Stuctures in C
(struct)
+ some |I/O with structs

structs are complex datatypes which allow the
programmer to group together different datatypes in a
single unit

Similar to the “class” datatype in object-oriented
programming languages

A struct (a user-defined datatype):

struct people {
char firstnane [50];
char surnane [50];

char address [100];
| Nt age,;

With this declaration we can declare struct variables:

struct peopl e personl, person2;

Now we have two person variables...

personl, person2

...that we can use to store information about people

Assignment to the various parts of the struct can be done
In the following manner:

strcpy(personl. firstnane,”John”);
strcpy(personl. surnanme,”Smth”);
strcpy(personl. address, ”123 Main St.");
personl. age = 32;

#1 ncl ude <stdi o. h>
#1 ncl ude <string. h>

struct people {

C
C
C

nar firstnane [50];

nar surnane [50];
nar address [100];

| Nt age;

'

voi d print_person(struct

peopl e person);

I nt mai n()

{

struct people personl, person2;

strcpy(personl. firstnane, "John");
strcpy(personl. surnane,"Smth");
strcpy(personl. address, "123 Main St.");
personl. age = 32;
strcpy(person2.firstnane, "D na");
strcpy(person2. surnanme, "Hal |l ");
strcpy(person2. address, "334 Hgh St.");
person2. age = 29;

print_person(personl);
print_person(person2),;

} [/end nmain()

void print _person(struct people person) {

orintf("First name: %\n", person.firstnane);
orintf("Surnane:. %\n", person.surnane);
orintf("Address: 9%\n", person. address);
orintf("Age: %\ n", person.age);

} /lend print_person ()

What is written to the screen:

$./a.out

First nane: John
Surnane: Smth
Address: 123 Main St.
Age: 32

First nane: D na

Sur nane: Hall
Address: 334 H gh St.
Age: 29

$

We can write whole structs directly to a binary file with the
function fopen() and fwrite():

fopen(nane_of fil e, node);

mode can be “r”’ for readonly and “w” for writeonly...

fwite(& he struct,size Iin bytes,nr _of structs
,the file);

10

|/ sanme declarations as i1 n the previous exanple

Il nt mai n()

{

struct people personl, person2;
FILE *fp; //file variable

strcpy(personl. firstnane, "John");
strcpy(personl. surnane,"Smth");
strcpy(personl. address, "123 Main St.");
personl. age = 32;
strcpy(person2.firstnane, "D na");
strcpy(person2. surnanme, "Hal |l ");
strcpy(person2. address, "334 Hgh St.");
person2. age = 29;

11

fp = fopen("personfile.dat","w'");

1f (fp !'= NULL){
fwrite(&personl, sizeof (struct people),1,fp);
fwrite(&person2, sizeof (struct people), 1, fp);
fclose(fp);

} else {
fprintf(stderr,"Problemopening file\n");
exit(1),;

}

} //end of main()

12

The last bit of code created a binary file called
personfile.dat which now can be read with fread()

fread(& he struct,size I n bytes,nr_of structs,
the file);

13

/| | sanme declarations as 1 n the previous exanple

I nt mai n()

{
struct peopl e personli,
FI LE *fp;

fp = fopen("personfile.dat","r");

1 f (fp == NULL) {
fprintf(stderr,"Problemopening file\n");
exit(1);

}

while (!feof (fp)) {
fread(&ersonl, si zeof (struct people), 1, fp);
print_person(personl);

llcl ose(fp);

14

