
ic controllers 
The workhorse of factory automation keeps things on track 

Programmable Logic Controllers are 
at the forefront of manufacturing 
automation. Many factories use Pro- 
grammable Logic Controllers to cut pro- 
duction costs andor increase quality. 

Since its predecessor was hard-wired 
relay panels, the Programmable Logic 
Controller uses a unique language 
called ladder logic. Although other lan- 
guages are used, ladder logic presently 
remains the dominant language of 
automation. The Programmable Logic 
Controller (PLC) is sometimes called a 
Programmable Controller (PC), but the 
abbreviation PLC is preferred to distin- 
guish it from the Personal Computer. 

PLCs developed out of the need to 
replace the hard-wired relay panels. In 
the 1960s, a typical automated assem- 
bly or other manufacturing line had a 
cabinet of relays wired to control the 
operation. As one might expect, debug- 
ging relay failures could be time-con- 
suming, and changing functionality by 
modifying the sequence of operations 
was time-consuming and costly 
because of the required rewiring. 

In 1968, the Hydramatic Division of 
General Motors Corporation (GM) spec- 
ified design criteria for the first PLC. 
(They had to rewire many relay panels 
annually for car model year changes.) 
Some major specifications were: 

1. Easily programmed and repro- 
grammed, preferably in-plant to alter its 
sequence of operations. 

2. Easily maintained and repaired- 
preferably with plug-in modules. 

3. Capable of operation in a plant 
environment. 

4. Smaller than relay equivalent. 
5. Capable of communicating with 

central data collection system. 
6. Cost-competitive with solid-state 

and relay logic systems then in use. 
A handful of companies responded 

to develop the device we now call a 

PLC in late 1969 and early 1970. The 
fKst PLCs just basically replaced hard- 
wired relay logic. 

Today, PLCs are available in a wide 
range of capabilities and cost. There are 
five general categories of PLCs avail- 
able. The general capabilities of each 
category are: 

Micro PLCs: Generally have the 
basic relay instructions, counters, and 
timers with up to 32 digital input/output 
(UO) points (fined number of each) and 
2K words of program memory built 
into a compact unit. 

Small PLCs: Added capabil- 
ities of analog YO, expandable 
I/O of up to 128 points, 4K 
words program memory, shift 
register and sequencer instruc- 
tions, and primitive communi- 
cations with other PLCs. 

Medium PLCs: Expand- 
able U 0  of up to about 1024 
points and 32K words pro- 
gram memory, remote I/O, 
basic math and data handling 
instructions, subroutines, 
interrupts, functional block or 
high-level language, local 
area network connection. 

Large PLCs: Expandable 

and 256K words program memory, 
enhanced math and data handling 
instructions, PID control. 

Very Large PLCs: Expandable I/O 
of up to about 8192 points and 4M 
words program memory. 

PLC architecture 
The architecture of a general PLC is 

shown in Fig. 1. The main parts of a 
PLC are its processor, power supply, 
and input/output (I/O) modules. In a 
micro PLC, all three main parts are 

YO of up to about 2648 points Fig. 1 Architecture of typical PLC 
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enclosed in a single unit. For larger 
PLCs, these three parts are separately 
purchased (depending on desired func- 
tionality), and combined to form a PLC. 
The programming device, often a per- 
sonal computer, connects directly to the 
processor through a serial port or 
remotely through a local area network. 
Depending on the manufacturer, the 
local area network interface may be 
built into the processor, or may be a 
separate module. Many of the PLC local 
area networks are proprietary to one 
manufacturer. However, interfaces to 
standard networks, such as Ethernet, 
have recently been introduced. 

The architecture of the PLC is basi- 
cally the same as a general purpose 
computer. In fact, some of the early 
PLCs were computers with special I/O. 
However, some important characteris- 
tics distinguish PLCs from general pur- 
pose computers. They can be placed in 
an industrial environment that has 
extreme temperatures (typically up to 
160”F), high humidity (up to 95%) ,  
electrical noise, electromagnetic inter- 
ference, and mechanical vibration. They 
are easy to use by plant technicians. 
Hardware interfaces are easily connect- 
ed. Modular and self-diagnosing inter- 
face circuits pinpoint malfunctions and 
are easily replaced. They are pro- 
grammed using ladder logic, which is 
easy to learn. The PLC executes a sin- 
gle program in an orderly and sequen- 
tial fashion. However, most medium to 
large PLCs have instructions that allow 
subroutine calling, interrupt routines, 
and the bypass of certain instructions. 
Also, many PLCs have modules that 
implement higher-level languages, such 
as C and BASIC. 

