
 1

Stuctures in C

(struct)

+ some I/O with structs

 2

structs are complex datatypes which allow the
programmer to group together different datatypes in a
single unit

Similar to the “class” datatype in object-oriented
programming languages

 3

A struct (a user-defined datatype):

struct people {

 char firstname [50];

 char surname [50];

 char address [100];

 int age;

};

 4

With this declaration we can declare struct variables:

struct people person1, person2;

Now we have two person variables...

person1, person2

...that we can use to store information about people

 5

Assignment to the various parts of the struct can be done
in the following manner:

strcpy(person1.firstname,”John”);

strcpy(person1.surname,”Smith”);

strcpy(person1.address,”123 Main St.”);

person1.age = 32;

 6

#include <stdio.h>
#include <string.h>

struct people {
 char firstname [50];
 char surname [50];
 char address [100];
 int age;
};

void print_person(struct people person);

 7

int main()
{
 struct people person1, person2;

 strcpy(person1.firstname,"John");
 strcpy(person1.surname,"Smith");
 strcpy(person1.address,"123 Main St.");
 person1.age = 32;
 strcpy(person2.firstname,"Dina");
 strcpy(person2.surname,"Hall");
 strcpy(person2.address,"334 High St.");
 person2.age = 29;

 print_person(person1);
 print_person(person2);

} //end main()

 8

void print_person(struct people person) {

 printf("First name: %s\n", person.firstname);
 printf("Surname: %s\n", person.surname);
 printf("Address: %s\n", person.address);
 printf("Age: %d\n", person.age);

} //end print_person ()

 9

What is written to the screen:

$./a.out
First name: John
Surname: Smith
Address: 123 Main St.
Age: 32
First name: Dina
Surname: Hall
Address: 334 High St.
Age: 29
$

 10

We can write whole structs directly to a binary file with the
function fopen() and fwrite():

fopen(name_of_file,mode);

mode can be “r” for readonly and “w” for writeonly...

fwrite(&the_struct,size_in_bytes,nr_of_structs
,the_file);

 11

//same declarations as in the previous example

int main()
{
 struct people person1, person2;
 FILE *fp; //file variable

 strcpy(person1.firstname,"John");
 strcpy(person1.surname,"Smith");
 strcpy(person1.address,"123 Main St.");
 person1.age = 32;
 strcpy(person2.firstname,"Dina");
 strcpy(person2.surname,"Hall");
 strcpy(person2.address,"334 High St.");
 person2.age = 29;

 12

 fp = fopen("personfile.dat","w");
 if (fp != NULL){
 fwrite(&person1,sizeof(struct people),1,fp);
 fwrite(&person2,sizeof(struct people),1,fp);
 fclose(fp);
 } else {
 fprintf(stderr,"Problem opening file\n");
 exit(1);
 }

} //end of main()

 13

The last bit of code created a binary file called
personfile.dat which now can be read with fread()

fread(&the_struct,size_in_bytes,nr_of_structs,
 the_file);

 14

//same declarations as in the previous example

int main()
{
 struct people person1;
 FILE *fp;

 fp = fopen("personfile.dat","r");
 if (fp == NULL) {
 fprintf(stderr,"Problem opening file\n");
 exit(1);
 }

 while (!feof(fp)) {
 fread(&person1,sizeof(struct people),1,fp);
 print_person(person1);
 }
 fclose(fp);

}

