

Institutionen för data och informationsteknik.
LP1 - 2015

Grundläggande datorteknik
Laborationer
Denna laborationsserie för Grundläggande datorteknik omfattar totalt fyra laborationsmoment som utförs i tur och
ordning. Tiden vid laborationsplatsen förkortas avsevärt genom noggranna laborationsförberedelser. Inför varje
laborationstillfälle ska du därför förbereda dig genom att noggrant läsa igenom anvisningarna för laborationsmomentet i
detta PM. För de flesta uppgifterna förutsätts det även att du utfört laborationsförberedande hemuppgifter. Vilka dessa
uppgifter är framgår av detta PM. Du ska vara beredd att visa upp och redogöra för dina förberedda lösningar inför
laborationstillfället. Bristfälliga förberedelser kan medföra avvisning från bokad laborationstid.

Underskrifterna på detta försättsblad är ditt kvitto på godkänt resultat på respektive
laborationsmoment. Spara det, för säkerhets skull, tills slutbetyg på kursen
rapporterats.

Börja med att skriva ditt namn och personnummer med bläck.

_______________ __
Personnummer Namn (textat)
Följande tabell fylls i av laborationshandledare efter godkänd laboration.

Laboration
Godkännande av laboration Labbprov

Datum Laborationshandledares underskrift Datum Signatur

1

2

3

4

Godkännande – hel laborationsserie:

_____________ __
Datum Laborationshandledares underskrift

2

Översikt av laborationsserien

Under laboration 1 bekantar du dig med laborationssystemet och konstruerar enkla kombinatoriska nät som
exemplifierar användning av logikkretsar. Speciellt illustreras nät såsom kodomvandlare, väljare och
adderare, vilka återkommer under senare labbar då du bygger upp en dators centralenhet (FLISP).

Under laboration 2 studerar du dataöverföring mellan register i datavägen och hur ALU:n används för att
utföra operationer på data i register.

Under laboration 3 får du prova på att själv konstruera och testa instruktioner (i form av styrsignalsekvenser)
för FLIS-processorn.

Laboration 4 omfattar grundläggande assemblerprogrammering och här får du också tillfälle att praktisera
test, felsökning och ”avlusning” (eng. debugging).

Kompletterande material

För laborationernas genomförande behöver du, utöver kurslitteraturen, program och diverse tekniska
beskrivningar.

Vid laborationerna används följande program:
 DigiFlisp
 ETERM 6 för Flisp

Du finner länkar till programmen via kurshemsidan under Dokument/Simulatorer.

Laborationer i grundläggande datorteknik: Laboration 1

3

Laboration nr 1
Logikgrindar och logiknivåer
Kombinatoriska nät: kodomvandlare, väljare, adderare

Följande uppgifter ur Arbetsbok för DigiFlisp ska vara utförda
som förberedelse för laborationen. Du ska på begäran av
laborationshandledare redogöra för dessa. Tillfälle för
redovisning kommer att anordnas på simulationstillfällen.

Uppgifter inom parentes är inte strikt obligatoriska, men om man
gjort dem blir arbetet med de obligatoriska uppgifterna lättare.

Hemuppgifter, i detta PM, som ska vara utförda innan laborationen påbörjas.

Följande laborationsuppgifter skall redovisas
för en handledare för godkännande under
laborationen, dvs. innan du kopplar ned.

Laborationssystemet
Under denna laboration använder du:

• Digitalmaskinen med dess grundläggande moduler.
• Enkelt universalinstrument (”voltmeter”).

Digitalmaskinen består av tre rader moduler. De två översta raderna innehåller utbytbara logikmoduler och
den nedersta raden består av en fast manöverpanel.

Läsanvisning:

Läs om digitalmaskinen i filen Moduler till digitalmaskinen.pdf som finns under Dokument/Handböcker och
datablad på kurshemsidan.

Uppg.

(3.1)
3.2
3.6
3.7

(3.8)
3.9

3.11
3.12
3.13

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.4
6.5
6.6

Sign.

Hem-
Uppgift 1.A 1.B

Sign.

Laborations-
uppgift 1.1 1.2 1.3 1.4 1.5 1.6 1.X

Sign.

Laborationer i grundläggande datorteknik: Laboration 1

4

Laborationsuppgift 1.1:
Mätning av logiknivåer

Som första praktiska uppgift i laboratoriet skall vi undersöka vilka spänningar relativt jord,
som motsvarar logikvärdena "0" och "1" i digitalmaskinen. Eftersom alla spänningar i
digitalmaskinen mäts relativt jord använder vi i fortsättningen endast ordet "spänning" i stället
för "spänning relativt jord". Vi mäter spänningarna på en AND-grinds ingångar och utgång
med hjälp av en voltmeter.

Fråga en handledare om du behöver hjälp med att använda en voltmeter.

Studera AND-modulen som innehåller fyra 2-ingångars AND-grindar.

Grindarna har gröna bananhylsor på ingångarna. De gula utgångarna är dubblerade för att man
enklare skall kunna koppla utsignalen vidare till ingångar på andra grindar. Varje grind har en
lysdiod på utgången som indikerar utgångens logiknivå (tänd diod=1, släckt diod=0). Överst
finns två röda bananhylsor med +5V och nederst två svarta med 0V. Dessa kan man använda till att koppla
logiknivå ett eller logiknivå noll till ingångar på kretsarna.
Slå av nätströmbrytaren på digitalmaskinen. Nätströmbrytaren på digitalmaskinen skall vara avstängd vid
allt kopplingsarbete!

Insignaler till grindarna kan tas från switchmodulen: Anslut en kopplingskabel mellan den övre
banankontakten på switch B0 (B-raden på switchmodulen och en av ingångarna på en av AND-grindarna.