Ladder logic 
The IEC 113 1 international standard 

defines four PLC languages: ladder 
logic, sequential function charts, func- 
tion blocks, and a text language. By far, 
ladder logic is the most prevalent lan- 
guage. The ladder logic symbology was 
developed from the relay ladder logic 
wiring diagram. In order to explain the 
symbology, simple switch circuits will 
be converted to relay logic and then to 
PLC ladder logic. 

Consider the simple problem of turn- 
ing on a lamp when both switches A and 
B are closed, Fig. 2(a). Fig. 2(b) is a truth 
table of all possible combinations of the 
two switches and the consequent lamp 
action. To implement this function using 
relays, the switches A and B do not con- 

circuit, d) equivalent ladder logic 

nect to the light directly. Instead, control 
relay coils, whose contacts are normally 
open, control the light, Fig. 2(c). The 
switches appear as inputs to the circuit. 

The output (lamp in this case) is not 
driven directly, but driven by another 
relay to provide voltage isolation from 
the relays implementing the logic. The 
switches control relay coils so that the 
inputs are isolated from the logic. Also, 
this way one input can be used multiple 
times by using the multiple poles (con- 

left to right. One would interpret the rung 
symbology as: “When input (switch) A 
is ON and input (switch) B is ON then 
the lamp is ON.” If the example is 
changed to turn on a lamp when either 
switch A or B is closed, then the two 
contacts are placed in parallel. 

Now consider the implementation of 
a logical NOT function. Suppose one 
wants to turn on a lamp when switch A 
is on (closed) and switch B is off (open). 
Figure 3 shows the truth table, relay 

Fig. 3 Implementation of logical NOT in ladder logic: U) truth tuble, b) equiva- 
lent-reluy circuitry, c) equivalent ladder logic 

tacts) on the relay for that input. The 
ladder logic symbology is in Fig. 2(d). 

Notice how the notation is shortened 
to show only the relay contacts and the 
coil of the output relay. It is assumed 
that the inputs (switches in this example) 
are connected to relay coils; that the 
actual output is connected to a set of 
normally open contacts controlled by the 
rightmost coil. The label shown above 
the contact symbol is not the contact 
label. It is the control for the coil that 
controls the contact. 

Also note that the output for the rung 
occurs on the extreme right side of the 
rung and power is assumed to flow from 

implementation and ladder logic for this 
example. The logical NOT is accom- 
plished with the normally closed (NC) 
contact in the ladder. One would inter- 
pret the rung symbology in Figure 3(c) 
as: “When input (switch) A is ON and 
input (switch) B is OFF then the lamp is 
ON.” This particular example is impos- 
sible to implement with only two nor- 
mally open switches. 

A more complicated ladder logic dia- 
gram is shown in Fig. 4. This figure 
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shows more obviously why it is called a 
ladder logic diagram. Each rung has a 
connection to the left (power) rail and a 
connection to the right (neutral) rail. In 
reality, the ladder logic diagram is only a 
symbolic representation of the computer 
program. So, power does not really flow 
through any actual contacts; however, 
the concept of power flowing through 
contacts is useful when explaining the 
program operation. The three basic lad- 
der logic symbols are: 

Normally open (NO) contact -I I- 
Normally closed (NC) contact -I / t- 

or +- 
Output (relay coil) -( )- or -0- 
The output is energized whenever 

any left-to-right path of input contacts is 
closed. For example, in Fig. 4, the out- 
put, OUT 1 is on whenever A and B 
and C are simultaneously on or D is 
off and E is on. Symbols are being 
used to avoid having to deal with VO 
addressing, which is generally differ- 
ent for each PLC manufacturer. 

