med
ON/OFF knapp

Arbetsstycke

(Dolt)
Kretskort med
effektelektronik och
anslutning till styrkort för
borrmaskin.
Stegmotor för rotation av
arbetsstycke.

Elektromagnet
(solenoid) för

sänkning av
borr

Tryckfjäder för
höjning av borr

Givare (sensor)
för borr

i topp- eller
bottenläge

3

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Simulatorn för borrmaskinen

Den gröna skivan är ett
“Arbetsstycke”

Indikator för “Alarm”

Indikator för “Motor On”

Borrade hål märks ut

“Control”-sektion:
Styrord till

borrmaskinen

“Status”-sektion:
Statussignaler från

borrmaskinen

“New disc”
Här väljer du olika

arbetsstycken

4

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Specifikation

5

id←GetKbdML15

main

Initiera globala
variabler och

hårdvara

Command(id)

Tangent-
kod

Operation subrutin

0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sänk borret DrillDown
3 höj borret DrillUp
4 rotera arbetsstycket

medurs ett steg
Step

5 borra ett hål DrillHole
6 stega arbetsstycket till

referensposition
RefPos

7 borra hål längs cirkeln
enligt mönster

DoAuto

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 6

id←GetKbdML15

main

Initiera globala
variabler och

hårdvara

Command(id)

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Styrord till borrmaskinen

7

Utport: Drill Control

07 123456
stegpuls

borrmotor
fram/back

solenoid
larmsignal

Bit 4 = 1: Larm på
Bit 3 = 1: Borret sänks
Bit 2 = 1: Borrmotorn roterar
Bit 1 = 1: Medurs vridning
Bit 0: Pos flank Stegpuls

Logiknivå: ”Aktiv hög”
Att göra ”RESET” på borrmaskinen således:

LDAA #0 ; Passiva signaler
STAA $400

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 8

Statusord från borrmaskinen

Inport: Drill Status

07 123456

referensposition
borr uppe

Bit 2 = 1: Borr i bottenläge
Bit 1 = 1: Borr i toppläge
Bit 0 = 1: Referensposition

borr nere

Logiknivå: ”Aktiv hög”

Anm:
Statusporten
ansluts till adress
$600 i
laborations-
systemet

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 9

Testförfarande

DipSwitch: EQU $401 ($600) ; Dip Switch Input
DrillControl: EQU $400 ; Drill Control Output

Loop LDAA DipSwitch ; Läs strömbrytare
STAA DrillControl ; Ge styrord
BRA Loop

Utför instruktionssekvensen stegvis (Step)

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Villkorlig assemblering ger korrekta portadresser

10

#ifdef SIMULATOR
DrillStatus EQU $401
#else
DrillStatus EQU $600
#endif
I ditt huvudprogram, innan filen Labdefs.s12 inkluderas, kan du definiera
#define SIMULATOR
när du kommer till laborationen kommenterar du bort detta på följande sätt:
; #define SIMULATOR

Anm: ”Dip Switch Input” och borrmaskin kan inte användas
samtidigt i laborationssystemet (MC12).

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 11

Inledande uppgift
med borrmaskinen
1) Arbetsstycket vrids till referensposition.
2) Hål borras
3) Arbetsstycket vrids medurs ett steg
4) Hål borras
5) Arbetsstycket vrids medurs ett steg
6) Hål borras
7) Arbetsstycket vrids medurs tre steg
8) Hål borras
9) En larmsignal ges som indikation på att

uppgiften är klar.

; Drilltest2.s12
USE Labdefs.s12
ORG $1000

start: LDAA #0 ; Reset
STAADrillControl
JSR TillRefPos
JSR Borra
JSR Vrid1steg
JSR Borra
JSR Vrid1steg
JSR Borra
JSR Vrid1steg
JSR Vrid1steg
JSR Vrid1steg
JSR Borra
JSR GeLarm

stopp: BRA stopp

Vrid1steg: RTS
TillRefPos: RTS
Borra: RTS
GeLarm: RTS

1) TillRefPos

start

Initiera
borrmaskin

2) Borra

3) Vrid1steg

4) Borra

5) Vrid1steg

6) Borra

7) Vrid3steg

8) Borra

9) GeLarm

stopp

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 12

Att vrida arbetsstycket

b0←0

b0←1

b1←1

Vrid1steg

RETUR

Ange vridningsriktning

Ge stegpuls

b7 b6 b5 b4 b3 b2 b1 b0

Control

b1=1, medurs vridning vid stegpuls
b0, stegpuls för transition 0→1

stegpuls
fram/back

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 13

Att borra ett hål
b2←1

b3←1

b3←0

b2←0

b2=1 ?