Anslut en annan kopplingskabel mellan den övre banankontakten på
switch B1 (B-raden på switchmodulen) och den andra grindingången. Se
figuren till höger.

Slå på nätströmbrytaren på digitalmaskinen.

Ställ in logikvärdena enligt tabellen nedan med switcharna B0 och B1. Mät spänningen på den använda
grindens ingångar och utgång med en voltmeter och fyll i tabellen. Observera också utgångens logikvärde.

Laborationer i grundläggande datorteknik: Laboration 1

5

Från mätvärdena i tabellen drar vi slutsatsen att:
 Logikvärdet "0" motsvarar spänningen ____ V.
 Logikvärdet "1" motsvarar spänningen ____ V.
De uppmätta värdena är typiska för den sorts mikroelektronik, HCMOS, som används i digitalmaskinen.
Vi observerar också att de AND-grindar som inte har någon yttre signal ansluten till sina ingångar via en
labsladd har logikvärdet på utgången.
Mätning av spänning på ingångarna till dessa grindar visar spänningen ____ V, dvs. logikvärdet , vilket
förklarar utsignalvärdet. Det är samma logikvärde på (nästan) samtliga ingångar, som saknar yttre anslutning
via en labsladd.

Laborationsuppgift 1.2:
Undersökning av XOR-grind
Slå av nätströmbrytaren på
digitalmaskinen.

Koppla upp uppgift 3.11 från arbetsboken.
Slå på nätströmbrytaren på digitalmaskinen.
Använd switch B0 på switchmodulen som styrsignal s för att lägga på nollan
eller ettan, och switch B1 som insignal x.
Fyll i funktionstabellen.

Laborationsuppgift 1.3:
NAND-logik

Slå av nätströmbrytaren på digitalmaskinen.

Koppla upp uppgift 3.9 där du använder NAND/NAND logik från arbetsboken.

Använd switch B3-B0 på switchmodulen som insignaler för x, y, z och w.

Slå på nätströmbrytaren på digitalmaskinen och kontrollera utsignalen f för olika
värden hos insignalerna, fyll i funktionstabellen:

s x u0 u1

0 0 -

0 1 -

1 0 -

1 1 -

x y z w f
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Laborationer i grundläggande datorteknik: Laboration 1

6

Hemuppgift 1.A:
I laborationsuppgift 1.4 nedan, ska du koppla upp uppgift 4.3 från arbetsboken.
Här måste du dock tänka på att du inte har obegränsat med moduler för din koppling. Du måste därför
eventuellt anpassa din lösning för användning av de moduler som finns tillgängliga på laborationsplatsen:

• 10 st. INVERTERARE
• 4 st. 2-ingångars AND
• 8 st. 2-ingångars NAND
• 3 st. 3-ingångars NAND
• 4 st. 2-ingångars NOR
• 8 st. XOR

Kontrollera att din lösning i arbetsboken inte omfattar fler grindar än du har tillgång till på
laborationsplatsen. Modifiera eventuellt lösningen så att grindarna räcker och skriv här booleska uttryck för
funktionerna.

Laborationsuppgift 1.4:

Konstruktion av digital vinkelgivare

Slå av nätströmbrytaren på digitalmaskinen.
Koppla upp uppgift 4.3 från arbetsboken enligt din
lösning i hemuppgift 1.A.

Använd switcharna B7 till B4 på switchmodulen för insignalerna x, y, z
och w enligt vidstående figur, tänk på att även insignalernas inverser finns
tillgängliga från switchmodulen.

Koppla vinkelgivarens utsignaler till displaymodulen så att det högra sifferfönstret
används, dvs. utsignal a till insignal nr 3, utsignal b till insignal nr 2, utsignal c till
insignal 1 och utsignal d till insignal 0 på displaymodulen.

När du kopplat upp hela kodomvandlaren slår du på nätströmbrytaren på digitalmaskinen
och testar vinkelgivaren för hela funktionstabellen i figur 4.3 i arbetsboken. Demonstrera
sedan kopplingen för en handledare.

a=

b=

c=

d=

Laborationer i grundläggande datorteknik: Laboration 1

7

Hemuppgift 1.B:

Studera uppgift 5.1 i arbetsboken.
Rita schemat för en 2-bitars adderare i boxen nedan så att du har
den lätt tillgänglig under kopplingsarbetet vid laborationen.

Schema för 2-bitars adderare.

Laborationsuppgift 1.5:
Konstruktion av 2-bitars adderare
Under denna laborationsuppgift ska du koppla upp den 2-bitars adderare du konstruerat som hemuppgift 1.B.
Slå av nätströmbrytaren på digitalmaskinen.
Koppla upp adderaren där du ansluter insignalerna x1 och x0 till B5 och B4 på switch-modulen. Vidare väljer
du B1 och B0 för insignalerna y1 och y0. Slutligen väljer du B7 som cin.

När du kopplar upp ett lite större nät kan en kopplingssladd lätt hamna fel. Därför är det ett bra arbetssätt att
först koppla upp en delmängd av konstruktionen.
Exempelvis kan du börja med att koppla nätet som utgör en 1-bits adderare, dvs. bilda s0 och carry ut från
additionen av x0 och y0, och testar detta först.
Därefter kan du utöka kopplingen till en 2-bits adderare.

Efter att ha kontrollerat koppligen demonstrerar du den för en handledare.

Laborationer i grundläggande datorteknik: Laboration 1

8

Laborationsuppgift 1.6:

Väljare och dess användning

Slå av nätströmbrytaren på digitalmaskinen.
Koppla upp uppgift 6.1 från arbetsboken.
Använd switcharna B7, B6 och B0 på switchmodulen för signalerna x0, x1 och s0 enligt funktionstabellen.
Slå på digitalmaskinens nätströmbrytare och komplettera tabellen med funktionsvärdena f.

