Programmable Logic Controllers are
at the forefront of manufacturing
automation. Many factories use Pro-
grammable Logic Controllers to cut pro-
duction costs and/or increase quality.

Since its predecessor was hard-wired
relay panels, the Programmable Logic
Controller uses a unique language
called ladder logic. Although other lan-
guages are used, ladder logic presently
remains the dominant language of
automation. The Programmable Logic
Controller (PLC) is sometimes called a
Programmable Controller (PC), but the
abbreviation PLC is preferred to distin-
guish it from the Personal Computer.

PLCs developed out of the need to
replace the hard-wired relay panels. In
the 1960s, a typical automated assem-
bly or other manufacturing line had a
cabinet of relays wired to control the
operation. As one might expect, debug-
ging relay failures could be time-con-
suming, and changing functionality by
modifying the sequence of operations
was time-consuming and costly
because of the required rewiring.

In 1968, the Hydramatic Division of
General Motors Corporation (GM) spec-
ified design criteria for the first PLC.
(They had to rewire many relay panels
annually for car model year changes.)
Some major specifications were:

1. Easily programmed and repro-
grammed, preferably in-plant to alter its
sequence of operations.

2. Easily maintained and repaired—
preferably with plug-in modules.

3. Capable of operation in a plant
environment.

4. Smaller than relay equivalent.

5. Capable of communicating with
central data collection system.

6. Cost-competitive with solid-state
and relay logic systems then in use.

A handful of companies responded
to develop the device we now call a

14

PLC in late 1969 and early 1970. The
first PLCs just basically replaced hard-
wired relay logic.

Today, PL.Cs are available in a wide
range of capabilities and cost. There are
five general categories of PLCs avail-
able. The general capabilities of each
category are:

Micro PLCs: Generally have the
basic relay instructions, counters, and
timers with up to 32 digital input/output
(I/O) points (fixed number of each) and
2K words of program memory built
into a compact unit.

Small PLCs: Added capabil-
ities of analog /O, expandable
I/O of up to 128 points, 4K
words program memory, shift
register and sequencer instruc-
tions, and primitive communi-
cations with other PLCs.

Medium PLCs: Expand-
able I/O of up to about 1024
points and 32K words pro-
gram memory, remote 1/0,
basic math and data handling
instructions, subroutines,
interrupts, functional block or
high-level language, local
area network connection.

Large PLCs: Expandable
I/O of up to about 2048 points

0278-6648/96/$5.00 © 1996 |[EEE

Fig. 1 Architecture of typical PLC

rogrammable logic controllers

The workhorse of factory automation keeps things on track

and 256K words program memory,
enhanced math and :data handling
instructions, PID control.

Very Large PLCs: Expandable 1/0
of up to about §192 points and 4M
words program memory.

PLC architecture

The architecture of a general PLC is
shown in Fig. 1. The main parts of a
PLC are its processor, power supply,
and input/output (I/O) modules. In-a
micro PLC, all threeimain parts are

|IEEE POTENTIALS

©Tony Galindo

enclosed in a single unit. For larger
PLCs, these three parts are separately
purchased (depending on desired func-
tionality), and combined to form a PLC.
The programming device, often a per-
sonal computer, connects directly to the
processor through a serial port or
remotely through a local area network.
Depending on the manufacturer, the
local area network interface may be
built into the processor, or may be a
separate module. Many of the PLC local
area networks are proprietary to one
manufacturer. However, interfaces to
standard networks, such as Ethernet,
have recently been introduced.

The architecture of the PL.C is basi-
cally the same as a general purpose
computer. In fact, some of the early
PLCs were computers with special I/O.
However, some important characteris-
tics distinguish PLCs from general pur-
pose computers. They can be placed in

an industrial environment that has

extreme temperatures (typically up to
160°F), high humidity (up to 95%),
electrical noise, electromagnetic inter-
ference, and mechanical vibration. They
are easy to use by plant technicians.
Hardware interfaces are easily connect-
ed. Modular and self-diagnosing inter-
face circuits pinpoint malfunctions and
are easily replaced. They are pro-
grammed using ladder logic, which is
easy to learn. The PLC executes a sin-
gle program in an orderly and sequen-
tial fashion. However, most medium to
large PLCs have instructions that allow
subroutine calling, interrupt routines,
and the bypass of certain instructions.
Also, many PLCs have modules that
implement higher-level languages, such
as C and BASIC.