b7 b6 b5 b4 b3 b2 b1 b0

Control (styrregister)

b3, vridmagnetens funktion
 b3=1, borr sänks
 b3=0, borr höjs
b2, borrmotorns funktion
 b2=1, borr roterar
 b2=0, borr stillastående

borrmotor
vridmagnet

b7 b6 b5 b4 b3 b2 b1 b0

Status

b2=1, borr i absolut bottenläge
b1=1, borr i absolut toppläge

toppläge
bottenläge

Borra

RETUR

Borr nere?NEJ

JA

Starta motor

Läs status

Sänk borr

Höj borr

Stanna motor

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 14

Att vrida arbetsstycket till startpositionen

b7 b6 b5 b4 b3 b2 b1 b0

Status

b0=1, arbetsstycke i startposition
referensposition

TillStartPos

RETUR

I startposition?

NEJ

JA

Vrid1steg

Läs status

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 15

Att bara ändra en bit
i taget

* Läs nuvarande styrord
LDAA DCtrl

* Nollställ lämplig bit
ANDA #xx

* Skriv nytt styrord
STAA DCtrl

;sekvensen är funktionellt
;likvärdig med:

BCLR #~xx,DCtrl

Fungerar inte här ty…
porten är ”icke läsbar” utport…

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Lösning: Använd en kopia av styrordet
(“skuggregister”)

16

Variabel DCShadow ska hela tiden ha samma värde som DrillControl hade
haft om porten varit läsbar…

För att nollställa en bit används nu:
LDAA DCShadow
ANDA #Bitmönster
STAA DCShadow
STAA DrillControl

För att ettställa en bit används:
LDAA DCShadow
ORAA #Bitmönster
STAA DCShadow
STAA DrillControl

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Subrutiner för att manipulera styrregistret
OUTONE och OUTZERO

17

; Subrutin Outone.
; Läser kopian av borrmaskinens styrord
; på adress ’DCShadow’. Ettställer en
; av bitarna och skriver det nya
; styrordet till ’DCShadow’
; samt utporten ’DrillControl’
; Biten som nollställs ges av innehållet
; i B-registret (0-7) vid anrop.
; Om (B) > 7 utförs ingenting.
; Anrop: LDAB #bitnummer
; JSR OUTONE
; Utdata: Inga
; Register: Ingen
; Anropar: Inga
Not! Koden ingår som ett moment att göra i
laborationsuppgifterna!

”bitnummer” = 0..7 b7 b6 b5 b4 b3 b2 b1 b0
7 6 5 4 3 2 1 0

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 18

• Starta borrmotorn (vänta tills den är uppe i varv, c:a 1 sekund)
• Vrid arbetsstycket ett steg (vänta tills det har vridits till rätt position, ca 250 ms)
• Lyft borret (vänta tills borret har kommit ovanför arbetsstycket, ca 250ms)
• Osv.

Anpassning mellan en mikroprocessors arbetstakt och varierande tröghet i mekaniska
delar görs med tidsfördröjningar

Fördröjningar i mekaniska delar

;-----------------------
; SUBRUTIN Delay
; åstadkommer fördröjning av program.
; Fördröjningen utförs i steg om 0,25
; sekunders intervall.
;

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 19

Pr
og

ra
m

m
er

ad
 ti

ds
fö

rd
rö

jn
in

g
DelayConst: EQU

ORG
zzz
$1000

Start: CLRA
LDX #DelayConst

Main: BSR Delay
COMA
STAA $400
BRA Main

Delay: PSHX ; Subrutin som testas
PSHY

Delay1: LEAX -1,X
LDY #100

Delay2: LEAY -1,Y
CPY #0
BNE Delay2
CPX #0
BNE Delay1
PULY
PULX
RTS

Om fördröjnings-
konstanten bestämts så
att ljusdiodrampen
tänds med en sekunds
mellanrum är
fördröjningen 0,5
sekunder, dvs:
2 * 250 ms.