Styrsignal Insignaler Utsignal
s0

(B0)
x1

(B6)
x0

(B7) f

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

s0

0
1

x0
x1

f

Laborationer i grundläggande datorteknik: Laboration 2

9

Laboration nr 2
ALU
Register med 3-state-utgång
Dataväg och minne
Räknare

Följande uppgifter ur Arbetsbok för DigiFlisp ska
vara utförda som förberedelse för laborationen. Du
ska på begäran av laborationshandledare redogöra
för dessa.

Uppgifter inom parentes är inte strikt
obligatoriska, men om man gjort dem blir arbetet
med de obligatoriska uppgifterna lättare.

Hemuppgifter i detta PM som ska vara utförda innan laborationen påbörjas.

Följande laborationsuppgifter skall redovisas för en
handledare för godkännande under laborationen, dvs. innan
du kopplar ned.

Hemuppgift 2.A:

• Utför deluppgifterna 2.3.2, 2.3.3 och fyll i tabellen under 2.3.4.

I några av laborationsuppgifterna används en ALU. Eftersom laborationssystemets ALU skiljer sig något
från den som beskrivits i arbetsboken och FLISP-simulatorn (se laborationsuppgift 2.1) ska du förbereda
laborationsuppgifterna i detta avsnitt med att

• Ersätta funktionskoderna i dina lösningar som du gjort med FLISP-simulatorn med de funktionskoder
som gäller för laborationssystemets ALU. Dessa använder du sedan under laborationen.

Hemuppgift 2.B:
• Utför deluppgifterna 2.5.1 och 2.5.2.

Uppg.

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6

9.1 11.1
11.9

11.11

(12.1)
12.2
12.3

(13.1)
13.2

Sign.

Hem-
Uppgift 2.A 2.B

Sign.

Laborations-
uppgift 2.1 2.2 2.3 2.4 2.5

Sign.

Laborationer i grundläggande datorteknik: Laboration 2

10

Beskrivning av ALU-,
DATA SOURCE- och DISPLAY- moduler

Figuren till vänster visar frontpanelen för en 8-bitars
ALU-modul som ingår i labbsystemet. Modulen har två
8-bitars dataingångar D och E samt en ingång för carry-
in. Den har också fyra ingångar, f0, f1, f2 och f3 som
bestämmer dess funktion.
Förutom datautgången U med 8 bitar har den
flaggutgångarna N, Z, V och C.
De båda dataingångarna D och E, samt datautgången U
finns tillgängliga på frontpanelen i form av
flatkabelkontakter. Insignalerna till D- och E-
ingångarna och utsignalerna på U-utgången måste
därför kopplas med flatkablar via dessa kontakter.

I labbsystemet ingår också två moduler med namnet "DATA
SOURCE" (DS). Med hjälp av dem kan man koppla in 8-bitars
dataord till olika enheter via flatkablar. Dataorden kan ställas in
med åtta switchar, som finns på DS-modulens framsida. Varje DS-
modul har "three-state"-buffertar på sina åtta datautgångar mot
flatkabelkontakten och kan därför användas som en av flera
datakällor på samma buss. "Three-state"-bufferterna i en DS-
modul kan aktiveras med signalen EN' via en banankontakt på
frontpanelen. Figuren till höger visar "DATA SOURCE"-
modulens frontpanel med dataordet 01101001 inställt på
switcharna (bit 7 - bit 0). Genom att aktivera ingången EN' nere
till vänster på modulen lägger man ut bitmönstret på
flatkabelkontakten nere till höger.
För att man enkelt skall kunna se värdet på 8-bitars tal från till exempel ALU:n har labbsystemet försetts
med en displaymodul med 2 st 7-segments sifferfönster. I sifferfönstren visas det binära 8-bitarsvärdet på
flatkabelkontakten som ett hexadecimalt tal. Se figur nedan.

Laborationer i grundläggande datorteknik: Laboration 2

11

Laborationsuppgift 2.1:

Analys av 8-bitars ALU

OBSERVERA: I laborationssystemet skiljer sig ALU:n åt något från den ALU som beskrivs i arbetsboken.
Följande funktionstabell gäller laborationssystemets ALU:

funktion operation utsignaler
f3 f2 f1 f0 RTN u7 u6 u5 u4 u3 u2 u1 u0 N Z V C
0 0 0 0 U0→ 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 UD→ d7 d6 d5 d4 d3 d2 d1 d0 u7 (1) 0 0
0 0 1 0 UE→ e7 e6 e5 e4 e3 e2 e1 e0 u7 (1) 0 0
0 0 1 1 UD→ 7d

6d

5d

4d
3d

2d
1d

0d
 u7 (1) 0 0

0 1 0 0 UE→ 7e

6e

5e

4e
3e

2e
1e

0e
 u7 (1) 0 0

0 1 0 1 UED →∨ 77 ed ∨
66 ed ∨

55 ed ∨
44 ed ∨

33 ed ∨
22 ed ∨

11 ed ∨
00 ed ∨ u7 (1) 0 0

0 1 1 0 UED →∧ 77 ed ∧
66 ed ∧

55 ed ∧
44 ed ∧

33 ed ∧
22 ed ∧

11 ed ∧
00 ed ∧ u7 (1) 0 0

0 1 1 1 UED →⊕ 77 ed ⊕
66 ed ⊕

55 ed ⊕
44 ed ⊕

33 ed ⊕
22 ed ⊕

11 ed ⊕
00 ed ⊕ u7 (1) 0 0

1 0 0 0 UCD in →+ u7 (1) (2) (3)
1 0 0 1 UC)FF(D in16 →++ u7 (1) (2) (3)
1 0 1 0 UCED in →++ u7 (1) (2) (3)
1 0 1 1 UCDD in →++ u7 (1) 0 (4)
1 1 0 0 UCED in →++ u7 (1) (2) (3)
1 1 0 1 U0→ 0 1 0 0
1 1 1 0 U0→ 0 1 0 0
1 1 1 1 U)FF(16 → 1 1 1 1 1 1 1 1 1 0 0 0

(1)
01234567 uuuuuuuuZ ∧∧∧∧∧∧∧= , dvs. Z=1 då samtliga bitar i register U är 0, Z=0 annars.

