

Index

Note: Page numbers followed by *f* indicate figures and *t* indicate tables.

A

absolute encoders, 31, 32, 33*f*
absolute pressure, 40
accumulated value. *See* counters
accuracy, sensor, 23, 81–82
 thermocouples, 82
AC input units, 80, 80*f*
ACK signals, 97
AC motors, 49
actions, in SFC, 165–167, 166*f*,
 166*t*
actuators, 43. *See also* output
 devices
ADCs (analog-to-digital
 converters), 81, 81*f*
addition
 of binary numbers, 68, 70
 floating point numbers, 71
 of data in data registers, 284–285
 in structured text (ST), 168*t*
ALARM, 103
alarm system example, 199*f*
Allen-Bradley
 ControlNet network, 105
 Data Highway network (Allen-
 Bradley), 100, 106
PLC-5 system, 13–15, 20,
 104–105, 108
 example (bundle cutting saw),
 314–335
Allen-Bradley ladder diagrams
 addition operation, 285*f*
 battery-backed relay circuits, 192
 conditional jumps, 216*f*
 counters, 248*f*, 250*f*
 timers with, 252–254, 254*f*

 up-down counters, 253*f*
data movement, 281*f*
greater-than comparison, 282*f*
latch and unlock functions, 196*f*
master control relays, 201, 201*f*
notation for, 119, 120*f*
off-delay timers (TOF), 231,
 231*f*, 232*f*
on-delay timers (TON),
 226–228, 227*f*
one-shot operation, 193*f*
retentive timers (RTO), 234,
 234*f*
sequencers, 256–258, 257*t*,
 258*f*
shift registers, 272*f*
subroutines, 218, 218*f*
alphanumeric characters, codes for.
 See ASCII codes
amplifying voltage levels, 86–87,
 87*f*, 344*f*
 op-amp comparators, 88–89
analog devices, defined, 8
analog I/O modules, 14
analog signals, 79, 81
 as output, 84, 85
 signal conditioning, 85–89
 changing voltage levels,
 86–88, 88*f*
 op-amp comparators, 88–89
 output protection, 89
 standard, 86, 86*f*
analog-to-digital converters
 (ADCs), 81, 81*f*, 82
AND logic gates, 120–121, 121*f*,
 132*f*
functional blocks, 133*f*
instruction lists, 157*f*
instruction lists for, 153*f*
AND operation
 algebra with, 135
 in structured text (ST), 168*t*
angular position sensors.
 See resistive linear and
 angular position sensors
Apple Firewire bus, 94
application development.
 See program development
application layer (ISO/OSI model),
 102
applications of control systems,
 53–56. *See also* programs,
 specific
application storage, 313
architecture of PLCs, 9–11, 10*f*
 central processing unit (CPU), 7,
 9, 12, 79
arithmetic functions, 284–285
 operations, 284–285
arithmetic with binary numbers,
 68–71
 floating point numbers, 70–71
 one's and two's complements,
 69–70
armature (DC motors), 46–48
ASCII codes, 98
 examples of, 98*t*
assembler, 115
assembly language, 115
assignment statements (ST),
 167–168
ATN line (IEEE-488), 95, 96*t*

authoring documentation for PLC systems, 313–335

automation tasks, 7

auxiliary relays. *See* internal relays

B

barrier for car park (example), 352–356

base (floating point numbers), 71

baseband, 104

basic relay, 1–3, 2*f*

battery-backed relays, 192, 193*f*

battery failure, 313

baud rates, 92–93

BCD format, 66–67, 280
examples of numbers in, 67*t*

bellows-type pressure sensors, 40

bimetal element, 33–34, 34*f*

bimetallic thermostat, 341, 342*f*

binary coded decimal (BCD)
format, 66–67, 280
examples of numbers in, 67*t*

binary systems, 63, 64, 69, 279
arithmetic of, 68–71
floating point numbers, 70–71
one's and two's complements, 69–70
signed and unsigned numbers, 69

conversion to/from denary system, 64

conversion to/from hexadecimal system, 66

conversion to/from octal system, 65
examples of numbers in, 67*t*

binary words, 9. *See also* bits (data)

bipolar motors, 52–53

bistables, 73

8-bit registers, 267

bits (data), 9, 64, 108, 267, 279–280
parity checks, 97
shift registers. *See* shift registers
sign bit, 69
tokens, 99
words, 9, 71–72, 81, 279

bit storage. *See* internal relays; memory; shift registers

Boolean algebra, 135–138

Boolean logic, 120–126
AND logic, 120–121
NAND logic, 124–125
NOR logic, 125
NOT logic, 123–124
OR logic, 121–123
in structured text (ST), 168*t*, 380