Bestäm zzz
experimentellt!

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 20

Använd villkorlig assemblering

#ifdef SIMULATOR

#ifdef RUNFAST

DelayConst EQU xxx
#else

DelayConst EQU yyy
#endif

#else

DelayConst EQU zzz
#endif

Dessa bestämmer du
experimentellt med simulator
som förberedelse.

Denna bestäms
experimentellt vid laboration

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 21

Borrmaskinrobot
tangent kod Operation subrutin

0 starta borrmotorn MotorStart
1 stoppa borrmotorn MotorStop
2 sänk borret DrillDown
3 höj borret DrillUp
4 rotera arbetsstycket medurs ett steg Step

5 borra ett hål DrillHole
6 stega arbetsstycket till referensposition RefPos

7 borra hål längs cirkeln enligt mönster DoAuto
id←GetKbdML15

main

Initiera globala
variabler och

hårdvara

Command(id)

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 22

;--------------------------------------
; SUBRUTIN – Command
; Beskrivning: Rutinen avgör vilken
; kommandosubrutin som skall
; utföras och anropar denna.
; Anrop: JSR Command
; Indata: Kommandonummer i reg B
; Utdata: Inga
; Register: B,X ändras
; Anrop: SUB0 ... SUB7
;--------------------------------------

Command:
; giltigt värde?

CMPB #7
BHI CommandExit

; pekartabellens basadress
LDX #JUMPTAB

; offset är 2 bytes per adress
ASLB

; hämta subrutinens startadress
LDX B,X

; utför subrutin
JSR ,X

; återvänd från kommandorutin
CommandExit:

RTS

;-------------------------------------
; Tabell med subrutinadresser (pekare)
JUMPTAB: FDB SUB0,SUB1,SUB2,SUB3

FDB SUB4,SUB5,SUB6,SUB7
;-------------------------------------
; subrutiner för test

SUB0 MOVB #0,OutPort
RTS

SUB1 MOVB #1,OutPort
RTS

SUB2 MOVB #2,OutPort
RTS

SUB3 MOVB #3,OutPort
RTS

SUB4 MOVB #4,OutPort
RTS

SUB5 MOVB #5,OutPort
RTS

SUB6 MOVB #6,OutPort
RTS

SUB7 MOVB #7,OutPort
RTS

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 23

Filen Main.s12

STRUKTUR
1. Inkludera definitionsfil
2. Initiera systemet
3. Huvudprogram

4. Subrutinen Command
5. Inkludera fil (filer) med

ytterligare subrutiner.
6. Plats för variabler

; Definitioner
USE Labdefs.s12
ORG $1000

main: ---

;***********************************
; Huvudprogram
; Invänta vald operation
main_loop:

JSR GetKbdML15

; Utför vald operation
JSR Command
BRA main_loop

Command: ---

USE ML15drvr.S12
USE Subroutines.s12

; Placera alla globala variabler här
DCShadow RMB 1
...

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 25

Laborationsmoment 3
Pseudoparallell
exekvering

Operatör

Tangentbord
för

borrkommando

Anpassnings-
elektronik Borrmaskin

Mikrodator

Klocka

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Applikation för avbrott (IRQ)

26

ORG $FFF2
FDB irq_service_routine

; Avbrottshanterare
irq_service_routine:

...
RTI

;Initieringssekvens
ORG XXXX
...

; nollställ I-flagga
ANDCC #$FE
JSR _main
...

I laborationssystemet (MC12) kan vi INTE
placera avbrottsvektorerna på deras rätta
platser (konflikt med DBG12)
I stället placeras dom i RWM

I detta adressintervall
placeras gränssnitt mot
externa enheter

FLASH/ROM,
Innehåller det
inbyggda
debugger-
programmet
DBG12.

RWM,
används för
program och data.

