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Kapitel 1

Linjart ekvationssystem

1.1 Lésning av linjart ekvationssystem

Vi skall i detta kapitel 16sa linjéra ekvationssystem (ES).

EXEMPEL 1.1 Betrakta féljande ES.

20 —y =1 rT—2y=2
Yy Yy
rT—2y=2 20 —y =1
dar vi i det andra ES endast bytt plats pa ekvationerna. Genom att multiplicera forsta

ekvation med —2 och sedan addera ekvationen till andra ekvation far vi (Observera att
forsta ekvation star kvar i ursprungligt skick)

r—2y=2
y=-1

Sista ekvation multiplicerar vi med 2 och adderar sedan till forsta ekvation. Detta ger

z=0
y=-1

som &r svaret/l0sningen.

Kommentarer Man kan rita ekvationerna eftersom de &r ekvationer for linjer. Skérningsapunkten
for dessa linjer ar =,y = (0, —1).
ExXEMPEL 1.2 Los ES

2z —y=1 Multiplicera 1:a ekv. med —2 — 2t —y=1
Az — 2y =2 och addera till andra ekv. 0=
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Sista ekvationen &ar ju en sjalvklarhet och ger ingen information. Losningen ar alla
(z,y) som uppfyller den forsta ekvationen. Alltsa (z,y) sadana att 2x —y = 1, d..v.s.
y = 2x — 1. Losningen kan ocksa skrivas

(z,y) =(z,20 — 1) =2(1,2) +(0,—-1),z € R

]
Kommentarer Geometriskt ar losningen linjen 2z — 1 = y.
EXEMPEL 1.3
Los ES
20 —y =1 Multiplicera 1:a ekv. med —2 20 —y =1
dr — 2y =1 och addera till andra ekv. 0=—1
Sista ekvationen &r en motsédgelse. Detta siger att ES saknar 10sning.
]

Kommentarer

e [ ovanstaende tre exempel ser vi att vi har 1, co eler 0 16sningar. Detta ar typsikt
for alla ES.

EXEMPEL 1.4 Los ES

z—y+2z2=0
20 4+y—22=3
r—z=1

Losning

Multiplicera forsta ekv med —2 och addera till andra ekv. detta for att eliminera
r—termen i andra ekv. P.s.s. multiplicera 1:a ekv. med —1 och addera till tredje
ekv. Detta ger ett ekvivalent ES

r—y+2z=0
Jy—6z=3
y—3z=1
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Multiplicera andra ekv. med 1/3.

r—y+2z=0
y—2z=1
y—3z=1

och multiplicera andra ekv. med —1 och addera till tredje ekv.

r—y+2z=0
y—2z=1
—2=0

Inséttning av z = 0 i andra ekv. ger y = 1 och forsta ekv. ger x = 1.
Svar:Losningen ar (z,y, z) = (1,1,0) och &r entydig.

[
EXEMPEL 1.5 P.s.s. kan vi l6sa ES
r—y+2z=0
2r4+y—22=3
rz=1
Detta ES har 16sningen
z=1
y=1+2z2
dar z kan valjas fritt (fir variabel).
ES
x—y+2z=0
2r4+y—22=3
z=3
ger en ekvation av typ 1 = 0, d.v.s. en motségelse och alltsa ingen (noll) 16sningar.
[

1.2 Matrisform av ES

EXEMPEL 1.6  Viskriver om exempel 1.1 pa matrisform. Da skriver man bara koefficienter

och HL.
2 —-1]|1
1 —-212
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I stéllet for ”<=" skriver vi ”~7, alltsa

2 —1|1 1 —-212 1 -2 2 1 -2 1

1 -2/2 2 —-1]|1 0 3|-3 0 1|-1/|"°
De tva sista matrierna &r pa trappstegsform. Vi fortsatter genom att multiplicera andra
rad (hér ekvation) med 2 och adderar till férsta rad.

1 0] 0
0 1|-1

som betyder att x =0 och y = —1.

|
EXEMPEL 1.7 Vi stéller upp ES i exempel 1.4 pa matrisform.
1 —1 210 1 -1 210 1 -1 210
2 1 -2{3|~]0 3 —6|3|~[0 1 =2|1 |~
| 1 0 —-1|1 0 1 =31 0 1 =31
(10 o0]1 1 00]1 =1
01 01 ]|~]0 1 0f1],sombetyderatt y=1
10 0 —1/0 0 0 1]0 2 =0
|

Definition 1.1

1. For en matris A av typ m X n kan skrivas som

ail ai12 A1n
asy aso a2,

A= (aj,k)an = . . . (1.1)
aml am?2 oo Qmn

dér element pa plats j, k,vilket avser rad j och kolonn k &ar
Ajk-
2. Om m = n kallas matrisen kvadratisk.

3. For en kvadratisk matris A av ordning n, kallas den diago-
nala foljden (a1 asz ass ... any) huvuddiagonal .
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Kommentarer

e Vi observerar att antal rader = m =antal element i en kolonn och
antal kolonner = n =antal element i en rad.

1 -1 2|0
e Matrisen| 2 1 —2|3 | iexempel 1.7 kallas totalmatris (Augmented matrix).
|1 0 1|1
1 -1 2
e Matrisen | 2 1 —2 [, isamma exempel, kallas koefficientmatris.
|1 0 -1
e Totalmatrisen har tre rader och fyra kolonner och &r av typ 3 x 4. Koefficientma-

trien ar av typ 3 x 3 och kallas kvadratisk och av ordning 3.

Om vi betecknar koefficientmatrisen med A, skriver man typ A = 3 x 3.

Definition 1.2  De tre Radoperationerna ar

R1 Multiplikation av en rad med ett tal och darefter adderas
(elementvis) till en annan rad.

R2 Platsbyte pa tva rader.

R3 Multiplikation av en rad med ett tal # 0.

e Tva matriser A och A’, sidana att man via radoperationerna
kommer A till A’ kallas radekvivalenta och man skriver det

A~A.

e Att anvinda radopertionerna pa en matris kallas radelimi-
nation.

Kommentarer

e Man kan visa att A ~ A’ ocksa innebar att A’ ~ A, sa att ~ ar nagot stil med
ekvivalens.

e Hitintills har vi utnyttjat radoperationer for ES men matriser behéver inte vara
forknippade med ES.
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Definition 1.3

e Det element i en rad som &r det forsta elementet, raknat fran
vénster, skilt i fran 0, kallas pivotelement.

e En matris sadan att varje pivotelement i raden ovanfor, star
till vanster om pivotlementet i raden under sidgs ha trapp-
stegsform (Echelon form) .

e FOr en matris pa trappstegsform med pivotlementen lika med
1 och 6vriga element i samma kolonn lika med noll ar pa
radreducerad form (Reduced row echelon form) .

e Antal rader i en matris diar minst ett element ar # 0 &r en
icke-nollrad. Om alla element i raden ar = 0 kallas raden
nollrad.

e Rangen av en matris ar antalet icke-nollrader i en radekvi-
valent matris pa trappstegsform.