(2)
)edu()edu(V 777777 ∧∧∨∧∧= , dvs. V-flaggan sätts enligt reglerna för tvåkomplementsaritmetik.

(3) C = c8, dvs. carry ut från additionen av de mest signifikanta siffrorna.
(4) C = utskiftad bit, dvs. bit d7 före vänsterskiftet.

För ALU:ns samtliga operationer gäller att innehållen på ingångarna D och E inte kan påverkas. Varje operation, såsom bestämd av
F, kan endast påverka utgången U och flaggorna som vi betecknar ALU(N, V, Z, C).

Laborationer i grundläggande datorteknik: Laboration 2

12

Jämför nu med arbetsbokens uppgift 7.1 och betrakta följande tabell. Identifiera motsvarande funktioner
(funktionskoder) hos laborationssystemets ALU och fyll i dessa i tabellen. Använd sedan ALU:n för att fylla
i resultaten i tabellen (kolumnen Utgång U).

Operation

F Ingång D Ingång E Utgång U
 f3 f2 f1 f0 Cin Bin Bin Bin

1) E � U
2) D∨E�U
3) D⊕E�U 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0
4) D<<1(Cin)� U 1
5) D<<1(Cin)� U 0

Slå av nätströmbrytaren på digitalmaskinen.

Koppla flatkablar mellan DS-modulerna och D- resp E-ingången på ALU-modulen. Glöm inte att DS-
modulerna ska ha aktiva utgångar!

Koppla också en flatkabel mellan ALU-modulens utgång U och displaymodulen.

Anslut ALU:ns funktionsingångar f3 -f0 och Cin till switchmodulen nere till höger på digitalmaskinen enligt
följande tabell:

Slå på nätströmbrytaren på digitalmaskinen.

Ställ in funktionskoderna och kontrollera operationerna enligt tabellen ovan. Jämför resultaten (U) med de
resultat du fick för motsvarande operationer i uppgift 7.1.

Utgå nu från arbetsbokens uppgift 7.2. Identifiera laborationssystemets funktionskoder för operationerna
addition och subtraktion, fyll i dessa i följande tabell.

Koppla upp följande operationer, komplettera tabellen, jämför slutligen med resultaten för motsvarande
operationer i arbetsbokens uppgift 7.2

 Ingång D Ingång E
Op

ALU-funktion Utgång U Flaggor
 Dec Bin Dec Bin F Cin Bin Dec N Z V C

1) 27 0 0 0 1 1 0 1 1 55 0 0 1 1 0 1 1 1 + 0 1 0 1 0 0 1 0 82

2) 55 −27 + 28

3) −55 −27 + -82

4) 55 27 - 28

5) 27 0 0 0 1 1 0 1 1 55 0 0 1 1 0 1 1 1 - -28

6) 27 0 0 0 1 1 0 1 1 −55 - 82

Laborationer i grundläggande datorteknik: Laboration 2

13

Laborationsuppgift 2.2:
Register med 3-state utgång

Studera följande figur över en dataväg och se till att en handledare kopplar upp den i labbsystemet.
Kopplingen skall senare användas för att visa hur man kan flytta och behandla data i en enkel
dataväg. Först skall vi dock studera hur en registermodul (REG8) fungerar.
När du skall avlägsna en kabel, får du aldrig dra i själva kabeln, utan använd istället utkastar-
armarna som finns på stifttagen på modulerna!

• Slå på nätströmbrytaren på digitalmaskinen.

• Register T:s utgångar är inte anslutna till någonting. Studera modulen. Lägg märke till att
lysdioderna på registermodulens utgångssida (till höger) visar ett odefinierat värde. Detta beror
på att registermodulens utgångar inte är aktiverade och därför befinner sig i flytande tillstånd.
De får alltså inget logikvärde från registrets Q-utgångar vars värden man ser på lysdioderna i
mittraden.

• Vidrör utgångskontaktens metallstift lätt med fingerspetsen och iakttag hur lysdioderna på
utgångssidan ändrar ljusstyrka. Fenomenet förklaras av att laddningar omfördelas mellan fingret
och de olika kontaktstiften. Detta visar också att "three-state"-utgångar som befinner sig i
flytande tillstånd har mycket hög impedans (resistans) till matningsspänningen och jord.

• Om nödvändigt, lyft bort en modul på digitalmodulens mittersta rad. I ”hålet” där modulen
saknas hittar du två spännings-skenor. Den ena är +5V och den andra är jord (0V). Vidrör
utgångskontaktens metallstift på registermodulen lätt med fingerspetsen samtidigt som du håller
ett finger på en av spännings-skenorna. Testa detta ett antal gånger när du vidrör
spänningsskenorna.

• Anslut T-registermodulens klockingång och Load Enable-ingång till switch-modulen (exempelvis
till switcharna B0 och B1) på digitalmaskinen.