truth tables. *See* truth tables

XOR (exclusive OR) logic, 126

Boolean type data, 72

BOOLs (Boolean type data), 72

Bosch CAN bus, 94

bottle packing program (example), 358–364

bounce, with mechanical switches, 26–27

box systems. *See* brick (single-box) systems

branching

- IL (instruction lists), 155–158
- SFCs (sequential function charts), 163–165

brick (single-box) systems, 12
I/O addresses, 108

broadband, 104

brushless DC motors, 48–49

built-in switch, 27, 28*f*

Bundle Cutting Saw documentation (example), 314–335

buses

- for parallel communications, 94–95
- for serial communications, 91, 93

bus networks, 99, 99*f*, 100

bytes, 108

C

CAN bus, 94
DeviceNet network, 105–106

capacitive displacement sensors, 38

capacitive proximity sensors, 43

capacitive proximity switches, 29*f*, 38*f*

car park barrier operation (example), 352–356

carrier sense multiple access (CSMA), 100

carrier sense multiple access with collision detection (CSMA/CD), 100, 102

cascaded timers, 229*f*

cascaded TON timers, 228–229

CASE statement, in ST, 170–171

center roller lever, 28

central heating system (example), 344

central processing unit (CPU), 7, 9, 12, 79

chassis, for mounting modules, 13–15

checking PLC software, 306

circuit diagrams versus ladder diagrams, 116

CJP (conditional jumps). *See* jump instruction

clocked D latch, 73–74, 74*f*, 74*t*

clocked JK flip-flops, 75, 75*f*

clocked SR latches, 74–75, 74*f*, 75*f*

closed loop control, 285–289, 286*f*
modes of control, 286–288

coaxial cables, 90

coils. *See* internal relays

collision, data, 100

combinational logic systems, 63, 72–73

combined modes (closed loop control), 287*f*, 288

commercial I/O systems, examples of, 103–106

commissioning of PLC systems, 304–308
simulation, 307–308

software-checking, 306

testing inputs and outputs, 305–306

common voltage supply, 85, 85*f*

communication modules, 15

communications interface of PLCs, 8
model for, 8*f*

communications paths. *See* buses

communications systems. *See* I/O processing

comparing data, 282–283

computers versus PLCs, 6–7

computer touch pads, 30

conditional jumps. *See* jump instruction
 conditional statements
 in pseudocode, 296, 297f
 in ST, 169–171, 380
 condition sensors, 43
 CONNECT, 103
 constants, defining in ST, 173
 contactors, 44
 continuous updating, 106
 control circuit, 2f
 control drawing, relay-controlled systems, 3–4, 3f
 Controller Area Network (CAN) bus, 94
 DeviceNet network, 105–106
 controller module, 13
 controllers
 in distributed networking systems, 100
 for parallel communications, 94
 ControlNet network, 105
 control system applications, 53–56. *See also* programs, specific
 control systems design.
 See designing PLC systems
 control task and input sensors, 1, 2f
 convergence, with SFC, 163–165, 164f
 conveyor belts, 53, 53f
 counters with, 249
 full example program, 357–364
 bottle packing, 358–364
 OR gates with, 123
 packages on, detection of, 55–56
 tracking items with shift registers, 270–272, 274f
 count-down underflow (UN) bit, 249
 counters, 245–266
 forms of, 245
 sequencers, 254–258
 timers with, 252–254, 254f
 up-down counters, 251, 253f, 376–377
 count-up overflow (OV) bit, 249
 CPU (central processing unit), 7, 9, 12, 79
 cross roller plunger, 28

CSMA (carrier sense multiple access), 100
 CSMA/CD (carrier sense multiple access with collision detection), 100, 102
 CTD. *See* down-counters
 CTS (clear-to-send) signal, 97
 CTU. *See* up-counters
 current sinking. *See* sinking
 current sourcing. *See* sourcing
 cycles, PLC, 106
 in ladder diagrams, 117
 one-shot operation, 193–194
 cycle times, PLCs, 107, 108
 cyclic movement, piston in cylinder (example), 347–348
 cyclic redundancy check (CRC) codes, 98
 cylinders, 46, 46f, 47f

D

DACs (digital-to-analog converters), 84f
 Darlington pairs, 31
 data, 71–72
 collisions of (in networking), 100
 parallel communications, 90–91, 94–95, 109
 parity checks, 97
 serial communications, 90–94, 109
 data communications. *See* I/O processing
 data handling, 279–294
 arithmetic functions, 284–285
 operations, 284–285
 closed loop control, 285–289, 286f
 data comparisons, 282–283
 data movement, 280–281
 data selection, 283
 Data Highway network (Allen-Bradley), 100, 106
 data link layer (ISO/OSI model), 101
 data types, defining in ST, 172
 DAV line (IEEE-488), 95, 95f, 96t
 D4CC miniature limit switches, 28
 DC input units, 80, 80f
 DC motors, 46–48, 48f

dead band, 346
 debug mode (Telemecanique), 307
 decimal system. *See* denary system
 delay-on timers. *See* on-delay timers (TON)
 denary system, 63, 280
 binary coded decimal (BCD) format, 66–67, 280
 examples of numbers in, 67t
 conversion to/from BCD system, 67
 conversion to/from binary system, 64
 conversion to/from hexadecimal system, 66
 conversion to/from octal system, 65
 examples of numbers in, 67t
 fixed point numbers, 70–71
 floating point numbers, 70–71
 two's complements, 70t
 derivative action time, 288
 derivative mode (closed loop control), 287f, 288
 designing PLC systems, 295–340.
 See also program development
 desktop consoles, 19
 detecting faults. *See* fault finding
 DeviceNet network, 105–106
 D flip-flop, 26–27, 27f
 diagnostics. *See* fault finding
 diaphragm-type pressure sensors, 40
 differential amplifiers, 87, 87f
 digital devices, defined, 8
 digital I/O modules, 14
 digital signals, 9
 converting to/from analog, 81, 81f, 82, 84f
 defined, 8, 79
 levels of, 10–11, 79
 paths for. *See* buses
 sensors for, 23
 digital systems, 63–78
 binary system. *See* binary systems
 combinational logic systems, 63, 72–73
 data. *See* data
 sequential logic systems, 63, 73–75

digital-to-analog converters (DACs), 84*f*

DINTs (double-integer numbers), 71–72

directional control
 motors, 48, 48*f*
 valves, 44–46, 45*f*, 46*f*

discrete signals, defined, 79.
 See also digital signals, defined

displacement sensors, 37–38

distributed networking systems, 100

division, in structured text (ST), 168*t*, 169

division operation, 284–285

D latch, 73–74, 74*f*, 74*t*

documentation of PLC systems, 313–335

door monitoring, 303

double-acting cylinders, 46, 46*f*, 47*f*

double-integer numbers (DINTs), 71–72

down-counters, 245, 246*f*, 376–377
 up-down counters, 251, 253*f*, 376–377

drift, 25

drinks machine, 367
 FBD program, 367, 367*f*
 ladder program, 367, 368*f*

drum sequencers, 254–258

D101 to D108 lines (IEEE-488), 96*t*

D-type connectors, 91, 92*f*

dual-channel emergency stop relays, 302–303

E

eddy current proximity switches, 29, 29*f*

electrical conductor, 30

emergency stop relays, 302–303, 304

emergency stop switches, 141, 141*f*, 302–303

EMF protection, 89

encoders, 31–33

ENQ/ACK protocol, 97

ENQ signals, 97

entering programs, 129–130
 ladder symbols, 130

EOI line (IEEE-488), 96*t*

EPROM (erasable and
 programming read-only
 memory), 13, 14*t*, 15*t*, 313
 with smart sensors, 42