Kommentarer Antal 16sningar till ett ES

Ex 1.1: Totalmatris och koefficientmatris har rangen 2. Antal variabler/obekanta &r ocksa
2. Antal 16sningar ar 1.

Ex 1.2: Totalmatris och koefficientmatris har rangen 1. Antal variabler/obekanta ar 2.
Antal 16sningar dr oco.

Ex 1.3: Totalmatris har rang 1 och koefficientmatris har rangen 2. Antal 16sningar ar 0.

Sats 1.1 Lat A vara en koefficientmatris, AB en totalmatris
samt antal variabler n. Da géller

rang A =rang AB =n <= Antal lésningar =1
rang A =rang AB <n <= Antal l6sningar = oo (1.2)
rang A < rang AB <= Antal l6sningar =0

ExXeEMPEL 1.8 Los ES
r+y—2z=1
20+32=2
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Lo6sning
P& matrisform far vi totalmatrisen
11 =21
0 2 3|2
Den &r pa trappstegsform. Vi ser att rangen for koefficient- och totalmatris ar 2. Alltsa
finns 16sning. Antal variabler &r 3. Alltsa finns odndligt med losningar. Vidare ar

1 1 =21 1 0 —
0 2 3|2 01

De variabler som motsvaras av pivotelement kallas bundna, 6vriga fria. Alltsa ar x och
y bundna och z fri. Man brukar inféra en parameter for den fria variabeln ex.vis t = z/2,
som ger 16sningen

INJIUS IR

0 | pa radreducerad form, x §
1 | som betyder z

rx="Tt
y=1-3t teR.
z =2t

Kommentarer

e Ett ES med firre ekvationer dn obekanta kallas underbestamt, jamfor, med it
overbestamt ES, exempel 1.9 sidan 13.

e Losningsmingden, d.v.s. alla (z,y, z) € R3, som uppfyller ES i foregdende uppgift
ar en linje pa parameterform.

e ES x +y — 22z = 1 har en bunden variabel, ex.vis x och de tva 6vriga ar fria. Man
kan da inféra parametrar y = s, t = z, sa att 16sningsméangden kan skrivas

r=2t—s+1
Yy==s ,s,t €R.
z2=1

som vi skall senare skall se, ir ekvationen for ett plan i R3.

EXEMPEL 1.9 Los ES ¢ 2+ 3y =2
T+2y=2
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Losning
Vi 16ser den med radelimination.

0 —-1]|1 1 00
1 3|2 |~..~ [0 1]0
1 212 0 0|1

Vi ser att rangen for koefficientmatrisen ar 2 < 3 dar 3 &ar rangen for totalmatrisen.
Alltsa saknas 16sning.

Kommentarer

e ES ovan har fler ekvationer &n variabler och kallas 6verbestdmt (overdetermined).

e De tre ekvationer ar ekvationer for linjer i planet R? och tre linjer brukar inte skéra
varandra i en punkt.

e Vi skall langre fram l6sa detta ES approximativt med Minsta kvadratmetoden
(MK-metoden).

1.3 Homogent ES

EXEMPEL 1.10 Los ES, samma som i exempel 1.5 men med alla HL= 0.

z—y+22=0
20 4+y—22=0
z=0

Losning

Detta ES har 16sningen © = y = 2z = 0 och alltsa minst en 16sning. ar den fler? Pa
matrisform och med radelimnation far vi

1 -1 2|0 1 0 0]0
2 1 -2|{0(~]01 =2|0
1 0 0/0 00 010

Vi ser att vid radeleliminationen forblir HL. d.v.s. kolonnn 4 nollkolonnen. Vi ser att vi
har z som fri variabel och satter z = t.
Svar:

z=0

y=2t ,teR.

z=1
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Kommentarer

e Vi ser att ett homogent ES har atminstone en 16sning, namligen 0 en kolonn med
bara nollor (nollosningen).

1.4 Inhomogent ES
Ett ES déar HL # 0 4r inhomogent.

EXEMPEL 1.11 I exempel 1.5 har ES

r—y+22=0
2r4+y—22=3

r=1

rz=1
y=1+2z2

dar z kan valjas fritt (fri variabel). Observera att vi kan skriva 16sningen

l6sningen

r=1
y=1+2t celler (z,y,2) =(1,1,0) +¢(0,2,1), t € R.
z=1

Vi ser att losningen bestar av tva termer. Den andra ¢(0,2,1) = (0, 2¢,t) kinner vi igen
som losningen till motsvarande homogena ES. Den forsta termen (x,y, z) = (1,1,0) ar
en 16sning till det inhomogena ES.

| |
1.5 Matrismultiplikation I
a1 a12 "
EXEMPEL 1.12 Vi visar forst hur matriserna A = | ag; ag2 | och X = [ a:l } kan
2
a3l as2

multipliceras. Speciellt ar typA = 3 x 2 och typX = 2 x 1. Antal kolonner i A &ar
lika med antal rader i X. Det ar forutsdttningen for att multiplikationen A - X i den
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ordningen &r mojlig. Produkten ar en matris av typ 3x 2- 2-1 =3 x 1. Elementet pa
plats (1,1) erhalls genom att "multiplicera” rad 1 i A med kolonn 1 i X:

X

1
[a11 aia] - [ 2y } =ay1 21+ a2 T2

och p.s.s. elementet pa plats (2,1) &r rad 21 A ggr kolonn 11 X

T

1
[a21 ase] - [ o ] = a9 -1+ ag - Ta.

Produkten ar matrisen
ail - X1+ a2 2
A -X = ag-x1+axn- 2
a3l - x1 + asz - T2

Kommentarer

e Denna produkt kan ocksa skrivas m.h.a. kolonnerna som

ail a12
A . X = asy + T2 a2
a3l a32

Definition 1.4

e Vi definierar forst multiplikation av en matris A = (a; 1 )mxn,
se (1.1) sidan 10 och ett reelllt (komplext) tal x som matrisen

rA=(Tajk)mxn

I

T2
o Lat X = . |. Lat a vara kolonn nummer k.

Tn

Beteckna kolonn k i A, som a; for £ = 1,2,...,n. Vi
definierar multiplikationen A - X som

A-X =xa1 +z009 + ... + 200, . (13)
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Kommentarer

e Vi skall ge akt pa ordningen som multiplikationen sker. For reellt tal x ganger
matris A skriver vi x A och kan aven skriva A x.

e For multiplikation mellan matriser, sasom i (1.3) har den betydelse ty multiplika-
tionen skall ses som (byt plats pa xy och ay)

A-X = aiz1taszs+ .. +az, =

a1l 122 A1nTn
a21T1 222 A2nTn

= . + . + ...+ . =
am1T1 Am2T2 AmnTn

a11T1 + a1222 + ... + a1pTy
2171 + a22%2 + ... + Q2T

| Am121 + am2Z2 + ... + GmnTn

e Vi ser ovan principen for matrismultiplikation; rad i A multiplceras med kolonn
i X. I en produkt sasom aji1z1 + ajexs + ... + a1,, finns lika manga aiz, som
zj, d.v.s. antal kolonner i A och antal rader i X &r lika (= n). Observera att X
endast har en kolonn men ovanstaende kan generalieras till en matris X med fler
kolonner.