• Anslut DS-modulens Output Enable-signal till switch-modulen på digitalmaskinen.

• Ställ in värdet 3716 på DS-modulen.

Laborationer i grundläggande datorteknik: Laboration 2

14

Undersök hur de olika styrsignalerna ska vara inställda för att värdet 3716 ska kopieras från
DS-modulen till T-registret. Skriv ner dina slutsatser.

Inaktivera Output Enable-signalen för DS-modulen och aktivera Output Enable-signalen för T-
registermodulen. Vidrör utgångskontaktens metallstift på registermodulen lätt med fingerspetsen.
Observera vad som händer på registrets utgång. Upprepa förfarandet när Output Enable för T-
registermodulen inte är aktiverad. Varför ändras värdet på utgången ibland och ibland inte?

Gör en sammanställning i tabellen nedan över registermodulens styrsignaler Load Enable, Output
Enable, klockpuls etc. Ange alla ingångar M1, M2, M3, C4 och EN. Ange om signalerna är aktiva som
nollor eller ettor. Är du osäker testar du genom att klocka in nya värden i registret och att belasta
utgången (beröra utgångskontaktens metallstift) på registermodulen.

Ingång Beteckning Aktiv Kommentar

M1

M2

M3 Load Enable Låg (0)

C4

EN

Slå av nätströmbrytaren, låt flatkablarna sitta kvar och avlägsna övriga kablar.

Laborationer i grundläggande datorteknik: Laboration 2

15

Laborationsuppgift 2.3:
Dataväg med ALU

Studera figur 11.1 på sidan 57 i arbetsboken och jämför med uppkopplingen för denna
laborationsuppgift. Notera att en flatkabel nu ska anslutas mellan T-registret och ALU:n i
labbsystemet och att Output Enable för T-registret ska anslutas till jord.

En flatkabel med flertalet kontakter kopplar samman de tre registermodulerna, Datasource och
Displaymodulen med ALU:n. Flatkabeln fungerar nu som en databuss.

OBSERVERA: Notera att hylsdonen (hon-kontakterna) på flatkabeln endast kan kopplas i stifttagen
på ett sätt på grund av styrstiftet.

Utöver de nämnda modulerna använder du här också en ”MANUELL STYRENHET” med vars
hjälp den lilla datavägen kan styras.

Om vi jämför laborationssystemets moduler med arbetsbokens ”Dataväg med ALU” noterar vi
bland annat följande skillnader:

• Hos laborationssystemet återfinns några styrsignaler som du inte hittar i arbetsbokens styrenhet
(LDB och OEB), dessa kommer vi inte att använda. Dessutom finns styrsignalerna MEM_W,
MEM_R som vi kommer att använda först under nästa laborationsuppgift.

• Arbetsbokens styrsignal OES, betecknas hos laborationssystemet OEDS.

• Arbetsbokens manuella styrenhet har 6 st uppsättningar omkopplare för styrsignalerna.
Laborationssystemets manuella styrenhet har bara en uppsättning omkopplare. Detta innebär att
du måste ställa om styrsignalerna inför varje klockpuls då du manövrerar laborationssystemet.

• I laborationssystemet skiljer sig ALU:n åt något från den ALU som beskrivs i arbetsboken. För
laborationssystemets ALU använder du de funktionskoder som gavs i laborationsuppgift 2.1.

Laborationer i grundläggande datorteknik: Laboration 2

16

Deluppgift 2.3.1:

Koppla samman den manuella styrenhetens signaler: OEDS, OEA,OER,LDA, LDT,LDR Cin, f3,f2,f1,f0
och CLOCK till rätt kopplingspunkter i datavägen. Anslut Output Enable-signalen på T-
registermodulen till jord.

Deluppgift 2.3.2:

Ange en styrsignalsekvens som placerar värdet 1216 i register A och värdet 6216 i register R.

RTN steg Source OES OEA OER LDA LDT LDR Cin f3 f2 f1 f0

1216 → A 1
6216 → R 2

Utför styrsignalsekvensen i laborationssystemet och kontrollera funktionen.

Deluppgift 2.3.3:
Skriv in RTN-beskrivning och styrsignalerna nedan för att byta innehållen i register A och R.
Register A skall alltså ha värdet 6216 och register R 1216 efter bytet. Under detta moment får du inte
utnyttja DS-modulen. Testa förloppet i kopplingen.

RTN steg OEA OER LDA LDT LDR Cin f3 f2 f1 f0

 1
 2
 3

Deluppgift 2.3.4:

Ange en styrsignalsekvens som utför operationer enligt nedanstående RTN-beskrivning, vilken
sammantaget utför 4A – T → A. (I den här uppgiften ska alla värden och bitmönster tolkas som tal
utan tecken.) Utför alla steg i den ordning som anges. Fyll i styrsignalsekvensen i den vänstra delen
av tabellen på nästa sida.

4516 → A

1616 → T

2A → A

2A → A

A - T → A

Laborationer i grundläggande datorteknik: Laboration 2

17

RTN Steg Source OES OEA OER LDA LDT LDR Cin f3 f2 f1 f0 c A R T

 1
 2
 3
 4
 5
 6
 7
 8

Vid laborationsplatsen:

Utför styrsignalsekvensen i laborationssystemet och kontrollera funktionen. Notera i den högra
delen av tabellen c-flaggan från ALU:n och värdet i A-, R- och T-registren.

Vad blev slutresultatet i register A efter sekvensen?

Är resultatet lika med 416*4516 - 1616? (Kontrollräkna med papper och penna eller miniräknare.)

Kommentera och förklara dina svar på de föregående två frågorna; förklara sambandet mellan hur
c-flaggan tändes och huruvida slutresultatet var korrekt.