equal-to comparison, 282

erasable and programming read-only memory (EPROM), 13, 14*t*, 15*t*, 313
 with smart sensors, 42

error-checking in communications, 97, 98
 serial communications, 91

error, sensor, 23, 24*f*

error signal, reacting to. *See* closed loop control

Ethernet, 104–105

exclusive OR. *See* XOR logic gates

expected value checks, 311

exponent (floating point numbers), 71

external relays, 187–188

F

factory-floor networks, 106

fail-safe systems, 300

fan heater, 367–369, 369*f*, 370*f*

fault finding, 308–313
 detection techniques, 308–312
 program storage, 313

FBDs. *See* function block diagrams (FBDs)

fiber-optic cabling, 90

fibre optic sensors, 43

field coils, 46–48

Firewire bus, 94

fixed point numbers, 70–71

flags (serial communication bits), 92–93. *See also* internal relays

flashing light with timers (example), 235, 235*f*

flip-flops, 73, 75, 75*f*, 194–198, 198*f*

floating point numbers, 70–71, 72

flowcharts, for program development, 295–298, 296*f*

flow controls for serial communications, 91

fluid flow meters, 41

flyback diodes, 89

force sensor, strain gauge as, 39–40

forcing, for testing inputs and outputs, 305–306, 305*f*

FOR...DO iteration, in ST, 171, 380

forms, controller, 1–3

full graphic form, ladder diagrams, 118–119

function block diagrams (FBDs), 130–138, 130*f*, 134*f*
 basic diagramming symbols, 131*f*
 example programs, 138–141
 logic gate blocks, 133*f*

function blocks
 in ST, 173–174
 symbols for, 376–377

function boxes, 218–220, 219*f*

G

gauge factor, 39

gauge pressure, 40

GEM-80 PLC, 108

General Electric GENET network, 100

General-Purpose Instrument Bus, 94

GENET network (General Electric), 100

GND line (IEEE-488), 96*t*

Grafset language, 163

Gray code, 33

greater-than comparison, 282

greater-than-or-equal-to comparison, 282

H

handheld programming devices, 19

handshaking, 94, 97*f*

hardware of PLCs, 7–8

Hewlett-Packard Instrumentation Bus, 94

hexadecimal system, 1–3, 64–65, 66
 examples of numbers in, 67*t*

hierarchies of communications, 100, 100*f*

high-level languages, 115

high sensitive roller plunger, 28

holding torque (stepper motors), 51
 host networks, 99
 hybrid stepper motors, 51
 hysteresis error, 23, 24f

I

I^2C bus, 94
 IEC 61131 standard, 17–18, 103
 IEC 61131-1 standard
 timers, 226f
 IEC 61131-1 standard
 sequential function chart, 163
 IEC 61131-3 programming
 languages, 17
 IEC 61131-3 standard
 counters, 246f
 PID control function, 289f
 shift registers, 272f
 IEC 61131-3 standard, 379
 for battery-backed relay circuits, 193f
 for function block diagrams, 130
 for instruction lists (IL), 151, 152t, 157
 for ladder diagrams, 118–119
 one-shot operation, 194f
 IEC 61131-5 standard, 18
 IEC 61508 standard, 299–300
 IEEE-488 bus, 94, 95f, 96t
 IEEE Project 802, 102
 IEEE 802.3 standard, 102
 IEEE 802.4 standard, 102
 IEEE 1451.4 standard, 43
 IFC line (IEEE-488), 96t
 IF statement, in ST, 169, 380
 IL (instruction lists), 151–159
 branch codes, 155–158
 code mnemonics, 152t
 multiple rungs, 158
 programming examples, 159
 increment encoders, 31, 32f
 individual voltage supply, 85, 85f
 inductive proximity sensors, 43
 inductive proximity switches, 30
 inductors, output protection, 89
 initial values, defining in ST, 173
 input devices, 23–43
 encoders, 31–33
 fluid flow meters, 41
 liquid-level detectors, 28, 41

 monitoring system, 55, 55f
 mechanical switches, 26–28, 26f
 ladder diagram for (example), 116, 116f
 position/displacement sensors, 37–38
 pressure sensors, 40–41
 strain gauges as, 39–40
 proximity switches, 29–30
 sensors ranges, 43
 smart sensors, 42–43
 strain gauges, 38–40
 differential amplifiers with, 87, 88, 88f
 temperature sensors, 33–37, 283
 testing, 305
 ultrasonic proximity sensors, 42
 input levels, 10–11, 79
 input/output units, 9–11, 12, 79–85
 inputs
 arithmetic operations on, 284–285
 internal relays with multiple input conditions, 188–190
 to I/O processing, 106–108
 in ladder diagrams, 117, 128f
 sourcing and sinking, 11, 79–80, 80f
 testing (program development), 305–306
 input section of PLCs, 8
 instruction lists. *See* IL (instruction lists)
 integers (INTs), 71–72
 integral action time, 288
 integral mode (closed loop control), 287f, 288
 integrated chip as temperature sensor, 342–343
 Inter-IC Communication (I^2C) bus, 94
 internal architecture of PLCs, 9–11, 10f
 central processing unit (CPU), 7, 9, 12, 79
 internal relays, 187–214, 188f
 battery-backed, 192, 193f
 with ladder programs, 188–192
 latching programs, 190–191
 multiple input conditions, 188–190
 response time, 191–192
 master control relays, 199–204
 one-shot operation, 193–194, 193f
 set-reset function for, 197–198
 set and reset functions, 194–198.
 See also flip-flops
 program examples, 198
 shift registers. *See* shift registers
 inverters. *See* NOT logic gates
 inverting amplifiers, 86–87
 I/O addresses, 108
 I/O modules, 14
 I/O processing, 79–114
 commercial systems, examples of, 103–106
 input/output units, 9–11, 12, 79–85
 inputs, 106–108
 networks, 99–103
 distributed systems, 100
 standards for, 101–103
 remote connections, 89–98, 89f, 90f
 signal conditioning, 85–89
 changing voltage levels, 86–88, 88f
 op-amp comparators, 88–89
 output protection, 89
 ISO/OSI model, 101, 101f
 iteration statements, in ST, 171–172, 380