EXEMPEL 1.13 I exempel 1.4 har vi koefficientmatrisen

1 -1 2
A= |2 1 -2
1 0 -1
Vi skall multiplicera med X fran hoger.
x
Vi multiplicerar A med X = | y
z
1 -1 2 T —y+2z
z| 2| +y 1 {+2z| -2 |=|22+y—22
1 0 -1 T —z

som ar VL i detta ES. Alltsa kan detta ES skrivas

A-X=B
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0
dirB= | 3
1
]
EXEMPEL 1.14 Ibland vill man 16sa ett ES med fler olika HL. T exempel 1.4
r—y+2z2=0 r—y+2z=0
20 +y—22=3 och (2x+y—22=4
r—z=1 rT—2=0
pa matrisform
1 -1 210 0 1 -1 2]0 0 1 -1 20 0
2 1 2|3 4|~]10 3 6|3 4]|~]1]0 3 —6|3 4|~
1 0 —-1|11 0 |0 1 =3/1 0 0 1 =3|1 0
1 -1 2[0 0 ] 1 -1 2|0 O
~10 1 —=2|1 4/3 | ~ 1—214/3<_|\~
|0 1 =31 0 | 0 0 —-1|0 —4/3 | (- )
1 -1 0|0 -8/3 0 0|1 4/3
~[0 1 0|1 4 ~ 1 0]1 4
|0 0 —-1|0 —4/3 0 1|10 4/3
Svar: De tva ES har 16sningen
x=1 x=4/3
y=1  respektive Jy=14
z2=0 z=4/3
|

Kommentarer

o [ dessa tva ES ar koefficientmatrisen kvadratisk och losningarna entydiga. Den

sista koefficientmatrisen ar radreducerad. Denna matris

1 00
010
0 01

=: I ar vik-

tig, och kallas enhetsmatrs. Definition och egenskaper presenteras i nésta kapitel.
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e Vi skall senare beriikna invers matris A~! till vissa kvadratiska matriser A, detta
for att bestdmma matrisen X, d.v.s. 16sa matrisekvationen

A-X=B. (1.4)
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Kapitel 2

Matriser

Vi har redan behandlat matriser och goér nu en definition av begreppet.

2.1 Definition av matris

Definition 2.1 En matris av typ m x n ar ett rektangulért
schema av element.

ai,1 ai,2 a1k a1n
a21 az.2 a2 k .. az.n
. = A= (ajp)mxn (2.1)
a]7l a]72 : CL‘%k i ajvn
L m,1 Om2 o Ak ... Qmpn ]

Om m = n &r matrisen kvadratisk och av ordning n.
[aj1aj2 - ajn]

ar rad j och
a1k
a k

Qm, k
ar kolonn k. I denna matris &r elementet a;j ar pa plats (7, k).
Tva matriser A = (ajk)mxn och B = (bj1)px, ar lika om m = p,
n=rochaj;="bj, for j=1,2,...,moch k=1,2,... n.

2.2 Operationer mellan matriser

e Multiplikation av reellt (komplext) tal och matris sker elementvis.
r-A=2-(0jk)mxn = (T ajk)mxn

21
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e For att addera eller subtrahera tva matriser maste de vara av samma typ. Addi-
tionen sker da elementvis.

e Multiplikation av tva matriser &r definierat endast da hoger X matris har bara en
kolonn, av typ n x 1. I det fallet a4r vanster matris A av typ m X n. Det ar viktigt
att A har lika manga kolonner som X har rader. Vi byter beteckning pa hoger
matris till B som vi antar dr av typ p X q.

2.2.1 Matrismultiplikation II m.m.

Definition 2.2 For A = (aji)mxn och B = (bji)mxn ar additio-
nen, d.v.s. summan

A+B= (ajk)mxn + (bjk)an = (ajk + bjk)mxn .

Matrismultiplikation IT

Antag att A 4r som ovan och att typ B = p x ¢q. Multiplikationen
A B ar definierad om n = p och produkten A-B = C &r en matris
av typ m X q. Element c¢;; pa plats (i, k) i denna matris &r

n
> " aijbjr = cik -
j=1

Kommentarer

o Ett reellt (komplext) = kan ses som en 1 x 1—matris, [x]. och vice versa.

e Observera att
b1
bag,
Cikk = [ail aiz--ﬂm] : .

bnk

d.v.s. rad i i A ganger kolonn k i B.

e For att veta vilken typ som produkten A - B ar, skriver vi
(mx ) x (fixq)=mxq.

Alltsa ar typ (A-B) =m X q.

e I allmanhet 4r A - B och B - A inte lika dven om bada produkterna ar mojliga.,
d.v.s. kommutativa lagen galler inte.
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e Déremot géller associativa lagen for multiplikation, alltsa att

(A-B)-C=A-(B-C). (2.2)

e Eftersom den kommutativa lagen inte géller, delas den distributiva lagen in i en
vénster- och hogerdistributiv lag.

A-(B+C) = A-B+A.C.
(2.3)
(A+B).C = A-C+A-C.

for matriser A, B och C av lampliga typer.

EXEMPEL 2.1 Med

1 -1 2 1 2
A= 2 1 -2 | ochB=|3 -3
1 0 -1 1 -1

sa multiplikation av A med reellt (komplext) tal —3 ger

1 -1 2 -3 3 —6
—-3-A=-3-1]2 1 -2 |=| -6 -3 6
1 0 -1 -3 0 3

Produkten (multiplikationen) B - A omdjlig eftersom typB = 3 x 2 och typA =3 x 3
och 2 # 3. Multiplikationen A - B ar dock mojlig och ger en matris av typ 3 x 2.

0 3 0 1
A-B=|3 3 |=3-|11
0 3 0 1

dar vi i sista ledet brutit ut faktorn 3.

EXEMPEL 2.2 Med matriserna A = [ zl)) i } och B = [ _; _(1] } ar bada produkterna

A - B och B - A mdjjliga. Produkterna ar bada 2 x 2—matriser. Men ar de lika? Vi far

att
3 -2 -1 -2
A-B—{5 _4]ochB-A—[_1 0}
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och alltsa inte lika. Darmed géller alltsa inte den kommutativa lagen.
Vi ger nu ett exempel (inte bevis) pa den assocoiativa lagen. Med A och B, som ovan

och C = [ % | bersknar vi nu

b
wme-[t )1

2]
A-(B-C)Z[é ina‘be[iZiiZ]-

P.s.s. ger vi ett exempel pa hogerdistributiva lagen. Med samma matriser som ovan
berdknar vi forst

och

0 2 a 2b
(A+B)'C_[5 3}[()]_[5@—1—%}
och sedan

_ a+2b —a _ 2b
A-C+B-C= [ 3a+4b]+{2a—b} _[5a—|—3b]

med samma resultat.