There are two classes of ladder 
logic instructions: input instructions 
and output instructions. Input instruc- 
tions are the contact instructions, or 
any instruction that can replace a 
contact instruction. These instruc- 
tions are the conditions to turn on the 
output. In contrast, an output instruc- 
tion always occurs on the extreme 
right side of the rung. 

In the examples used so far, the 
only output instruction is ---( )--. 
Depending on the particular PLC 
manufacturer, the other types of out- 
put instructions that may be available 
are: inverted output coil (output is 
deenergized if any left-to-right path 
of contacts is closed), latch output 
coil, unlatch output coil. 

Not all instructions are contacts or 
coils. All other types of instructions 
are often called “box instructions” 
because that is how they appear in 
the symbology. Timers, counters, 
comparison, and computation are the 
most common box instructions, but 
sequencers, shift registers, and data 
move instructions are also box 
instructions. A generic rung with one 
box input instruction and a box out- 
put instruction is shown as the last 
rung in Fig. 4. 

Depending on the manufacturer, 
box instructions may be classified as 
input or output instructions. For 
example, the Siemens TI505 PLC has 
only box input instructions. On the 
Allen-Bradley PLC-5’s, comparison 
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instructions are box input instructions 
and timers, counters and computation 
instructions are box output instructions. 

During operation, the PLC repeated- 
ly executes a scan, during which the 
input channels from all of the input 
modules are copied into the internal 
memory; the ladder logic is scanned, 
updating the outputs being held in inter- 
nal memory, and then the internal out- 
puts are copied to the actual output 
modules. After the actual outputs have 
been updated, the scan is repeated. The 
time to execute a scan, depending on 
the number of I/O channels and the 
length of the ladder logic program, is on 
the order of 1 - 10 milliseconds. Nor- 
mally, the processor uses only the inter- 
nal copy of I/O when executing the lad- 

Fig. 4 General ladder logic diagram 

Fig. 5 Statf/stop applicafion 

der logic. It does not read input chan- 
nels or write output channels. However, 
some manufacturers do allow that 
option, which is useful in critical or 
emergency situations. 

The previous examples used external 
(switch) discrete inputs and an external 
(lamp) discrete output. However, it is not 
required that all contacts be controlled by 
external discrete input devices. The con- 
tacts can also refer to an output (such 
reading the current state of an output). 
Many PLCs provide internal one-bit 
memory locations, often called internal 
coils, to store information that is not con- 
nected to any external output channel. 

One aspect of ladder logic that is 
often confusing is the use of the NC con- 
tact. The contact symbol in the ladder 

does not necessarily correspond to the 
actual switch type used in the field. 
After all, the PLC does not know how 
the switch is wired in the field, only 
whether the switch is open (off) or 
closed (on). So, a NO switch does not 
require a -I t in the ladder logic and 
a NC switch does not require a -$-in 
the ladder logic. Regardless of the 
type of switch in the field, when one 
wants “action” (something to be logi- 
cally true, or on) when the switch is 
closed (on), use the -I I- symbol. 
When one wants “action” (something 
to be logically true, or on) when the 
switch is open (off), use the -$- sym- 
bol. One must eveutually learn to 
read a ladder logic diagram as sym- 
bols and not as relay contacts. 

One common application uses two 
momentary switches to control a 
device, for example, a motor. One 
switch, called START-SW, is a 
momentary normally-open switch 
that when pressed, starts the motor. 
The motor must continue to run after 
STmT-SW is released. The second 
switch, STOP-SW, is a momentary 
normally-closed switch, that when 
pressed, stops the motor. The switch- 
es are specified this way for safety 
reasons. 

If there is any faulty wiring to 
START-SW, the motor cannot be 
started. In addition, the motor will 
automatically stop when there is any 
faulty wiring connected to STOP-SW. 
The ladder logic diagram that will 
accomplish the above function is 
shown in Fig. 5. Note the contact sym- 
bol used for STOP-SW. It is the NO 
contact even though STOP-SW is 
wired normally-closed. Remember, 
the PLC does not know how the 

IEEE POTENTIALS 



switch is wired in the field, only whether 
the switch is open (off) or closed (on). 