J

JK flip-flops, 75, 75f
 jump instruction, 215–217, 216f
 jumps within jumps, 216–217, 217f
 subroutines, 217–220
 function boxes, 218–220

L

LAD. *See* ladder programming (LAD) and ladder diagrams
 ladder programming (LAD) and ladder diagrams, 20, 115–119, 116f, 134f.
 See also specific company for ladder diagram standards (e.g., Siemens)
 arithmetic operations, 18

ladder programming (LAD) and
 ladder diagrams
 (*Continued*)
 basic diagramming symbols, 118–119, 118*f*, 375
 diagramming conventions, 117–118
 electrical wiring diagrams, 20
 entering programs, 129–130
 example programs, 138–141
 function block diagrams, 18
 inputs in, 117, 128*f*
 instruction lists and, 152*t*, 153–155. *See also* IL
 (instruction lists), multiple rungs
 multiple rungs, 158
 internal relays, 188–192
 latching programs, 190–191
 multiple input conditions, 188–190
 response time, 191–192
 jumping over. *See* jump instruction
 latching relays, 127*f*
 logic of. *See* logic systems (logic gates)
 master control relays, 200*f*, 204*f*, 205*f*
 outputs in, 117, 127–129, 128*f*
 SET and RESET coils, 195
 SFCs (sequential function charts), 18, 162*f*, 165*f*
 structured text (ST), 18
 structured text (ST) versus, 174
 writing pseudocode and
 translating
 conditional flow, 297, 297*f*
 loops, 298, 299*f*, 300*f*
 sequences, 296
 ladder symbols, 130
 last cylinder action, diagnostic program for, 312*f*
 last output set (fault detection technique), 309, 310*f*
 latches, 73–75
 latching relays, 44, 127
 internal relays for, 190–191
 layers of ISO/OSI model, 101–103
 least significant bit (LSB), 64
 less-than comparison, 282
 less-than-or-equal-to comparison, 282
 lifts, 53
 light curtains, 304
 light-emitting diodes (LEDs), 31
 limit sensors, 43
 limit switches, 27
 linear positioning with stepping motors, 49, 49*f*
 linear position sensors.
 See resistive linear and angular position sensors
 linear potentiometers, 37
 linear variable differential transformers (LVDTs), 37–38, 38*f*
 liquid-level detectors, 28, 41
 monitoring system, 55, 55*f*
 liquid-level switches, 28
 listeners (parallel communications), 94
 LLC (Logical Link Control) layer, 102
 LM3911N circuit, 36*f*
 LM35 package, 36*f*
 loading system example, 199*f*
 local area networks (LANs), 99
 Logical Link Control (LLC) layer, 102
 logical variables, 73
 logic systems (logic gates), 63, 73, 120–126, 377–378
 Boolean algebra, 135–138
 combinational, 63, 72–73
 example programs, 138–141
 in function block diagrams, 130–134
 AND logic, 120–121, 121*f*, 132*f*
 functional blocks, 133*f*
 instruction lists, 157*f*
 instruction lists for, 153*f*
 NAND logic, 26–27, 27*f*, 123–124, 124*f*, 132*f*
 instruction lists for, 155*f*
 NOR logic, 125, 125*f*, 132*f*
 functional blocks, 133*f*
 instruction lists for, 154*f*
 NOT logic, 123–124, 123*f*, 132*f*
 OR logic, 121–123, 122*f*, 132*f*
 functional blocks, 133*f*
 instruction lists for, 154*f*
 sequential, 63, 73–75
 symbols for, 132*f*
 XOR (exclusive OR) logic, 126, 126*f*, 132*f*
 functional blocks, 133*f*
 instruction lists for, 155–158
 long real numbers (LREALs), 72
 loop statements
 in pseudocode, 298, 299*f*, 300*f*
 in ST, 171–172
 LREAL data (long real numbers), 72
 LSB (least significant bit), 64
 LVDTs (linear variable differential transformers), 37–38, 38*f*

M

machine code, 115
 machine interlock system, 72, 72*f*
 machine language, 129
 MAC (Media Access Control) layer, 102
 20 mA loops, 94
 mantissa, 71
 manufacturing automation protocol (MAP), 103–104, 104*t*
 Manufacturing Message Service (MMS), 104
 MAP (manufacturing automation protocol), 103–104, 104*t*
 markers. *See* internal relays
 mass I/O copying, 106–107
 master control relays (MCRs), 199–204, 200*f*
 ladder programs for, 200*f*, 204*f*, 205*f*
 multiple, 202–203
 program examples, 203–204
 master networks, 99
 math, binary. *See* arithmetic with binary numbers
 maximum value, selecting, 284*f*
 MCR. *See* master control relays (MCRs)
 measurement error (sensors), 23
 mechanical switches, 26–28, 26*f*
 ladder diagram for (example), 116, 116*f*

Media Access Control (MAC) layer, 102

MELSEC FX3U compact PLC (Mitsubishi), 13, 13*f*, 108

MelsecNET network (Mitsubishi), 100

MELSOFT language, 19

memory

- for data bits. *See* registers
- program storage, 313

memory box, 196

memory unit, 8

- storage capacity of, 9

metal resistance strain gauges, 38, 39*f*

microprocessor-controlled systems, 4–5.