2.3 Enhetsmatris

Definition 2.3 En matris I = F sadan att

I.A=A-1=A

kallas enhetsmatris (identitity matrix).

Kommentarer

e En enhetsmatris I ar kvadratisk och enhetsmatrisen avordning n betecknas, om sa
behovs, I,,. Dessa fungerar som talet 1, som kan ses som enhetsmatrisen I; = [1].
1-54 =54-1=54. Narmare bestamt ar dessa mstriser av ordning 1 t.o.m. 3

1 0 1 00
=11, I,= [ 01 } , respektive I3= [ 0 1 0 (2.4)
0 0 1
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1 2
EXEMPEL 2.3 For att multiplicera matrisen med B = | 3 —3 | med en enhetsmatris,
1 -1
ser vi att for produkten I,, - B maste n = 3 antalet rader i B.
1 0 0 1 2 1 2
I-B=|1010}|-({3 -3|=..=]3 -3 ]|=B.
0 01 1 -1 1 -1

For produkten B - I maste I = I, d.v.s. vara av ordning 2.

1 2 1 2
B.I-|3 -3 [(1) H:...: 3 3|-8B
1 -1 1 -1

2.4 Transponatmatris

EXEMPEL 2.4  Genom att i B ovan byta plats pa rad och kolonn far vi transponatet B”
till B.

1 2

BT = [ ; _g _1 ] och ytterligare en transponering | 3 -3 | =B.
1 -1

Definition 2.4  Givet matrisen A = (@ )mxn. Transponatma-
trisen ar matrisen A7 = (ak,j)nxm

1,1 G2 ainl G621 631
EXEMPEL 2.5 Ex.vismed A= | ag; aga | dr AT = ’ ’ ’
ai2 a2 asp
asy asp
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Vi ser fran exempel 2.4
(BIYI' =B (2.5)
d.v.s. tva transponeringar tar ut varandra. Vi ser inser att
e typB=mxn=typBT =nxm.
e (A+B)" = AT + BT,

e Vi bevisar att
(A- B)T =BT . AT (2.6)

Bevis: Bade VL:s och HL:s produkter existerar precis da A har lika manga kolonner
som B har rader. Elementet pa plats (k,4) i (A-B)? &r pa plats (i,k) i A-B.
Detta element ar produkten av rad 7 i A och kolonn &k i B. Nu ar kolonn k
i Brad kiBT ochrad iiA ar kolonn i i A”. Detta &r ocksa elementet pa
plats (k,i) i BT - AT och beviset dr klart.

e Ett ES pa matrisform som A - X = B kan saledes ekvivalent skrivas
XT. AT =BT
d.v.s. den obekanta matrisen star nu till vanster om koefficientmatrisen.

e En matris sidan att A = AT kallas symmetrisk. En saidan matris ir med nédvindighet
kvadratisk. Produkten mellan en matris AT och A ar symmetrisk. En enhetsmatris
ar symmetrisk.

e Produkten mellan transponatmatris och matrisen sjalv ger en kvadratisk matris.
0 1

ExvismedA= |1 0|, i AT = 0 1 4 . Vi ser att typA = 3 x 2 och
P 10 -1
typ AT = 2 x 3. Produkten AT - A existerar da och dr av typ 2 x 2.
17 —4
T 4 _
AT A [_4 2}

e Vi bevisar nu (allmént) att AT - A existerar och #r symmetrisk.

Bevis: sitt typA = m x n. Da ar typ AT = n x m. Dirmed existerar produkten
AT . A =:C och &r av typ n x n. Vi skall visa att CT = C.

CT = (AT - AT = AT . (AT\T = AT . A=C

eftersom (AT)T = A enligt (2.5).
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2.5 Invers matris

1
For ett reellt (komplext) tal  # 0 finns det inverterade vardet —, ex.vis ar det invert-
x

erade vardet till —g talet % = ——. For vissa kvadratiska matriser A finns en matris
A~! med egenskapen
A- A =1,
d.v.s. A7! &r hogerinvers. For denna matris géller #ven att den &r vénsterinvers
At A=T.
For kvadratisk matris avordning 2
A:[z Z]érA_l:adl—bc[—i _2] (27)

om ad — bc # 0. Talet ad — be ar ett "konditionstal” av matrisen A i (2.7). Detta tal
kallas determinanten av A. Vi formular nu féljade sats med bevis.

Sats 2.1 Antag att A har bada vénster och hoger inversmatris
Azl respektive Agl. Da ar dessa lika.

Bevis:

Al'=A  T=A" (A A =(A;1A) AR =T A = A .

2.5.1 Matrisekvationer

Ekvationen A - X = B med matrisen X som obekant metris, kallas matrisekvation
introducerad i (3.13) sidan 47. Vi skall formellt 16sa nagra sadana ekvationer.

EXEMPEL 2.6 Vi skall 16sa ES i exempel i 1.1. Detta ES ar
20—y =1 _
vy eller som matrisekvation { 2 1 ] . [ t ] = [ L ] )

som vi skriver A - X = B med koefficientmatris

2 -1 x 1
A:[1 _2},ochX:[y] sathLB:{z}.

Hur kan inversmatrisen till A, om den existerar, anvindas for att 16sa detta ES? Vi
multiplicerar matrisekvationen ovan med A~! frdn vinster. Vi multiplicerar forst VL

A X,
A1 (A-X) = {associativa lagen} = (A1 - A) - X =T - X =X.
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Motsvarande multiplikation i HL ger A=! - B, alltsa
X=A"1'B.

Nu dr det A =2-(—2) — (—=1)-1 = —3 # 0. Alltsa existerar A~! och ir
P2 1) _ 172 -1
31-1 2] 3|1 2]

SRR

dvs. x=0o0chy=-1.

Darmed ar

EXEMPEL 2.7 L0s matrisekvationen

X:A-X=2X+B

.. 1 2 3
daurA—[3 4}ochB—[7]
Losning

Vi flyttar matrisen 2X till VL och fari VL A-X —2X. Hér vill vi bryta ut /faktorisera
med hogerdistr. lagen. Det skulle ge (A —2)-X men talet 2 maste vara en matris. Enda
mojligheten ar att skriva 2 - X = 2I - X, alltsa skriva om 2 som matrisen 2I. Detta ger
(Obs! Vi maste héar ha enhetsmatrisen till vinster om X!)

(A-2I)-X =B.
Vi multiplicerar med (A — 2I)~! fran wéinster, ocksa viktigt. Detta ger
X=(A-2)"'-B.
Med de matriserna ovan &r

-1 2

aar[

] och dérmed (A —2I)~! = é [ _g ?} .

Alltsa ar



2.5. INVERS MATRIS 29

EXEMPEL 2.8 Givet matrisekvationen X - A = B, didr A och X har tre kolonner och B
har tva rader.

(a) Bestdm typerna for de tre matriserna.

(b) Los ut X ur marisekvationen.