Laborationer i grundläggande datorteknik: Laboration 2

18

Beskrivning av minnesmodul och terminalanslutning

I labsystemet ingår en modul med läs- och skrivbart minne, RWM, med kapaciteten 28 = 256 st 8-
bitars minnesord. Blockschemat för RWM-modulen och dess frontpanel visas nedan.

För att man lättare skall kunna studera och ändra minnesinnehållet har en mikrodator byggts in i
minnesmodulen som finns på labplatsen. Mikrodatorn kan kommunicera med en terminal (PC-
dator) så som visas i figuren nedan. Kommunikationen sker via terminalkontakten nere till höger på
frontpanelen.

Ett program i minnesmodulens mikrodator visar innehållet på hexadecimal form på alla 256
adresser på terminalens skärm. Man kan enkelt ändra ett dataord på en minnesadress genom att först
flytta markören på skärmen till den önskade adressen med piltangenterna på terminalens
tangentbord. Därefter skriver man in det nya dataordet på hexadecimal form med siffer- och
bokstavstangenterna.

Laborationer i grundläggande datorteknik: Laboration 2

19

Laborationsuppgift 2.4:
Anslutning av en minnesmodul till datavägen

Du förebereder dig för denna laborationsuppgift genom att studera arbetsbokens kapitel 12.1-12.4,
och utföra uppgifterna 12.1 till och med 12.5.

Slå av nätströmbrytaren på digitalmaskinen.
Vi ska nu komplettera dataväg och manuell styrenhet med en minnesmodul.

• Koppla in minnesmodulen enligt figuren ovan. Aktivera OEDS2.

• Starta programmet ”Flexminne” (eller ”HyperTrm”). Det ska finnas en genväg till programmet
på skrivbordet. Slå på nätströmbrytaren på digitalmaskinen.

• Observera hur minnets innehåll skrivs till bildskärmen. För att uppdatera ”Flexminne” tryck
Ctrl-A upprepade gånger. Ange därefter, i kolumn 1, vilka data som är lagrade på följande
minnesadresser:

Adress 1 2 3

2016

3B16

7016

AA16

CF16

FF16

• Slå av nätströmbrytaren på digitalmaskinen, vänta några sekunder och slå på nätströmbrytaren
igen. (Det är aldrig bra att snabbt slå av och på nätströmbrytaren på elektroniska apparater!!!)

• Ange därefter, i kolumn 2, vilka data som är lagrade på minnesadresserna. Upprepa förfarandet
och fyll slutligen i kolumn 3 med data lagrade på minnesadresserna.

• Diskutera med din laborationspartner; Hittas något ”mönster” i utskriften på skärmen? Jämför
med någon annan laborationsgrupp.

Laborationer i grundläggande datorteknik: Laboration 2

20

Nu skall minnesmodulens funktion undersökas. Följ instruktionerna:

1. Tryck på terminalens ENTER-knapp och iakttag bildskärmen. Fyll hela minnet med nollor
genom att hålla siffertangenten 0 nedtryckt tills minnet är fullt.

2. Ställ sedan in adressen 3016 på DS-modul 2, som är ansluten till adresskontakten, samt dataordet
5A16 på DS-modul 1, som är ansluten till datakontakten.

3. Aktivera DS-modul 1 genom att sätta switchen OEDS = 1 på styrenheten. Kontrollera att
dataordet 5A16 finns på databussen.

4. Ställ switchen MEM_W i läget 1 på den manuella styrenheten medan du ser på minnesmodulen.
5. Ge en klockpuls medan du ser på bildskärmen.

6. Fortsätt att skriva och läsa några olika dataord med hjälp av DS-modulerna och styrenheten.
Kontrollera att resultatet överensstämmer med informationen på bildskärmen.

7. Prova sedan med att ändra minnesinnehållet med hjälp av terminalens pil- och siffertangenter.

8. Ställ in en viss minnesadress på DS-modul 2 och ställ switchen MEM_R = 1 (läsning) och ändra
minnesinnehållet på den valda adressen med hjälp av terminalen. Observera ändringen på
minnesmodulens datadisplay.

Du ska nu utföra uppgifterna 12.2 och 12.3 från arbetsboken i laborationssystemet. Eftersom
simulator och laborationssystem inte är helt identiska måste du anpassa styrsignalsekvensen för
laborationssystemet. Översätt därför resultaten från uppgifterna i arbetsboken för följande manuella
styrenhet. Låt laborationssystemets modul DS2 motsvara simulatorns register TA. Eftersom adressen
nu läggs direkt till minnets adressbuss räcker det med ett steg. Styrsignaler i simulatorn som inte
återfinns i följande tabell kan du bortse från.

Läscykeln
Fyll i laborationssystemets styrsignalsekvens för manuell styrenhet (uppgift 12.2)
 M(1016)�A

RTN steg Data
Source2 OEA OER OECC LDA LDT LDR f3 f2 f1 f0 MEM_R MEM_W

1016 → MainMemory:ADRESS;
 M(MainMemory:ADRESS)) → A

1

• Använd terminalen för att lägga in värdet 1516 på adress 1016 i minnet.

• Nollställ register A

• Utför styrsignalsekvensen och kontrollera att register A nu innehåller 1516.

Skrivcykeln:
Fyll i laborationssystemets styrsignalsekvens för manuell styrenhet (uppgift 12.3)
 A � M(1116)

RTN steg Data
Source2 OEA OER OECC LDA LDT LDR f3 f2 f1 f0 MEM_R MEM_W

1116 → MainMemory:ADRESS;
A � M(MainMemory:ADRESS)

1

• Använd terminalen för att lägga in värdet FF16 på adress 1116 i minnet.