- See also* programmable logic controllers

minimum value, selecting, 284*f*

Mitsubishi

- MELSEC FX3U compact PLC, 13, 13*f*, 108
- MelsecNET network, 100
- MELSOFT language, 19
- monitor mode, 307

Mitsubishi ladder diagrams

- battery-backed relay circuits, 192
- conditional jumps, 216*f*
- conveyor belt control program (example), 362–363
- counters, 255*t*
- data movement, 281*f*
- greater-than comparison, 282*f*
- instruction code mnemonics, 152*t*
- AND gates, 153*f*, 157*f*
- NAND gates, 155*f*
- NOR gates, 154*f*
- OR gates, 154*f*
- XOR gates, 156*f*
- internal relays with multiple input conditions, 189*f*
- master control relays, 200
- notation for, 119
- on-delay timers (TON), 226–228, 227*f*
- one-shot operation, 193*f*
- shift registers, 268, 269, 270*f*
- subroutines, 217–218, 218*f*

valve sequencing program (example), 349–352

- car barrier program, 354*f*
- inputs and outputs, 356

mixing process control program (example), 364–366

MMS (Manufacturing Message Service), 104

mobile phone touch screens, 30

modular (rack) systems, 13, 16*f*, 81

- I/O addresses, 108

monitoring systems

- liquid-level detectors, 55, 55*f*
- protected door monitoring, 303

monitor mode (Mitsubishi), 307

most significant bit (MSB), 64

- sign bit, 69

Motorola MPX100AP sensor, 25–26, 40

motors, 46–49

- in distributed networking systems, 100
- output protection, 89
- stepper motors, 49–53, 49*f*
- stop switch locations, 140–141
- timers with (examples), 228, 229*f*, 235, 237*f*
- unipolar versus bipolar, 52–53

moving data between locations, 280–281

MPX100AP sensor (Motorola), 25–26, 40

MSB (most significant bit), 64

- sign bit, 69

multiplexers, 81, 81*f*

multiplication operation, 284–285

MX100AP pressure sensor, 25–26

N

NAND logic gates, 26–27, 27*f*, 124–125, 124*f*, 132*f*

- instruction lists for, 155*f*

NC switches, 26

- in ladder diagrams, 118

NDAC line (IEEE-488), 95, 95*f*, 96*f*

negated input, in function block diagrams, 131*f*

negative binary numbers.

- See* signed binary numbers

negative transition-sensing coils, 194, 194*f*

nested jumps, 216–217, 217*f*

network layer (ISO/OSI model), 101

networks, 99–103

- distributed systems, 100
- standards for, 101–103

noninverting amplifiers, 87

nonlinearity error, 23, 24*f*

nonvolatile memory, 42

NOR logic gates, 125, 125*f*, 132*f*

- functional blocks, 133*f*
- instruction lists for, 154*f*

normally closed (NC) contacts, 3–4, 43–44

normally closed (NC) switches, 26

- in ladder diagrams, 118

normally open (NO) contacts, 3–4, 43–44

normally open (NO) switches, 26

- in ladder diagrams, 118

NO switches, 26

- in ladder diagrams, 118

NOTIFY, 103

NOT logic gates, 123–124, 123*f*, 132*f*

NOT operation

- algebra with, 135
- in structured text (ST), 168*t*

NRFD line (IEEE-488), 95, 95*f*, 96*f*

NTC semiconductors, 35, 35*f*

number systems. *See* binary systems; denary system; hexadecimal system; octal system

O

octal system, 64–65

- examples of numbers in, 67*t*

off-delay timers (TOF), 225, 226*f*, 231–232

Omron

- CP1L, 12*f*
- IL code mnemonics, 152*t*
- E4C-DS30 ultrasonic proximity sensor, 42
- E4C-DS80 ultrasonic proximity sensor, 42
- E4C-DS100 ultrasonic proximity sensor, 42

Omron E2F sensor, 30
 Omron E2K-X capacitive sensor, 30
 Omron Industrial Automation, 28
 Omron sensors, 42
 on-delay timers (TON), 225, 226–230, 226*f*, 376–377
 cascaded, 228–229
 creating off-delay timers with, 231, 231*f*
 on/off cycle timers, 230, 230*f*
 sequencing, 228
 one's complement, 69–70
 one-shot operation, 193–194
 set-reset function for, 197–198
 on/off cycle timers, 230, 230*f*
 on-off mode (closed loop control), 286, 287*f*
 on/off temperature control (example), 346
 op-amp comparators, 88–89
 open systems interconnection (OSI). *See* ISO/OSI model
 operational amplifier.
See amplifying voltage levels
 operations, arithmetic, 284–285
 operators, structured text (ST), 168*t*, 379–380
 optoisolators (optocouplers), 9, 10, 10*f*, 80
 orifice flow meters, 41, 42*f*
 OR logic gates, 121–123, 122*f*, 132*f*
 functional blocks, 133*f*
 instruction lists for, 154*f*
 OR operation
 algebra with, 135
 in structured text (ST), 168*t*
 OSI. *See* ISO/OSI model
 output devices, 43–53
 motors. *See* motors
 relays. *See* relays
 output levels, 79
 RS232 interface, 93*f*
 outputs
 changing voltage from sensors, 86–88
 op-amp comparators, 88–89
 internal relays with latching circuit, 188–190
 in ladder diagrams, 117, 127–129, 128*f*
 protection of, 89
 pulse size, 84–85
 sourcing and sinking, 11, 11*f*, 82–83, 83*f*
 testing (program development), 305–306
 output section of PLC system, 8
 output units. *See* input/output units