Lo6sning

(a) X har lika manga kolonner som A har rader, alltsa ar typA =3 x 3. typ (X -A) =
m X 3 och typB = 2 x n. P.g.a. likhet mellan dessa maste m x 3 =2 x n, d.v.s.
m =2 och n=3. Alltsa dr typA =3 x 3, typX =2 x 3 och typB =2 x 3.

(b) Vi multiplicerar med A~! denna gang frdn hdger i bada led.
X A A'=X.IT=X=B-A!.
—~ —
VL HL

Alltsa ar X =B-A~1.

2.5.2 Jacobis metod; Berdkning av invers matris

Vi ser i exemplen 1.6 och 1.7 att vi har kvadratiska koefficientmatriser och att nar vi vél

har fatt radreducerad form, sa ar koefficientmatrisen en enhetsmatris och i totalmatrisens
x

HL star i den hogra kolonnen 16sningen [ y ] respektive | y |. Vi anvander detta for
z

att bestimma inversmatris (Jacobis metod). For att invertera kvadratiska matriser A

av hogre ordning kan man se inversmatrisen som en okand matris X, som den matris

som loser ekvationen
A X=1I.

Det ar da klart att X = A~1. P& matrisform
[AI] ~ ... ~ [I|X]

d.v.s. till hoger om | star X, som &r A1,

EXEMPEL 2.9  For att invertera koefficientmatrisen i exempel 1.4 ser vi forst att den ar
1 -1 2
A=1|2 1 -2
1 0 -1
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Vi skall alltsa 16sa ekvationen A-X = I och vi gor det genom att 16sa detta pa matrisform.

1 -1 2|10 0
[All={2 1 —2[0 1 0
1 0 —1/0 0 1

Vi skall anvanda elminationsmetoden tills dess att vi far
[IX] .

Detta X ar alltsa lika med A~1L.

1 -1 2[1 00 100l & 0
AIl=]2 1 —2/01 0|~..~IX]=]0 100 1 -2
1 0 -1/0 0 1 00 1% & -1
110
Alltsa ar A~'==10 3 —6
3111 -3
Vi verifierar att
L[ -2 11 0 ([3 00
AAtP==2.12 1 21103 —6|=..=-10 3 0]|=1I5.
301 0 -1 11 -3 310 0 3

pss. arA 1 A=1=1Is.

Kommentarer For invers matris géller bl.a. féljande
x) (A-B)"' =B7!. A7! om inverserna till A och B existerar.
xx) A-X=B<+=X=A"1-B,om A! existerar.
cxx) (AT) = (AT

Vi bevisar %) och * * x).

Bevis:

¥)(A-B)-(B71-A7!) = {Assoc. lagen} = A-(B-B 1) - A7l =

AT -A'=A-A'=1T.

P.s.s. visar man att B~!- A~! &r hogerinvers.
For att bevisa * * %) multiplicerar vi med A” forst fran hoger.

AT AT =(A- A =1"=1.
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2.5.83 Invers matris med komplementmetoden

P& sidan 27 ges inversmatrisen till en matris av ordning 2. Metoden att betdmma den
kallas komplementmetoden.

EXEMPEL 2.10 Vi tar nu fram inversen till

1 -1 2
A=1|2 1 -2,
1 0 -1

se exempel 2.9. Forst tar vi fram en matris B av ordning 3 genom at berdkna 9 un-
derdeteminanter till A. Elementet pa (j, k) fas genom att stryka rad k& och kolonn j
och darefter ta determinanten pa den aterstaende matrisen. Sedan multipliceras denna

underdeterminant med —171%. Ex.vis &r bjp = (—1)1‘*'2 . 7(1) _? ’ = —1. Till slut far
vi att -~
-1 -1 0
B = 0 -3 6
-1 -1 3
men detta &r inte A~!. En kontroll ger att
[ -3 0 0
A-B= 0 -3 0
| 0 0 -3
Vi maste alltsa dividera B med —3 for att fa A1
1 -1 -1 0 1 1 1 0
A—lz—g 0 =3 6|=2103 —6
N -1 -1 3 1 1 -3

Talet —3 som dyker upp som huvuddiagonalens element &ar det A.

|
2.6 Minsta kvadratmetoden
For overbestiamda ES brukar det inte finnas 16sning.
y=-2
EXEMPEL 2.11 ES (2 =2 saknar 16sning. ES &r dessutom Gverbestdmt. Som
dr —y=1
matrisekvation skriver vi det som
0 1 —2
1 0 [x}: 2 | eller kortare A- X = B.
4 -1 Y 1
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Man kan visa att det felutjdmnade ES som erhalls genom att multiplicera med A7 frdn
vanster

AT A.-X=A"-B
alltid har 16sning. I detta fall far vi

r o, [17 -4 T a [ 6
A«A—[_4 2]ochA B—[_3}.

Matrisen AT - A #r kvadratisk med determinant 18 # 0 och alltsa inverterbar. Vi far

R S NN

EXEMPEL 2.12 Man kan ange ”felet” av 16sningen till det felutjamnade ES som i féregaende
exempel. Vi sdtter in denna I6sning i uttrycket

0 1 0 -3 -2
A-X=|1 0 -[_3]: 0 |#B=| 2
4 -1 2 3 1

Vi far som forvantat ingen likhet mellan A - X och B. I stéllet anger man medelfelet for
l6sningen. Den definieras

__|A-X - Bj
= Tm

dar m ar antal rader i A. T detta exempel &r m = 3 och vi rdknar ut att A- X — B =

(2.8)

Med |A - X — B| menas avstandet mellan origo och punkten (1/2,—2,1/2)

\
NOl— N No|—=

(eller langden av orstvektorn (1/2,—2,1/2). Detta ges av

VP + 2P+ (/27 =

Medelfelet ar alltsa
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2.6.1 Invers matris till icke-kvadratisk matris

Till vissa matriser A av typ m X n finns vansterinvers. Ett nédvéndigt villkor &ar att
m > n. I det fallet finns ingen hogerinvers.

EXEMPEL 2.13 Givet matriserna
0 1

A=|1 0 ochB:“ _g (1)]
4 —1
Vi har att
1 0 1 0 0
B A= [ 01 } =IomenA-B=|1 -3 1| #I3.
3 —12 4
Vi siger att B =: Azl ar vénsterinvers till A. Med A, som ovan och ett HL som é&r
—2
C= 2 | tecknar vi nu matrisekvationen
1

A-X=C,
som vi forsoker 16sa m.h.a. vansterinversen genom att multiplicera med Azl fran vanster.
Detta ger

—2
AV A X=IX=X=A""| 2|= [ —7]
1

~— -2
VL =
HL
d.v.s. losningen ar X = { ;j = { :; ] Ar den en riktig 16sning? Insittning i den
ursprungliga ekvationen ger
o -2 -2
A-| 5 | = -7 | # 2
- —26 1

och alltsa falsk. Detta beror pa att vi enbart har implikationen ”=——" och inte 7<=",
. R . - —7 .
nagot som bara siger, att om ES har [6sning, sa ar den { 9 ] Med samma matrisek-