Ladder logic

The IEC 1131 international standard
defines four PLC languages: ladder
logic, sequential function charts, func-
tion blocks, and a text language. By far,
ladder logic is the most prevalent lan-
guage. The ladder logic symbology was
developed from the relay ladder logic
wiring diagram. In order to explain the
symbology, simple switch circuits will
be converted to relay logic and then to
PLC ladder logic.

Consider the simple problem of turn-
ing on a lamp when both switches A and
B are closed, Fig. 2(a). Fig. 2(b) is a truth
table of all possible combinations of the
two switches and the consequent lamp
action. To implement this function using
relays, the switches A and B do not con-

FEBRUARY/MARCH 1996

Fig. 2 Series circuit ladder logic: a) switch circuit, b) truth table, ¢) equivalent relay

circuit, d) equivalent ladder logic

nect to the light directly. Instead, control
relay coils, whose contacts are normally
open, control the light, Fig. 2(c). The
switches appear as inputs to the circuit.
The output (lamp in this case) is not
driven directly, but driven by another
relay to provide voltage isolation from
the relays implementing the logic. The
switches control relay coils so that the
inputs are isolated from the logic. Also,
this way one input can be used multiple
times by using the multiple poles (con-

left to right. One would interpret the rung
symbology as: “When input (switch) A
is ON and input (switch) B is ON then
the lamp is ON.” If the example is
changed to turn on a lamp when either
switch A or B is closed, then the two
contacts are placed in parallel.

Now consider the implementation of
a logical NOT function. Suppose one
wants to turn on a lamp when switch A
is on (closed) and switch B is off (open).
Figure 3 shows the truth table, relay

Fig. 3 Implementation of logical NOT in ladder logic: a) truth table, b) equiva-
lent-relay circuitry, ¢) equivalent ladder logic

tacts) on the relay for that input. The
ladder logic symbology is in Fig. 2(d).

Notice how the notation is shortened
to show only the relay contacts and the
coil of the output relay. It is assumed
that the inputs (switches in this example)
are connected to relay coils; that the
actual output is connected to a set of
normally open contacts controlled by the
rightmost coil. The label shown above
the contact symbol is not the contact
label. It is the control for the coil that
controls the contact.

Also note that the output for the rung
occurs on the extreme right side of the
rung and power is assumed to flow from

implementation and ladder logic for this
example. The logical NOT is accom-
plished with the normally closed (NC)
contact in the ladder. One would inter-
pret the rung symbology in Figure 3(c)
as: “When input (switch) A is ON and
input (switch) B is OFF then the lamp is
ON.” This particular example is impos-
sible to implement with only two nor-
mally open switches.

A more complicated ladder logic dia-
gram is shown in Fig. 4. This figure

15

shows more obviously why it is called a
ladder logic diagram. Each rung has a
connection to the left (power) rail and a
connection to the right (neutral) rail. In
reality, the ladder logic diagram is only a
symbolic representation of the computer
program. So, power does not really flow
through any actual contacts; however,
the concept of power flowing through
contacts is useful when explaining the
program operation. The three basic lad-
der logic symbols are:

Normally open (NO) contact - +

Normally closed (NC) contact -/ I+
or 4+

Output (relay coil) —(}— or —O—

The output is energized whenever
any left-to-right path of input contacts is
closed. For example, in Fig. 4, the out-
put, OUT 1 is on whenever A and B
and C are simultaneously on or D is
off and E is on. Symbols are being
used to avoid having to deal with I/O
addressing, which is generally differ-
ent for each PLC manufacturer.

There are two classes of ladder
logic instructions: input instructions
and output instructions. Input instruc-
tions are the contact instructions, or
any instruction that can replace a
contact instruction. These instruc-
tions are the conditions to turn on the
output. In contrast, an output instruc-
tion always occurs on the extreme
right side of the rung.

In the examples used so far, the
only output instruction is —{(}—.
Depending on the particular PLC
manufacturer, the other types of out-
put instructions that may be available
are: inverted output coil (output is
deenergized if any left-to-right path
of contacts is closed), latch output
coil, unlatch output coil.