P

packages on conveyor belt systems, detecting, 55–56
 parallel branching, 163, 164*f*
 parallel communications, 90–91, 94–95, 109
 parity checks, 97
 peer-to-peer networks, 99
 permanent magnet stepper motors, 49–50, 50*f*
 personal computers, for programming PLCs, 19
 phase (stepper motors), 51
 Phillips I²C bus, 94
 photoconductive cells, 31
 photodiodes, 31
 photoelectric sensors, 43
 and switches, 30–31, 30*f*
 phototransistors, 31
 physical layer (ISO/OSI model), 101
 PID control, 288, 289*f*
 piezoelectric crystals, 40
 25-pin D-type connectors, 91, 92*f*
 pin plunger, 28
 plastic rod, 28
 position sensors, 37–38
 positive binary numbers.
See signed binary numbers
 positive transition-sensing coils, 194, 194*f*
 potential dividers, 86, 86*f*
 potentiometers, 37, 37*f*
 power (floating point numbers), 71
 power supply unit, 7
 presence sensing sensors, 43
 presentation layer (ISO/OSI model), 102
 present, timer, 225
 present value, for counters, 245, 247
 pressure sensors, 40–41
 liquid-level detectors, 28, 41
 monitoring system, 55, 55*f*
 strain gauges as, 39–40
 processor unit, 7
 production lines. *See* conveyor belts
 PROFIBUS DP network (Siemens), 100
 Profibus (Process Field Bus) system, 106
 program development
 commissioning, 304–308
 simulation, 307–308
 software-checking, 306
 testing inputs and outputs, 305–306
 documentation, 313–335
 fault finding, 308–313
 detection techniques, 308–312
 program storage, 313
 flowcharts and pseudocode, 295–298
 safe systems, 298–304
 emergency stop relays, 302–303
 safety functions, 303–304
 safety PLCs, 304
 programmable logic controllers
 control machines and processes, 5–6, 5*f*
 design. *See* designing PLC systems
 PLCs, about, 5–7
 systems, about, 12–15, 20
 programming devices, 8, 19–20
 programming methods.
See function block diagrams (FBDs); IL (instruction lists); ladder programming (LAD) and ladder diagrams; SFCs (sequential function charts); ST (structured text)
 programs for PLCs, 16–20
 programs, specific, 341–374
 conveyor belt control, 357–364
 bottle packing, 358–364
 process control, 364–366
 valve sequencing, 347–357

car park barrier operation (example), 352–356
controlled cylinder reset, 356–357
cyclic movement, 347–348
sequencing, 348–352
program storage, 313
Project 802 (IEEE), 102
proportional mode (closed loop control), 287, 287f
protected door monitoring, 303
protocols, communication, 91, 96–98
with networking, 99, 101–103
proximity switches, 29–30
pseudocode, 295–298
PTC semiconductors, 35
pull-in rate (stepper motors), 52
pull-in torque (stepper motors), 51
pull-out rate (stepper motors), 52
pull-out torque (stepper motors), 52
pulse functions, 197–198, 198f
pulse size, output, 84–85
pulse timers (TP), 225, 226f, 232–234, 376–377
pulse width modulation (PWM), 46–48, 48f
PWM. *See* pulse width modulation (PWM)

Q

quantization levels, 81

R

rack systems. *See* modular (rack) systems
RAM. *See* random-access memory (RAM)
random-access memory (RAM)
battery failure and, 313
range, sensor, 24
RCV block, 103
READ block, 103
REAL data, 72
real numbers, 72
reducing voltage levels, 86–88, 86f
reed switches, 29, 29f
reflective photoelectric sensors, 30–31
registers, 267, 279–280
moving data between, 280–281

relay-controlled systems, 3–4, 3f
control red and green lights, 4, 4f
versus PLCs, 6
relays, 10, 43–44, 44f, 83
battery-backed, 192, 193f
emergency stop relays, 302–303
internal. *See* internal relays
latching relays, 44, 127
internal relays for, 190–191
master control relays, 199–204
ratchet type, 28
reversing motor rotation, 48
relay symbols, 3–4, 3f
reliability, measurement system, 25
remote connections
ASCII codes, 98
examples of, 98t
protocols for, 96–98
remote I/O modules, 89–98, 89f, 90f
REMOTE_VAR, 103
REN line (IEEE-488), 96t
repeatability, measurement system, 25
REPEAT...UNTIL iteration, in ST, 172, 380
replication, 311
RESET coils, 194–198, 195f.
See also flip-flops
for one-shot operation, 197–198
program examples, 198
resetting counters, 245, 246f, 249
resistive linear and angular position sensors, 37
resistive temperature detectors (RTDs), 34–35
resolution (voltage), 81–82
response speed, PLC, 108
response time
with internal relays, 191–192
sensor, 24
retentive memory coils, 192, 193f
retentive relays, 192
retentive timers (RTO), 234
RETURN statement, in ST, 174
reversing motor rotation, 48
ring networks, 99, 99f
rise time, sensor, 24
robot control systems, 54–55, 54f
Rockwell Automation, 28

Allen-Bradley PLC-5, 13–15, 20, 104–105
RSLogix language, 20
roller-actuated limit switch, 27, 28f
roller plunger, 28
rotary potentiometers, 37, 37f
RS function blocks, 220, 220f
RS232 interface, 91
RTS and CTS signals, 97
RS422 interfaces, 93, 93f
RS423 interfaces, 93, 93f
RS485 interfaces, 106
RSLogix language, 20
RTDs (resistive temperature detectors), 34–35
RTO. *See* retentive timers (RTO)
RTS (ready-to-send) signal, 97
rungs. *See* ladder programming (LAD) and ladder diagrams