-2
vation men med HL = —7 | &r ju losningen riktig. Vi kan uttrycka det sa att om
—26
den ursprungliga ekvationen har l6sning, sa erhalls den genom att multiplicera med Azl
fran vanster.
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Kapitel 3

Determinant

3.1 Berdkning av determinant

Vi har berdknat determinanten av en kvadratisk matris av ordning 2, se sidan 27. Det
gar att definiera determinanten for matriser av hogre ordning pa lite olika sétt. For en
kvadratisk matris A tecknar vi dess determinant som

det A = { men &ven } = |A].
Vi ndjer oss har med determinant av matris av ordning 3. Alltsa givet en matris

ail ar2 a13
A= | a1 a2 a3
as1 asz2 asg3

Determinanten, ett tal, erhalls genom ”utveckling” langs godtycklig rad eller kolonn och
far en summa innehallande underdterminanter av ordning 2. Ex,vis utveckling langs rad
2 ger

ai1 a2 a13
|A| = | a21 a2 a23 = (—1)*ay
az1 az2 a3

ai2 a13
asz2 G33

a1l 013
as1 a33

— (_1)2+2a22 + (_1)2+3a23 —

a1l Q1.2
as1 as2

= —a2,1012033 1 02,101,3032 + A2201,1033 — (22013031 — 02,301,143 2 + 023012031 -
(3.1)
3.1.1 Determinant av matris av ordning 3; Sarrus regel

For determinant av matris (endast )av ordning 3 finns Sarrus regel att tillga. De tva
forsta kolonnerna skrivs upp en gang till och da till hoger. Pilar N\, ger upphov till
produkt som forses med tecknet + och pilar / ger upphov till produkt som forses med

35
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tecknet —.

a1 ai,2 a3 a1 ai,2

N Va¥ Vet e

detA = | az; a2,2 az3 as,1 a2 | =

v Ve e pN

as,1 as,2 as,3 as,1 as,2

= 01,102,203 3 + a12023031 + a1 3az21a32+

—@1,3G022031 — A1,1023032 — 412021033 -

Vi ser att detta ger samma termer som i (3.1).

EXEMPEL 3.1

3 21 3 2 1(3 2
det | 4 -1 1 |=|4 -1 1|4 —-1|=
1 5 1 1 5 11 5

=3-(-1)1+2-1-1+1-4-5+

~1-(-1)-1-3-1-5-2-4-1=-3.

3.1.2 Nagra rdkneregler for determinant av produkt av matriser

Vi har foljande sats for determinant av produkt av matriser



3.1. BERAKNING AV DETERMINANT
Sats 3.1
det(A-B) = detA-detB. (3.2)
det(A™1) = (detA)™?. (3.3)
det(AT) = detA. (3.4)
det(c-A) = " detA, omtypA=nxn. (3.5)
Determinanten av en kvadratisk matris
di1 di2 ... din
0 dyp ... dop
= S (3.6)
0 0 .. dpm
med nollor under huvuddiagonalen ar
‘D’ =d -dgg-....-dnn. (3.7)

EXEMPEL 3.2 Givet

1 1 1 3 .. 3 5
A—[_l 1] ochB—{2 2} ochdaurmedA-B—{1 ]

Da ar
|A| =2, |B|=—-4o0ch|A-B|=-8.

Vidare demonstrerar vi (3.7) forst for en matris av ordning 2 och sedan ordning 3.

di1 di2

0 doy =dy1-doo —di2-0=dy1 - da2.

detD = ‘

Fran determinanten ovan far vi

dig dip dig
|D| = 0 doa do3 | = {Utveckling langs rad 3} =
0 0 dss
d d
= (=1)*" . dss- ’ 1’(1) d;i = ds33 - di1 - doa.

37
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ail a2 a3 bip b2 b1
Vi bevisar (3.2) for A 0 a2 a3 | och B= 0 b2 b3 | .Deras determi-
0 0 as.s 0 0 b3,3

nanter ar enligt (3.6) och (3.7)
|A| = ai1a22a33 och |B| = bi1baobss .

Nu &r (visa)

a1,1b11
A-B= 0 a272b272
0 0 a3 3b3,3

dér elementen ovanfor huvuddiagonalen nér utelamnade. Denna matris har determinan-
ten

a1,1a22a33b1,1b2203 3 = [A] - |B|.

Da VL ér |A - B| och HL &r |A| - |B| har vi visat (3.2) i detta specialfall.

3.2 Determinant och radoperationer

Vi skall se hur de tre radoperationerna (sidan 11) paverkar en kvadratisk matris’ deter-
minant.

Sats 3.2

1. Multiplikation av en rad med ett tal och dérefter adderas
(elementvis) till en annan rad &ndrar inte determinantens
varde.

2. Platsbyte av rad dndrar tecknet pa determinanten.

3. Multiplikation av en rad med ett tal ¢ # 0 &ndrar determi-
nantens varde med samma konstant.

Kommentarer

e Det betyder att om vi haller reda pa radoperationerna for att fa matrisen pa
trappstegsform (echelon form) kan vi berékna determinantens véirde med bara en
term.

e For en kvadratisk matris A som &r radekvivalent med A’ d.v.s. A ~ A’ giller
alltsa att om | £ A| # 0, sa ar |A’| # 0. Eftersom dven A’ ~ A giller

|A| # 0 <= |A’| # 0 och siledes |A| = 0 < |A'| =0 (3.8)

Specielt géller (3.8) for A’ pa trappstegsform.
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EXEMPEL 3.3 I exempel 1.7 beraknar vi determinanten av koefficientmatrisen.

1 -1 2] (=2) (-1 1 -1 2
2 1 -2 {1}=]0 3 —6|={3.0och1.}=
1 0 -1 A 0 1 -3

1 -1 2 1 -1 2
=3.-/0 1 —2|- (1) =3]0 1 0[=3-1-1-(-1)=-3
0 1 -3 Jd 0 0 -1

dar vi anvént oss av (3.7).

Kommentarer

39

o Med det A = |A| av matrisen i (1), sidan 10 maste m = n. Ett sitt att definiera

determinant fér en matris av ordning n anvéander sig av begreppet inversion (inv ).
En determinant dér m = 3 bestar av termerna i (3.1), sidan 35. En sadan term
ar aisaszasi, sanir som pa tecken. Hur bestdmmer man tecknet? Ordningen pa
kolonnindexen ar avgorande. Dessa ar 2,3,1. Hur méanga ”byten” behovs for att
fa ordningen 1,2,3? Vi byter

2,3,1~2,1,3~1,2,3
alltsa tva byten, Detta talet 2 = inv (2,3,1). Alltsa ar termen

v (2,3,1 2
(=) 23D 410003031 = (—1)2a10a93a31 = a12a93a3; -

Man kan ocksa gora bytena
2,3,1~1,3,2~1,2,3

ocksa tva byten. Aven om man byter pa ett annat sitt ar antal byten, i detta fall,
ett jamnt tal.