Not all instructions are contacts or
coils. All other types of instructions
are often called “box instructions”
because that is how they appear in
the symbology. Timers, counters,
comparison, and computation are the
most common box instructions, but
sequencers, shift registers, and data
move instructions are also box
instructions. A generic rung with one
box input instruction and a box out-
put instruction is shown as the last
rung in Fig. 4.

Depending on the manufacturer,
box instructions may be classified as
input or output instructions. For
example, the Siemens TIS05 PLC has
only box input instructions. On the
Allen-Bradley PLC-5’s, comparison

16

&

Fig. 4 General ladder logic diagram

instructions are box input instructions
and timers, counters and computation
instructions are box output instructions.
During operation, the PLC repeated-
ly executes a scan, during which the
input channels from all of the input
modules are copied into the internal
memory; the ladder logic is scanned,
updating the outputs being held in inter-
nal memory, and then the internal out-
puts are copied to the actual output
modules. After the actual outputs have
been updated, the scan is repeated. The
time to execute a scan, depending on
the number of I/O channels and the
length of the ladder logic program, is on
the order of 1 - 10 milliseconds. Nor-
mally, the processor uses only the inter-
nal copy of /O when executing the lad-

Fig. 5 Starl/stop application

der logic. It does not read input chan-
nels or write output channels. However,
some manufacturersido allow that
option, which is useful in critical or
emergency situations.
The previous examples used external
(switch) discrete inputsand an external
(lamp) discrete output. However, it is not
required that all contacts be controlled by
external discrete input devices. The con-
tacts can also refer to an-output (such
reading the current state of an output).
Many PLCs provide internal one-bit
memory locations, often called internal
coils, to store information that is noet con-
nected to any external output channel.
One aspect of ladder logic that is
often confusing is the use of the NC con-
tact. The contact symbol in the ladder
does not necessarily correspond to the

~ actual switch type used in the field.
After all, the PLC does not know how
the switch is wired in the field, only
whether the switch is open (off) or
closed (on). So, a NO switch does not
require a - Fin the ladder logic and
a NC switch does not require a 4fin
the ladder logic. Regardless of the
type of switch in the field, when one
wants “action” (something to be logi-
cally true, or on) when the switch is
closed (on), use the 4 F symbol.
When one wants “action” (something
to be logically true, or on) when the
switch is open (off), use the 4+ sym-
bol.. One must eventually learn to
read a ladder logic diagram as sym-
bols and not as relay contacts.

One common application uses two
momentary switches to control a
device, for example, a motor. One
switch, called START_SW, is a
momentary normally-open switch
that when pressed, starts the motor.
The motor must continue to run after
START_SW is released. The second
switch, STOP_SW, is a momentary
normally-closed switch, that when
pressed, stops the motor. The switch-
es are specified this way for safety
reasons.

If there is any faulty wiring to
START_SW, the motor cannot be
started. In addition, the motor will
automatically stop when there is any
faulty wiring connected to STOP_SW.
The ladder logic diagram that will
accomplish the above function is
shown in Fig. 5. Note the contact sym-
bol used for STOP_SW. It is the NO
contact even though STOP_SW is
wired normally-closed. Remember,
the PLC does not know how the

IEEE POTENTIALS

switch is wired in the field, only whether
the switch is open (off) or closed (on).

When START_SW is on and
STOP_SW is on (not pressed) the motor
is turned on. The contact labeled
“MOTOR” in parallel with the
START_SW contact ensures that the
motor remains on, even after
START_SW is released and the PLC
reads it as off. When STOP_SW is
pressed (turns off), the motor is turned off
and remains off until START_SW is
pressed again. This type of ladder logic
rung is often called a “seal circuit” or
“latching circuit.” Often, in a real applica-
tion, there will be multiple conditions that
will have to be satisfied before the motor
can be turned on. There will also be a
multitude of conditions, any one of which
will cause the motor to be turned off.

For the last example, consider an
application where one wants to control
a two speed motor. The specifications
for the application are:

a) The motor can only be started in
Speed 1.

b) The motor is then switched from
Speed 1 to Speed 2 after a 10 second
delay.