S

SAA 1027 circuit, 52–53, 52f
safe systems, 298–304
emergency stop relays, 302–303
safety functions, 303–304
safety PLCs, 304
safety interlock switches, 43
safety mats, 304
SCADA (supervisory control and data acquisition systems), 100
scanning ladder diagrams, 117, 117f
scanning time, PLCs, 108
internal relay response time, 191–192
scientific notation, 71
sealed cross roller plunger, 28
sealed pin plunger, 28
sealed roller plunger, 28
secure PLC systems. *See* safe systems
security, 15
selection function blocks, 283
selective branching (SFC), 163, 163f
self-testing. *See* fault finding
semiconductors, 35
strain gauges, 38–40
differential amplifiers with, 87, 88, 88f

semigraphic form, ladder diagrams, 118–119

SEND block, 103

sensitivity, measurement system, 25

sensors. *See also* switches
 changing voltage from, 86–88
 op-amp comparators, 88–89
 defined, 23
 in distributed networking systems, 100
 liquid-level detectors, 28, 41
 monitoring system, 55, 55*f*
 Omron E2F, 30
 Omron E2K-X capacitive, 30
 photoelectric sensors and switches, 30–31, 30*f*
 position and displacement sensors, 37–38
 pressure sensors, 40–41
 strain gauges as, 39–40
 response of, 24*f*
 smart sensors, 42–43
 strain gauges, 38–40
 differential amplifiers with, 87, 88, 88*f*
 switch sensors. *See* mechanical switches
 temperature sensors, 33–37, 283
 ultrasonic proximity, 42
 sensors ranges, 43
 sequencer, 256–258
 control, 257
 destination, 257
 file, 256
 length, 257
 mask, 257
 position, 257
 sequencer output (SQO), 256, 258
 sequencers, 254–258
 sequences, programming, 296
 sequencing
 with on-delay timers, 228
 piston movement (example), 348–352
 with shift registers, 270, 273*f*
 sequential flowcharts, 296, 364
 sequential function charts.
See SFCs
 sequential logic systems, 63, 73–75

serial communications, 90–94, 109

session layer (ISO/OSI model), 102

SET and RESET coils, 194–198, 195*f*. *See also* flip-flops
 for one-shot operation, 197–198
 program examples, 198

settling time, 24

SFC (SIMATIC S7-Graph)
 language, 19–20

SFCs (sequential function charts), 160–167, 352, 378
 actions, 165–167, 166*f*
 branching and convergence, 163–165

SHIELD line (IEEE-488), 96*t*

shift registers, 267–278, 269*f*
 for keeping track of items, 270–272, 274*f*
 in ladder diagrams, 268–272
 sequencing application example, 270, 273*f*

short-duration pulses, 249

short integer numbers (SINTs), 71–72

Siemens
 PROFIBUS DP network, 100
 Profibus (Process Field Bus) system, 106
 SIMATIC S7 addressing, 108
 SIMATIC STEP 7 language, 19–20
 test mode, 307

Siemens ladder diagrams
 addition operation, 285*f*
 conditional jumps, 217*f*
 subroutine function block, 219*f*
 conveyor belt control program (example), 363–364
 counters, 250*f*, 253*f*, 255*t*
 data movement, 281*f*
 function block diagrams, 134*f*
 greater-than comparison, 282*f*
 IL code mnemonics, 153
 instruction code mnemonics, 152*t*
 AND gates, 153*f*, 157*f*
 NAND gates, 155*f*
 NOR gates, 154*f*
 OR gates, 154*f*

XOR gates, 156*f*

internal relays with multiple input conditions, 189*f*

master control relays, 201–202

notation for, 119, 120*f*

off-delay timers (TOF), 231, 231*f*

on-delay timers (TON), 226–228, 227*f*

set-reset function, 196, 197–198, 198*f*

shift registers, 272*f*

valve sequencing program (example), 351*f*
 car barrier program, 355*f*
 inputs and outputs, 356

Siemens S7-1200 system, 305–306

signal conditioning, 85–89
 changing voltage levels, 86–88, 88*f*

op-amp comparators, 88–89
 output protection, 89

signal lamp task example
 instruction lists, 159, 159*f*
 ladder diagram, 139*f*

last output set (fault detection technique), 309, 311*f*

timers for, 235, 237*f*

signal levels, 10–11, 79

RS232 interface, 93*f*

sign bit, 69

signed binary numbers, 69, 71–72
 one's and two's complements, 69–70

SIMATIC S7 addressing (Siemens), 108

SIMATIC STEP 7 language (Siemens), 19–20

simulation, 307–308

simultaneous convergence (SFC), 164*f*

single-acting cylinders, 46, 46*f*, 47*f*

single-box (brick) systems, 12
 I/O addresses, 108

single highway networks, 99, 99*f*

single pole/double throw (SPDT) switches, 26–27

sinking, 11
 input units, 79–80, 80*f*
 output units, 82–83, 83*f*

SINTs (short integer numbers), 71–72

slave networks, 99

slew range (stepper motors), 52

slot passing, 99

smart sensors, 42–43

software for PLCs, 19
testing/checking, 306

solenoids as actuators
directional control valves, 44, 45f

output protection, 89

relays, 43–44

sourcing, 11
input units, 79–80, 80f
output units, 82–83, 83f

spool valves, 44

SR function blocks, 219, 220f

SR latches, 74–75, 74f, 75t

SRQ line (IEEE-488), 96t

ST (structured text), 167–174, 379–380
conditional statements, 169–171, 380
iteration statements, 171–172, 380
ladder diagrams versus, 174
operators, 168t, 379–380
programs, 172–174

stability, measurement system, 25

standard communication blocks, 103

star networks, 99, 99f

STATUS block, 103

step angle (stepper motors), 51

stepper motors, 49–53, 49f

ST (SIMATIC S7-SCL) language, 19–20

stop/start switch, ladder diagram for, 116, 116f

stop switches, 300–301
emergency stop switches, 141, 141f, 302–303
locations of, 140–141