EXEMPEL 3.4 Berikna determinanten av

1 1 -1 2
0 0 3
4= 2 1 2 1
1 -1 -3 1
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Losning

Vi anvéinder eliminationsmetodens tre radoperationer for att fa sa manga nollor som
mojligt, helst nollor under hvuvuddiagonalen.

1 1 -1 2 1 1 -1 2
0 3 0 3 o 3 0 3
4 = 2 1 2 1] {1} = 0 -1 4 -3
1 -1 -3 1 0 -2 -2 -1

= {2. och 3. d.v.s. byte av 2 och 3 samt teckenbyte av rad 3} =

1 1 -1 2 11 -1 2
0 1 —4 3 01 -4 3
1o 3 0 3| |oo 12—6_{3'}_
0 -2 —2 —1 00 —10 5
11 -1 2 11 -1 2
01 -4 3 01 —4 3
= 05000 2 1 _{1‘}_30'00 9 1|70
00 —2 1 00 0 0

eftersom en nollrad ger att determinantens varde ar = 0.

3.3 Samband mellan determinant och lésning av ES

EXEMPEL 3.5 I exempel 1.4 har vi koefficientmatrisen

1 -1 2
A= 2 1 -2
1 0 -1

med determinant (Utveckling langs rad 3, obsevera att andra termen &r 0)

-1 2 1 -1

L g [T

<_1>3+1.1.‘ =0+(-1)-(1+2) = -3.

Att determinanten # 0 hanger ihop med att invers existerar och att ES har en entydig
16sning.

I exempel 1.5 har vi koefficientmatrisen
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som vi lampligt berdknar genom att utveckla langs rad 3. Det blir tva termer som &r

noll och
-1 2
—1)3+t1 . 1. =1-(=2)—-2.1=
(—1) 1’1_2‘ 1-(-2)—2-1=0.
Att determinanten dr = 0 betyder att ES i samma exempel inte har entydig 16sning.
0
Med HL | 3 | finns oo med l6sningar.
1
0
Med HL , | 3 | i samma exempel, ar antalet I6sningar 0.
3

Sats 3.3 Antag att A ar en kvadratisk matris av ordning n. Da
ar foljande fyra pastdenden ekvivalenta.

I rang A = n.
IT Matrisekvationen A - X = B har entydig l6sning.
IIT A har invers matris.

IV det A # 0.

Bevis: Vi sitter A ~ A’ dar A’ ar pa trappstegsform:

r ./ / / T
a171 a172 e a17n
/ /
0 ay9 ... ay,
/
A = 0 0 Gz,
/
L O 0 o ap, |

I=II Antag att rang A = n och skriv ES pa matrisform [A|B]. Da &r motsvarande
radekvivalenta radreducerade matris enhetsmatrisen I,, och 16sningen pa ES
star i HL.

II=III Betrakta matrisekvationen A - X = I,,. Den har 16sningen X = A1,

[II1=1V Existensen av invers ger att A-A~! = I. Regeln for determinant av prdodukt
av kvadratiska matriser ger

det(A- A7) =detI dv.s. detA-det(A™!) =1.

1

Alltsa maste det A # 0 (Speciellt foljer det att det(A_l) = detA>'
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IV=1 Vi skall visa IV = I och visar det ekvivalenta pastaendet -1V <—= —I. Om
alltsa rang A # n, sa ar rang A < n. Da innehaller A’ en nollrad och darmed

ar det A = 0.
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3.4 Bewvis av sats 3.2

Vi behover forst en definition av determinant.

Definition 3.1  Determinanten av A ar summan
det A = Z(—l)mv (k1,k2,....n ) “Qlky A2y * - Onk, (3.9)

dir summan &r tagen Over alla permutationer (ki,ka,...,k,) av
(1,2,..,n).

EXEMPEL 3.6 Antag att n = 31 (3.9). Antalet permutationerav 1,2,34r3!=1-2-3 =6
och déarmed 6 termer i summan (3.9). Antal termer i en determinant av en matris av
ordning n ar n!. Ex.vis ar 4! = 24 och 10! = 3628800. Ett sétt att f4 ned antal termer
# 0 ar m.h.a. radelimination att skapa sa manga element = 0 som mojligt.

Varje term i determinanten innehdaller en faktor ur varje rad och kolonn.

For en matris med en nollrad eller nollkolonn ar darfor determinanten = 0.

3.4.1 Bevis for radoperationerna 3, 2 och 1

Radoperation 3. Multiplikation av en rad med ett tal ¢ &ndrar determinan-
tens varde med samma faktor c.

Genom att multiplicera en rad j i A med ett tal c ersétts a;i, k = 1,2,...,n med cajj i
A och i det A. For determinanten far vi termer

v (ki,ks,....kn _
Z(—l) (k1,ka ) c Q1 - G2ky ~...-(c-ajk)-...-ankn =
=c- Z(_l)lnv (k17k27..-7kn) . alkl . a2k‘2 ol ajk? e ankn =c- detA

Radoperation 2. Vid radbyte i en kvadratisk matris andras determinantens
tecken.

Bevis: En godtycklig term i det A ar

(_1)1nV (k‘l7k27-..7ki,---7kj7---7k’n) . alk‘l . a2k2 e aik'i e a]k] e ank_n

Antag att i < j och motsvarande rader byter plats och ger upphov till matrisen
A’. Motsvarande term i det A" ar

(—1)inv (k125 sesKisenskon) @y Ay e Gy e Qi e G,
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Det enda som skiljer dess termer at, ar antal inversioner inv (...). Andring mellan
(k‘l, ]{2, ceey k‘i, ceny kj, ceey kn) och (kl, k’g, ceey k‘j, ceey k‘i, ceey k‘n)

behovs ett byte. Alltsa har

(_1)inv K1,k eeeskg sk yennshon) (_l)inv (k1KoK gk e b))

och

olika tecken. Darmed &ndras endast tecknet pa motsvarande termer eftersom teck-
net ges av inv (...) sa att determinantens virde dndrar tecken.

Vi passar pa att ge ett korollarium.

Korollarium 3.1 En kvadratisk matris med tva identiska rader har determinanten
=0.

Bevis: Lat rad ¢ och rad j var tva olika rader som ar identiska. Lat vidare A’ vara den
matris som erhallsda de tva raderna ar bytta. Da géller dels att det A’ = —det A
och eftersom det A = det A’ far vi likheten det A = — det A eller ekvivalent det A =
0.

Radoperation 1. Multiplikation av en rad med ett tal ¢ som sedan adderas
till en annan rad andrar inte determinantens varde.

Bevis: Vi satter
X =[z129... x4

och byter elementen i rad j i A fran a;j, till z; och definierar

T[.’L‘] — Z(_l)lnv (k17k27..-kn)a1 Byt 02 kg e Q1 Ry T Gl g e Oy, - (3_10)

Vi later a; vara rad j i A. Speciellt &r da T'ja;] = det A enligt definitionen (3.9).
Vi far vidare att

T[.’II + y] = Z(—l)lnv (kl’k2""k”)a1 kit Q2ky ot Q1 (a:j + yj) Tl kg e Onky,
= {och anvénder distributiva lagen och far likheten} =
= Tlz]+ Tyl

d.v.s.
T +y]=Tlz]|+Ty|. (3.11)
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Vi ersétter nu £ med cx, dar c ar ett reellt tal. Vi far da

Tlcx) =cTx].

