Exercise in #01

Topics covered in this hand in:

e Code standard

e Code structure

o Build tools - compiler
o Makefile

o Functions

o Types, variables

Introduction
In this handin we will write code that looks a bit like code running in one of a
vehicle’s computers.

The program is a simple control loop[1] reading values from different (faked)
peripheral devices. The program does not act on any of the values - it only prints
the value to stdout (which is a bit stupid, but hey - this is not a real vehicle).

[1] https://en.wikipedia.org/wiki/Embedded system#Simple control loop

Tasks

Code structure

e Move the code that handles (read) values from the wheel. The code should
be put in a separate file as well as a separate directory with appropriate
names.

Hint: you ‘may’ need to add a header file for the wheel functionality

Add engine functionality

e Add a function that initiates the engine code. The function need not do
anything.

¢ Add a function that reads the engine speed (of course this will also be a
total fake, see the wheel speed function for inspiration). The value returned
should be within the range 1000 to 1500.

o Add code in the main program (in the loop) that reads the engine speed
from the engine code, stores it in a variable and prints it out.



Warning feature
e In the loop in the main function you should check if the wheel speed is
higher than 1070 and the engine speed is higher than 1300. If it is you

should print a warning message on stdout saying something like “You’re
pushing things a bit too far”.

Use the makefile
e Make sure that you, or rather the examiners, can use the Makefile to build

your source code. Do this by following the instructions in the Makefile
itself.

Code standard

¢ You should use the GNU coding standards|2].

[2] https://www.gnu.org/prep/standards/

Comments (extra, not obligatory)

e Write comments in your code.

e Document the functions using Doxygen and generate a proper API manual.



	Exercise in #01
	Topics covered in this hand in:
	Introduction
	Tasks
	Code structure
	Add engine functionality
	Warning feature
	Use the makefile
	Code standard
	Comments (extra, not obligatory)