storage capacity of memory units, 9

storage, program, 313

storage tank, 365–366, 366f

stored data. *See* internal relays; memory

strain gauges, 38–40

differential amplifiers with, 87, 88, 88f

structured text. *See* ST (structured text)

subroutines, 217–220
function boxes, 218–220

subtraction
of binary numbers, 68, 70
of data in data registers, 284–285
in structured text (ST), 168t

switches. *See also* limit switches; logic systems (logic gates); mechanical switches; normally closed (NC) switches; normally open (NO) switches; photoelectric sensors; proximity switches; reed switches; stop switches; thumbwheel switch
testing, 305

switching frequency, 346

symbols, 375–380

synchronization for serial communication, 91

system design. *See* designing PLC systems

system documentation, 313–335

T

talkers (parallel communications), 94

tasks appropriate for control systems, 1

Telemecanique
debug mode, 307
SET and RESET coils, 195–196

Telemecanique ladder diagrams
notation for, 119, 120f
on-delay timers (TON), 226–228, 227f
set-reset function, 195–196, 197–198, 198f

temperature coefficients, 33–34, 35

temperature sensors, 33–37, 283

testing (program development)
fault finding, 308–313
detection techniques, 308–312
program storage, 313

inputs and outputs, 305–306

software-checking, 306

test mode (Siemens), 307

Texas Instruments
TIWAY network, 100
TSL220 sensor, 31f

thermistors, 35f, 342–343, 343f.
See also semiconductors

thermocouples, 36–37, 36f, 37t, 342–343
accuracy of, 82

thermodiodes, 35–36

thermostat. *See* temperature sensors

thermotransistors, 35–36

three-track encoders, 32, 32f

three-wire circuits, 34–35, 34f

thumbwheel switch, 280, 280f

time duration data, 72

timers, 225–244
with counters, 252–254, 254f
off-delay (TOF), 225, 226f, 231–232
on-delay. *See* on-delay timers (TON)
programming examples, 235
pulse timers (TP), 225, 226f, 232–234, 376–377
retentive timers (RTO), 234
types of, 225
watchdog timers, 308

timing checks, 308

TIWAY network (Texas Instruments), 100

TOF. *See* off-delay timers (TOF)

toggles, 75

token passing, 99

TON. *See* on-delay timers (TON)

Toshiba ladder diagrams
counters, 255–256, 255t
on-delay timers (TON), 226–228, 227f
sequencers, 255–256, 256f
shift registers, 269, 271f

Toshiba PLC brick, 12

TP. *See* pulse timers (TP)

tracking items with shift registers, 270–272, 274f

traditional control systems, 1–3

traffic lights, sequence for, 160, 160f

timers for, 235, 236f

transducers, defined, 23
 transistor-type output, 10, 83*f*
 transition-sensing coils, 194, 194*f*
 transmission rates, serial
 communications, 92–93
 transmissive photoelectric sensors, 30–31
 transparent latches, 73–74
 transport layer (ISO/OSI model), 102
 triac outputs, 10, 84*f*
 truth tables, 63, 72, 73*t*
 for latches, 74
 AND logic, 120–121
 NAND logic, 124–125
 NOR logic, 125
 NOT logic, 123–124
 OR logic, 121–123
 XOR (exclusive OR) logic, 126
 TSL220 sensor (Texas
 Instruments), 31*f*
 tuning, 288
 twisted-pair cabling, 90
 two-channel emergency stop relays.
 See emergency stop
 switches
 two-handed engaging, 303
 two-position valves, 45*f*
 two's complement, 69–70, 279
 two-state variables, 73
 two-step controls, 288
 two-track encoders, 32
 TYPE statements, in ST, 172

U

UARTs (universal asynchronous
 receivers/transmitters), 91
 UDINT data, 71–72

UINT data, 71–72
 ULINT data, 71–72
 ultrasonic proximity sensors
 input devices, 42
 ultrasonic sensors, 43
 unipolar motors, 52–53
 universal asynchronous receivers/
 transmitters (UARTs), 91
 Universal Serial Bus (USB), 94
 unsigned binary numbers, 69,
 71–72. *See also* signed
 binary numbers
 up-counters, 245, 246*f*, 376–377
 up-down counters, 251, 253*f*,
 376–377
 up-down counters, 246*f*
 URCV block, 103
 USB connections, 94
 USEND block, 103
 USINT data, 71–72
 USTATUS block, 103

V

value checks, 311
 valve operation program example
 full program, 347–357
 car park barrier operation
 (example), 352–356
 controlled cylinder reset,
 356–357
 cyclic movement, 347–348
 sequencing, 348–352
 instruction lists, 159, 159*f*
 ladder diagram, 139*f*
 with master control relay, 203*f*

valves
 directional control valves,
 44–46, 45*f*, 46*f*

spool valves, 44
 4/2 valves, 45, 45*f*
 4/2 valves, 45, 45*f*
 vampire taps, 104
 variable reluctance stepper motors,
 51, 51*f*
 variables, defining in ST, 172–173
 voltage levels, changing, 86–88

W

washing machine, SFC for, 162*f*
 watchdog timers, 308
 Wheatstone bridges, 34–35, 34*f*
 differential amplifiers with, 87,
 88, 88*f*
 with strain gauges, 39, 39*f*

WHILE...DO iteration, in ST,
 171–172, 380
 words (binary data), 71–72, 81, 279
 words (binary words), 9
 workplace safety. *See* safe systems
 WRITE block, 103
 writing documentation for PLC
 systems, 313–335

X

XON/XOFF protocol, 97
 XOR (exclusive OR) logic gates,
 126, 126*f*, 132*f*
 functional blocks, 133*f*
 instruction lists for, 155–158
 XOR operation
 algebra with, 136
 in structured text (ST), 168*t*

Z

zero drift, 25