HCS12 interna
register

FFFF

4000
3FFF

1000
0FFF

0400
03FF

0000

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

MC12 (DBG12) och
avbrott

27

IRQ

Huvudprogram

Betjäna

RTI

avbrottet

IRQHandler

Vektor
ROM

Funktion

FFFE RESET, Startvektor

FFFC Clock Monitor Fail, JMP [3FFC]

FFFA COP Watchdog Timeout, JMP [3FFA]

FFF8 Illegal Op Code, JMP [3FF8]

FFF6 SWI, JMP [3FF6]

FFF4 XIRQ, JMP [3FF4]

FFF2 IRQ, JMP [3FF2]

FF8C
FFF0

Enhetsspecifika JMP [3Fxx]
vektorer

ORG $FFF2
FDB irq_service_routine

; Avbrottshanterare
irq_service_routine:

RTI

ORG $3FF2
FDB irq_service_routine

; Avbrottshanterare
irq_service_routine:

RTI

Allmänt Men i MC12 och simulator...

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 28

C1

1D

R

Puls
generator

400Hz

1

Q' Till
processorns

IRQ’CS’ vid skrivning

Processbyte
En processor
– flera program
– körs ”samtidigt” (pseudoparallellt)

HDW krav: En avbrottskälla som ger
regelbundna avbrott (Ex Timer)

SW krav: En avbrottsrutin (SWITCH)
som växlar process

Init

variabler

kod P1

data/stack P1

kod P2

data/stack P2

kod P3

data/stack P3

kod P4

data/stack P4

Ledigt...

Process1

Process 2

Process 3

Process 4

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 29

RUNNING READY

Processtillstånd

PROC 4

PROC 3

PROC 2

PROC 1

INIT

SWITCH
2,5ms μs

READY

READY

READY

RUNNING

T=0

IRQ

IRQ

IRQ

IRQ

RTI RTI RTI t

2,5ms 2,5ms μs μs

ms5,2s0025,0
400
1pHz400f ===⇒=

C1

1D

R

400Hz

1

Q'
IRQ’

CS’

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB 30

$3000

Init

variabler

kod P1

data/stack P1

kod P2

data/stack P2

kod P3

data/stack P3

kod P4

data/stack P4

Ledigt...

Process1

Process 2

Process 3

Process 4

SP

PCL

PCH

YL

YH

XL

XH

ACCA
ACCB
CCR

$3000

$2FF7

Viktigt:
I-flaggan
måste vara 0!

Att byta process:
Sätt SP att peka på
den nya processens
stack och exekvera
sedan instruktionen RTI

Maskinorienterad programmering

Genomgång inför laborationer 1-3/LB

Initial stack för process och ”processbyte”:

31

SP

PCL

PCH

YL

YH

XL

XH

ACCA
ACCB
CCRORG TopOfStack-9

Istack: FCB $C0 ; Initialt CCR
FCB 0 ; Initialt B
FCB 0 ; Initialt A
FDB 0 ; Initialt X
FDB 0 ; Initialt Y
FDB Start ; Initialt PC

ORG Code
...
LDD #Istack
STD SPProc
RTI ; kör!

IRQHandler (SWITCH):
; Spara ”Running” stackpekare

STS ...
; Välj ny ”Running”

LDS ...
; Återstarta

RTI

	Slide Number 1
	Slide Number 2
	Borrmaskin-Robot
	Simulatorn för borrmaskinen
	Slide Number 5
	Slide Number 6
	Styrord till borrmaskinen
	Statusord från borrmaskinen
	Testförfarande
	Villkorlig assemblering ger korrekta portadresser
	Inledande uppgift med borrmaskinen
	Att vrida arbetsstycket
	Att borra ett hål
	Att vrida arbetsstycket till startpositionen
	Att bara ändra en bit i taget
	Lösning: Använd en kopia av styrordet (“skuggregister”)
	Subrutiner för att manipulera styrregistret�OUTONE och OUTZERO
	Slide Number 18
	Slide Number 19
	Använd villkorlig assemblering
	Borrmaskinrobot
	Slide Number 22
	Filen Main.s12
	Laborationsmoment 3 Pseudoparallell exekvering
	Applikation för avbrott (IRQ)
	MC12 (DBG12) och avbrott
	Processbyte
	Processtillstånd
	Slide Number 30
	Initial stack för process och ”processbyte”:

