
Exercise #05 (Vehicle)

Description

Your program should read data from a software module in a car. The software
module is currently not able to connect to hardware so we’re using faked data.

In the data, as read using the get_bus_data function you’ll get a lot of data
out of which only one, engine_speed is interesting to us.

Your task is to:

• read data, using the get_bus_data function, at least two times per second.
It is quite possible you will get data, or no data, or some error occurs - it
is thus important to check the return value of the function.

• every second you should printout the mean value of the last 10 (valid) data
read. You are recommended to do this by storing the 10 last read data in
an array.

Not obligatory

• When starting up you do not have 10 valid data (how could you?). Make
sure you calculate the mean value only from valid data.

• What shall happen with the mean value calculation if you get incorrect
data? No coding needed, just think about it.

Note: the name magic-bus is inspired by the The Who song, https://en.wikipedia.org/wiki/Magic_Bus_(song)

Syntax

magic-bus

Try the program in the shape it is in

The program is in a very basic shape - your job is to extend it - and you can try
it out to get a feeling.

1

Compile and execute with no log or debug

make

./magic-bus

Note: make clean will be needed if the last compilation was done with either
make debug or make log

Compile and execute with log but no debug

make clean log

./magic-bus

Note: clean is not needed as long as you continue doing make log

Compile and execute with log and debug

make clean debug

./magic-bus

Note: clean is not needed as long as you continue doing make debug

Note: You don’t know the shape I am in.

Your coding

This exercise/handin contains two directories, windows and unix. Windows
users should use the code in the windows directory and BSD (including MacOS)
and GNU/Linux users shall use the unix directory.
You can do all the coding in the file main.c. The other file are basically there
to fake data and provide log/debug functionality for you.
In the file main.c you will find instructions/hints on how to proceed with the
exercise.

How to develop

We recommend small increments - add a small piece of code, compile and execute.

Collecting data

You’ll get the main.c together with this exercise. In the main function you will
find a loop together with recommendations on how to proceed.

2

API description

Struct vehicle_info

You will find the definition of this structure in the file vehicle/bus.h. In this
struct we’re only interested in the engine_speed variable.

Function get_bus_data

SYNTAX:

int get_bus_data(vehicle_info *vi)

DESCRIPTION:

Stores the latest data from the vehicle module in the passed
vehicle_info pointer.

RETURN VALUES:

0 (BUS_OK) - if data was found and stored in the passed
vehicle_info struct.

1 (BUS_NO_DATA) - if no data was found. No data is stored in the
passed vehicle_info struct. This means that the data queue in the
vehicle is empty and getting this every now and then is good since
it shows you're reading data quicker than the data is produced.

2 (BUS_BAD_INDATA) - if the passed pointer to vehicle_info struct
was NULL.

2 (BUS_BAD_DATA) - if for different reasons the data could not be
retrieved. Reasons could be electrical failure.

Presenting mean value

In each turn in the the loop together in the main function you can check if one
second has passed since the last printout. If one second has passed, print again.

Hint: print the first time, store the current time. Next turn in the loop you check
the time and see if one second has passed

3

Collecting data - storing 10 items in an array

You can do this in several ways. We list two strategies here.

Store items ordered and starting from 0 (easier)

In short you always store the latest incoming data in the last position (10) in
the array. To do this you need to move the 9th element to the 8th position etc.

We given an example here with an array of size 3.

Initial array:

array: [a | b | c]

We shall now store a new element, d. To do this we can discard the oldest one,
which is a, so move all the elements left and finally store d on the last position.

array: [a | b | c]

Move elements on step left - we do this by copying so we’ll have two c’s for a
while:

array[0] = array[1] ;
array[1] = array[2] ;

The array now looks like this:
array: [b | c | c]

And finally store d in the last position:

array[2] = d;

The array now looks like this:
array: [b | c | d]

When the array is bigger than 3 you most likely want to use a for loop instead
of adressing the array as above.

Calculating the mean value is done by looping through the array and sum the
elements and divide . . . well, you get it.

4

Store items ordered and starting from an index (a bit harder)

We still use an array of size 10. But now we use an index to keep track of the
where to store the next item. If the index reaches 10 we can zero the index (i e
assign it 0).

Let’s go for an example:

Initial array:

The array and index now looks like this:
array: [a | b | -]
index: 2

We shall now store a new element, c. To do this we can discard the element at
position index (in this case 2) which currently is undefined (not set). We also
need to increase the index - since the index now is 3 (size of the array) we zero
it.

index++;
if (index==3) { index=0; }

The array and index now looks like this:
array: [a | b | c]
index: 0

We shall now store a new element, d. To do this we can discard the element at
position index (in this case 0) which is a. We also need to increase the index.

index++;
if (index==3) { index=0; }

The array and index now looks like this:
array: [d | b | c]
index: 1

Makefile

We have written a Makefile for you:

• make magic-bus - produces a program, magic-bus, with no debug or log
printouts

• make all - same as make magic-bus

5

• make debug - produces a program, magic-bus, with debug and log print-
outs

• make log - produces a program, magic-bus, with log printouts (no debug
printouts)

• make clean - cleans up your source from generated files (such as .o)

Log and debug

In log.h, which is already included in main.c you’ll find functions with which
you can have conditional printouts - printouts that are made only if a certain
condition is true.

debug

Use it like you would use printf. But you need to add an extra parenthesis:

debug(("Wowie the variable ret now has the value: %d", ret));

Note: there are two parenthesises.

To trigger the debug printouts to actually occur you need to compile the code
with DEBUG defined. The easiest way to do this is to type:
make clean debug

Note: enabling debug printouts also triggers log printouts.

log

Use it like you would use printf. But you need to add an extra parenthesis:

log(("Wowie the variable ret now has the value: %d", ret));

Note: there are two parenthesises

To trigger the log printouts to actually occur you need to compile the code with
LOG_TO_FILE defined. The easiest way to do this is to type:
make clean log

Test

Run the program.

6

Code structure

You only need to write code in main.c. Make sure no function, including main,
is more than 20 lines of code. If a function is longer than 20 lines you are
encouraged to split it into functions and invoke calls to these instead. This will
make your code easier to read, review and maintain.

7

	Exercise #05 (Vehicle)
	Description
	Syntax
	Try the program in the shape it is in
	Compile and execute with no log or debug
	Compile and execute with log but no debug
	Compile and execute with log and debug

	Your coding
	How to develop
	Collecting data
	API description
	Struct vehicle_info
	Function get_bus_data

	Presenting mean value
	Collecting data - storing 10 items in an array
	Store items ordered and starting from 0 (easier)
	Store items ordered and starting from an index (a bit harder)

	Makefile
	Log and debug
	debug
	log

	Test
	Code structure