• Utför styrsignalsekvensen och kontrollera att minnesinnehållet på adress 1116 är det samma som
innehållet i register A.

Laborationsuppgift 2.5:

Laborationer i grundläggande datorteknik: Laboration 2

21

Vippor och räknare

Du förebereder dig för denna laborationsuppgift genom att studera arbetsbokens kapitel 8 och 13.

Deluppgift 2.5.1:
Bestäm uttryck för J- och K-ingångarna för vipporna i figuren ovan.

J0 =
K0 =
J1 =
K1 =
J2 =
K2 =

Deluppgift 2.5.2:
Fyll i följande tabell nedan med hjälp av J- och K-uttrycken.

Detta tillstånd Insignaler Nästa tillstånd
Q q2 q1 q0 J2 K2 J1 K1 J0 K0 q2

+ q1
+ q0

+ Q+

0 0 0 0 1 1
1 0 0 1 1 1
2 0 1 0 1 1
3 0 1 1 1 1
4 1 0 0 1 1
5 1 0 1 1 1
6 1 1 0 1 1
7 1 1 1 1 1

C1

1J

1K

q0

q0'
C1

1J

1K

q1

q1'
C1

1J

1K

q2

q2'
&

CP CP CP
& J2

K2

J1

K1 K0

J0 1

1

S S S

START

Laborationer i grundläggande datorteknik: Laboration 2

22

Deluppgift 2.5.3:
Koppla upp räknaren från föregående sida på digitalmaskinen. Koppla utgångarna q0, q1 och q2 till
ingångarna 0, 1 och 2 på displaymodulen. Kontrollera att flatkabeln ej är inkopplad på
displaymodulen. Koppla insignalerna START och CP till switchmodulen på digitalmaskinen.

Ge räknaren signalen START och stega sedan igenom med hjälp av CP.	
 Ange utsekvensen för
räknaren:

q2 q1 q0: 111, 000, __

Ange räknarens tillstånd när signalen START aktiveras: ___________

Verifiera dina svar här gentemot vad du fick i föregående uppgift.

Deluppgift 2.5.4:
Ange utsekvensen för räknaren i form av en tillståndsgraf:

Slå av nätströmbrytaren, avlägsna alla kablar.

Glöm inte städa upp på din laborationsplats innan du lämnar den.

2

3 6

7

1

4

0

5

Q

Laborationer i grundläggande datorteknik: Laboration 3

23

Laboration nr 3

Konstruktion och test av instruktioner (styrsignalsekvenser) för FLISP

Följande uppgifter ur Komplement till
Arbetsbok för DigiFlisp ska vara
utförda som förberedelse för
laborationen. Du ska på begäran av
laborationshandledare redogöra för
dessa. Uppgifter inom parentes är inte strikt obligatoriska, men arbetet med de obligatoriska uppgifterna blir
lättare om man gjort dem.

Hemuppgifter i detta PM som ska vara utförda innan
laborationen påbörjas.

Följande laborationsuppgifter skall redovisas för en handledare för
godkännande under laborationen.

Inledning
Denna laboration består av fem deluppgifter. Under uppgifterna 3.1, 3.2 och 3.3 har du möjlighet att bekanta
dig med laborationssystemet och lära dig att använda de grundläggande funktionerna för att därefter, under
uppgifterna 3.4 och 3.5 självständigt implementera och testa två helt nya FLISP-instruktioner.

Laborationssystemet består av två delar:
• Dataväg med FLISP styrenhet, "DV-modul" eller kortare "dataväg" (LU3-FLISP-DV)
• Kopplingsplatta för att bilda styrsignaler externt (LU3-FLISP-SE)

Med DV-modulen kan du detaljstudera hur styrsignalsekvenser sätts samman i maskininstruktioner för
FLISP. Kopplingsplattan ansluts till DV-modulen via en 64-polig flatkabel. Med kopplingsplattan, som
innehåller ett antal AND/OR-nät, kan du bilda styrsignaler och på så sätt skapa godtyckliga
styrsignalsekvenser, dvs. nya instruktioner för FLISP.

Två nya FLISP-instruktioner ska konstrueras och testas. Det är helt nya instruktioner så de finns inte i den
ordinarie instruktionslistan:
 MOVE #Data,Adr "move immediate data to memory"
 CMJEQ #Data,Adr "compare register and data, jump if equal"
För att klara av laborationen under utsatt tid krävs att du förberett dig genom att göra flera hemuppgifter.
Observera att det inte är tillräckligt att bara göra uppgifterna från arbetsboken som anges ovan utan du måste
också följa anvisningar om hemuppgifterna du får genom att studera detta PM.

Hemuppgift 3.A

För att kunna testa dina styrsignalsekvenser med simulatorn använder du de enkla testprogram som ges
senare i detta PM. Eftersom DV-modulen redan implementerar hela FLISP:s instrukktionsuppsättning
behöver du därför normalt sett inte tillhandahålla dessa.

I ett laborationsuppgift 3.3 ska du dock ersätta DV-modulens styrsignalsekvenser med dina egna, för
instruktionerna: JMP Adr, DECA, STA Adr.

Du ska därför ha konstruerat och testat dessa instruktioner (se kapitel 14 i arbetsboken) med andra
operationskoder (se uppgift 3.3) och spara styrsignalsekvenserna i filen "lab3_3.fcs".

Uppgifter 14.3 (14.4)
LDA # 14.7 14.10 14.11 14.12 14.13

Sign.

Hem-
Uppgifter 3.A 3.B 3.C 3.D 3.E

Sign.

Laborations-
uppgift 3.3 3.4 3.5

Sign.