(3.12)

Vid radoperation 1. multiplicerar vi en rad ¢ med en konstant ¢ och adderar sedan
resultatet till rad j. Vi antar att ¢ < j. Fallet ¢ > j behandlas p.s.s. Vi far en

matris A’, dar som endast far rad j andrat till

[ajl +cain aje+cagp ajk + caik Qjn + Cam] .
Determinanten ar
ail ai2 a1k Q1n
a1 a2 ik QAin
det A’ = : :
a;1 +ca;1  aje + cage ajk + caijk Gjn + CGin
Gn1 an2 ank Gnn

Vi skriver den j :e raden som

[ajl 52 ey ajn] + c[aﬂ a;o ... am] =r+cy.

Determinanten det A’ kan vi uttrycka med operatorn 7', som

det A" =Tz + cy] = T[z] + cTly] .

Vi har att T[z] = det A. Nu giller det att visa att den andra termen = 0. I
determinanten 7'[y] finns tva lika rader ndmligen rad i och j, som &r [a;1 a2 ... Gip].

]
Alltsa &r T'ly] = 0 och alltsa ar
det A’ =det A

enligt korrolarium 3.1.

Kommentarer

e Det ar inte uppenbart att definitionen av determinant (3.9), att begreppet inversion

ar valdefinierat. Men man kan visa att inv (ky, ko, , ..

., kp) ar antingen ett jAmnt

tal eller udda tal oberoende hur bytena gors, jamfor med diskussionen péa sidan 39.

e Man kan visa att det A = det AT. 1 fallet n = 2 och

d

A:[Z b] ar det A = ad — bc och det AT =

och alltsa lika.
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3.5 Cramers regel

For att 16sa ut en variabel i ett ES kan man anvanda Cramers regel. Vi borjar dock med
ett mer allmént exempel, med koefficientmatris av typ 2 x 2.
I matrisekvationen A - X = B med

A=l ]ox= e 1]
az a |’ y by |’

vill man berikna enbart z. For att gora detta beriknar vi forst X och antar att A~
existerar.

X—A'.B— 1 [ a2 _312:|‘|:b1:|_ 1 {a22b1—a1252

detA | —a21  an by |  detA | —ag1b1 +allby

Vi uppfattar téljarens element som en determinanter. Med

Alz[bl a12:| OChA2:|:a11 b1:|
by a9 as  bo

blir téljaren pa plats (1,1) |A;| och pa plats (2,1) |Az2|. Observera att A; &r samma

matris som A forutom att kolonn 1 &r utbytt mot HL. P.s.s. &r

ExXEMPEL 3.7 Med I; och I som variablerna och motstanden och strommen I kinda, far
vi nedanstaende ES

L+, =1
R = Rols
Antag att vi bara vill berdkna I5. Vi borjar dock att berikna X := { -17.1 ] Som
2

matrisekvation for vi
1 1 I
now X[

A-X=B.

som vi skriver formellt som

Vi utgar fran att A har invers och determinant # 0. Da &r
X=A"'B
Utskrivet &r

Al 1 Ry 1
N Ri+Ry | Ri —1

1 R 1 I 1 Rol
X=A1.B=—_ "~ | - = | T
R1+R2[R1 _1:| |:0] R1+R2|:R1[

sa att
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Vi ser att det A star i nimnaren sanir som pa tecken. Vad star i téljaren? Vi inriktar
oss pa att forst berakna I;. I taljaren star Rol. Byt ut kolonn 1 i A mot HL. Vi far da
matrisen

I 1

A ::[0 ~Rj

] med determinant — I - Ry.

Vi har alltsa

B det A;
P77 detA
P.s.s. ar
o det A2
7 detA’
N 1 71
darAQ—[R1 0}.
|
EXEMPEL 3.8 Vi berdkna nu Is i foregaende exempel direkt med teorin i 1.
j |A2|  —Ril Ry
PTAl T SRR Rt Ry
|

Sats 3.4 Cramers regel
Antag att matrisen A av ordning n har determinant det A # 0.
Betrakta matrisekvationen

A-X=B (3.13)
déar typ B = typ X = n x 1. Element x; pa plats k i X &r lika med

det Ay _ |4y
THT gt A T A

(3.14)

dar A ar den matris, som erhalls om kolonn k& i A byts mot B.

Bevis: Vi utgar héar fran att kolonnoperationer har samma inverkan pa en matris som
radoperationer. Vi antar att & = 1. Beviset for allmént & = 2,...,n ges pa
liknande sétt. Vi borjar med att skriva om téljaren |Ag| i (3.14). Observera att
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(3.13) ger att b; = ajiz1 + ajoxa + ... + ajnxy for j =1,2,...,n. Vi byter darfor b;
mot aj1x1 + ajox2 + ... + ATy och far likheten

b1 a9 eee  Qlp a11x1 +apx2 + ... + a1y a12 eee  Q1p

Ay by azx ... az, 211 + 222 + ... + ATy A22 ... G2y
=1 . .o =

b ans ... aun Ap1T1 + noXa + ... + GunTn An2 ... Gpp

Multiplicera nu kolonn 2 med —z9 och addera sedan till kolonn 1 (Radoperation
1 fast for kolonner). Da forsvinner termerna ajoxs i position (j,1).

Multiplicera sedan kolonn 3 med —x3 och addera sedan till kolonn 1. Da férsvinner
termerna ajsz3 i position (j,1) for alla j = 1,2, ..., n.

Vi fortsatter att eliminera i kolonn 1 m.h.a. kolonn k, k = 3,4, ..., n tills vi far

a11r1y a2 ... Qip
ag1r1 a9 e Qa9
|A;| = , L "= {Bryt ut 1 ur kolonn 1} =
an1T1 Ap2 ... Qpp
ailr a2 ... Qin
a1 azy ... G2 A
=x1| . L "= |A| eller ekvivalent x; = ||Al|
an1 AQQp2 ... Qpn
EXEMPEL 3.9 Bestam y i ES
r+y—2z=1
r—y+2z=1
—y+z=2
Losning
Som matrisekvation kan detta ES skrivas
1 1 -2 1
A X=BmedA=|1 -1 2| ochB=|1
0 -1 1 2
1 1 -2
Matrisen Ao ar | 1 1 2 |. Nu behover vi determinanternas varde av dessa matriser.
0 2 1

Med radoperation 1 mer exakt subtrahera forsta rad fran andra rad, blir
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1
Al =0
0

Med samma radoperation blir
1 -2
0 4
2 1

|Aa| =

o O =

Alltsa ar y = _?8 =—4.

1 -2
—2 4 |=1-(-2-1—-4-(-1))=2.
-1 1

= {Gor ett radbyte mellan rad 2 och 3.} = —8.
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