When START-SW is on and 
STOP-SW is on (not pressed) the motor 
is turned on. The contact labeled 
“MOTOR” in parallel with the 
START-SW contact ensures that the 
motor remains on, even after 
START-SW is released and the PLC 
reads it as off. When STOP-SW is 
pressed (turns off), the motor is turned off 
and remains off until START-SW is 
pressed again. This type of ladder logic 
rung is often called a “seal circuit” or 
“latching circuit.” Often, in a real applica- 
tion, there will be multiple conditions that 
will have to be satisfied before the motor 
can be turned on. There will also be a 
multitude of conditions, any one of which 
will cause the motor to be turned off. 

For the last example, consider an 
application where one wants to control 
a two speed motor. The specifications 
for the application are: 

a) The motor can only be started in 
Speed 1. 

b) The motor is then switched from 
Speed 1 to Speed 2 after a 10 second 
delay. 

c) The motor cannot be switched 
from Speed 2 to Speed 1. 

d) Speed 1 and Speed 2 cannot be 
ON simultaneously. 

e) If excessive vibration occurs, the 
motor must stop and cannot be restarted 
(is locked out) until a reset button is 
pressed. 

f) If the stop button is pressed when 
the motor is running in either speed, the 
motor will stop, but will not lock out. 
Assume the following input and output 
assignments (only symbols are used 
here to avoid explaining the I/O 
addressing scheme): 

Inputs: 
START-PB Start push-button, 

STOP-PB Stop push-button, 

RESET-PB Reset push-button, 

VIB-SENSE Vibration sensor, 

NO, ON when starting 

NC, OFF when stopping 

NO, ON (closed) when resetting 

NC, OFF when vibration occurs 

SPEED-1 Motor speed 1 
SPEED-2 Motor speed 2 

The two outputs are assumed to be 
inputs to a motor controller that direct- 
ly controls the motor. 

Unfortunately, it is hard to show a 
generic ladder for any application that 

outputs: 

logic that will fulfill the specifications 
for an Allen-Bradley PLC-5 is shown in 
Fig. 6. RUN and VIB-OCCUR are 
internal coils (one-bit memory locations) 
and are not output channels. The TON 
instruction is an on-delay timer instruc- 
tion and is an output instruction. The 
timing interval is the product of the base 
and the preset values. When the input 
conditions to the left of the timer 
become logically true (continuity 
through contact), the timer accumulator 
is counted up once for each time base 
interval. When the accumulator equals 
the preset value, the timer “done” bit 
(addressed as TIMERA.DN) is set to 
true (ON). If the input condition to the 
timer becomes logically false at any 
time, the timer is reset and the accumu- 
lator is set to zero. It does not retain the 
accumulator value. Since the timer is an 
output instruction, the timer done bit 
must be used on another rung to turn on 
the SPEED-2 output. The first rung is 
the normal s tds top  rung with an addi- 
tional condition for stopping. 

The RUN internal coil is used 
because there is not a single output that 
defines the motor operation. When vibra- 
tion occurs (VIB-OCCUR turns on), 
RUN turns off. The second rung defines 
the delay timer operation. The third and 
fourth rungs drive the outputs that con- 
trol the motor. As long as RUN is on and 
the timer has not finished the 10 second 
timing interval, SPEED-1 is on. When 

the 10 second interval has elapsed, 
SPEED-1 is turned off and SPEED-2 is 
turned on. The last rung implements a 
latchhnlatch for the vibration sensor 
(VIB-SENSE). It is different from the 
start/stop rung for safety reasons. 

If the RESET-PB NC contact is 
placed in series with VIB-SENSE on 
the upper part of the rung (in the same 
position as the STOP SW in the first 
rung), then holding the reset switch on 
(pushing the NO push-button) will over- 
ride the vibration sensor. This will 
allow the motor to run even when vibra- 
tion continues to occur. Obviously, a 
situation one would want to prevent for 
safety reasons. 

Conclusion 
Programmable logic controllers and 

their unique language, ladder logic, are 
the workhorses of factory automation. 
Higher-level languages, such as sequen- 
tial function charts and function blocks, 
ease the programming task for large 
systems. However, ladder logic remains 
the dominant language at present. Any 
engineer working in a manufacturing 
environment will at least encounter 
PLCs and ladder logic, if not use them 
on a regular basis. 
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