¢) The motor cannot be switched
from Speed 2 to Speed 1.

d) Speed 1 and Speed 2 cannot be
ON simultaneously.

e) If excessive vibration occurs, the
motor must stop and cannot be restarted
(is locked out) until a reset button is
pressed.

f) If the stop button is pressed when
the motor is running in either speed, the
motor will stop, but will not lock out.
Assume the following input and output
assignments (only symbols are used
here to avoid explaining the I/O
addressing scheme):

Inputs:

START_PB Start push-button,
NO, ON when starting

STOP_PB Stop push-button,
NC, OFF when stopping :

RESET_PB Reset push-button, -
NO, ON (closed) when resetting

VIB_SENSE Vibration sensor,
NC, OFF when vibration occurs

Outputs:

SPEED_1 Motor speed 1
SPEED_2 Motor speed 2

The two outputs are assumed to be
inputs to a motor controller that direct-
ly controls the motor.

Unfortunately, it is hard to show a
generic ladder for any application that
uses timers, since their implementation
varies among PLC vendors. One ladder

FEBRUARY/MARCH 1996

logic that will fulfill the specifications
for an Allen-Bradley PLC-5 is shown in
Fig. 6. RUN and VIB_OCCUR are
internal coils (one-bit memory locations)
and are not output channels. The TON
instruction is an on-delay timer instruc-
tion and is an output instruction. The
timing interval is the product of the base
and the preset values. When the input
conditions to the left of the timer
become logically true (continuity
through contact), the timer accumulator
is counted up once for each time base
interval. When the accumulator equals
the preset value, the timer “done” bit
(addressed as TIMERA.DN) is set to
true (ON). If the input condition to the
timer becomes logically false at any
time, the timer is reset and the accumu-
lator is set to zero. It does not retain the
accumulator value. Since the timer is an
output instruction, the timer done bit
must be used on another rung to turn on
the SPEED_2 output. The first rung is
the normal start/stop rung with an addi-
tional condition for stopping.

The RUN internal coil is used
because there is not a single output that
defines the motor operation. When vibra-
tion occurs (VIB_OCCUR turns on),
RUN turns off. The second rung defines
the delay timer operation. The third and
fourth rungs drive the outputs that con-
trol the motor. As long as RUN is on and
the timer has not finished the 10 second
timing interval, SPEED_1 is on. When

Fig. 6 Ladder logic for two speed
motor application

the 10 second interval has elapsed,
SPEED_1 is turned off and SPEED_2 is
turned on. The last rung implements a
latch/unlatch for the vibration sensor
(VIB_SENSE). It is different from the
start/stop rung for safety reasons.

If the RESET_PB NC contact is
placed in series with VIB_SENSE on
the upper part of the rung (in the same
position as the STOP SW in the first
rung), then holding the reset switch on
(pushing the NO push-button) will over-
ride the vibration sensor. This will
allow the motor to run even when vibra-
tion continues to occur. Obviously, a
situation one would want to prevent for
safety reasons.

Conclusion

Programmable logic controllers and
their unique language, ladder logic, are
the workhorses of factory automation.
Higher-level languages, such as sequen-
tial function charts and function blocks,
ease the programming task for large
systems. However, ladder logic remains
the dominant language at present. Any
engineer working in a manufacturing
environment will at least encounter
PLCs and ladder logic, if not use them
on a regular basis.

Read more about it
e Filer, Robert and Leinonen,
George. Programmable Controllers and
Designing Sequential Logic, Saunders
College Pub., 1992.

* Bryan, L.A. and Bryan, E.A. Pro-
grammable Controllers: Theory and
Implementation, Industrial Text,
Chicago, IL, 1988.

* Simpson, Colin D. Programmable
Logic Controllers, Regents/Prentice-
Hall, Englewood Cliffs, NJ, 1994.

* Warnock, Ian G. Programmable
Controllers: Operation and Applica-
tion, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

* Webb, John W. and Reis, Ronald A.
Programmable Logic Controllers: Prin-
ciples and Applications, 3rd Ed., Pren-
tice-Hall, Englewood Cliffs, NJ, 1995.

e International Electrotechnical
Commission. “Part 3: Programming
Languages,” IEC Standard 1131-3,
Programmable Controllers. American
National Standards Institute, Ref. No.
CEI/IEC 1131-3, 1993.

About the author

Kelvin Erickson is an Associate
Professor of Electrical Engineering at
the University of Missouri-Rolla.

17