Laborationer i grundläggande datorteknik: Laboration 3

24

Beskrivning av laborationssystemet

Följande bild visar LU3-FLISP-DV, eller kortare ”DV-modul” (datavägsmodul):

LU3-FLISP-DV, ”DV-modul”

DV-modulen har dessutom en inbyggd styrenhet för att kunna utföra samtliga FLISP:s instruktioner, 256
bytes primärminne och funktioner för att kunna övervaka och modifiera minnesinnehållet.

De odefinierade operationskoderna E016 och FF16 hanterar styrenheten helt enligt FLISP-specifikationen, dvs.
med undantagshantering.

De odefinierade operationskoderna 0316, 0416, DF16 och EF16 hanteras på följande sätt av laborationsenheten:

Då någon av dessa operationskoder finns i instruktionsregistret:
1. aktiveras respektive signal I03, I04, IDF eller IEF till kopplingsplattan
2. alla interna styrsignaler till datavägen inaktiveras, styrsignalerna hämtas nu i stället från

kopplingsplattan.

Datavägen och kopplingsplattan kan därför användas för att skapa nya instruktioner för FLISP genom att
styrsignalsekvenser bildas med hjälp av Q- och I-signaler som via AND/OR näten återkopplas från
kopplingsplattan till datavägen i form av styrsignaler.

För ytterligare beskrivningar av datavägens indikatorer för register, styrsignaler och tillståndssignaler
hänvisas till arbetsboken och annan dokumentation av FLISP.

Laborationsenheten kan styras med ett antal strömställare:

Control
 reset - DV-modulen försätts i återställningstillstånd Q0
 NF - DV-modulen klockas fram till nästa FETCH-fas (stega en instruktion)
 clk - en klockpuls ges till DV-modulen

Memory address
 auto - innehållet i minnesenhetens adressindikator är det värde som kopplats till minnesenheten med
 styrsignaler g12, g13 och g14
 manual - minnesenhetens adressindikator sätts med hjälp av omkopplarna A7-A4, de fyra mest
 signifikanta adressbitarna och A3-A0, de fyra minst signifikanta adressbitarna.

Memory data
 display - innehållet i minnesenhetens dataindikator ges av innehållet på adressen som finns i
 adressindikatorn
 modify - minnesenhetens dataindikator sätts med hjälp av omkopplarna D7-D4/D3-D0
 set - om omkopplaren står i modify-läge förs innehållet i dataindikatorn in i DV-modulens minne på
 den adress som anges i adressindikatorn.

OBSERVERA:
På laborationssystemet har
trycket av väljaren för CC-
registret blivit fel.
Ingångarna 3 och 4 är här
växlade. Detta gäller dock
INTE funktionen.

Laborationer i grundläggande datorteknik: Laboration 3

25

Följande bild visar LU3-FLISP-SE, eller kortare "kopplingsplattan":

LU3-FLISP-SE, ”kopplingsplatta”

Kopplingsplattan har tre sektioner med ingångar, dvs. signaler som kommer från DV-modulen, dessa är:

OP code, då någon av de odefinierade operationskoderna 0316,0416,DF16 eller EF16 finns i DV-modulens
instruktionsregister aktiveras också motsvarande signal I03, I04, IDF eller IEF till kopplingsplattan. Det finns 16
stiftlist för varje signal.

State, anger vilket exekveringstillstånd Q4-Q15 som DV-modulen är i. Även här finns 16 stiftlist för varje
signal.

Flags, (N, Z, V, C) från DV-modulens CC-register. Dessa kan användas för att bilda enklare flaggvillkor.
Varje signal kan tas ut från något av de fyra stiften på den intilliggande stiftlisten.

Insignalerna kopplas med hjälp av 24, av varandra, oberoende AND/OR-grindnät för att bilda styrsignaler
för DV-modulen. Ingångarna på AND-grindarna har en så kallad weak pull-down, så logiknivån är noll på en
ingång som inte är ansluten. Varje utgång kan kopplas till maximalt tre olika styrsignaler om så skulle
krävas.

Styrsignalerna kopplas tillbaks till DV-modulen via sektionen "Control signals" som också har
ljusdiodindikatorer för att indikera styrsignalernas nivå.

Laborationer i grundläggande datorteknik: Laboration 3

26

Laborationsuppgift 3.1

I denna uppgift ska du manuellt lägga in en instruktionssekvens och resetvektor i DV-modulens minne och
därefter kontrollera sekvensens funktion genom att utföra programmet cykelvis (klockcykel för klockcykel).

Hemuppgift 3.B
Disassemblera, dvs. tolka minnesinnehållet och använd FLISP:s instruktionslista för att komplettera tabellen
med mnemonics. Ange också instruktionens sista tillstånd i exekveringsfasen (det tillstånd i vilket signalen
NF aktiveras).

Adress
Maskin-

kod
 Assemblerkod

Instruktionens
NF-tillstånd

20 F0

21 7E

22 07

23 33

24 22

FF 20

På laborationsplatsen:

Så här skriver du in data manuellt till FLISP:s primärminne:

• Ställ Memory address omkopplare i läge manual, och ställ in adressen 20 med omkopplarna A7-A4/A3-A0.
• Sätt Memory data omkopplaren i läge modify och ställ in data F0 med omkopplarna D7-D4/D3-D0. Tryck på

set-omkopplaren för att skriva in värdet F0 på adress 20 i minnet.
Upprepa förfarandet för varje adress tills hela instruktionssekvensen och RESET-vektorn lagts in i minnet.

Du kontrollerar instruktionssekvensen på följande sätt:
• Ställ Memory address-omkopplaren i läge auto, Memory data-omkopplaren i läge display.
• Kontrollera att DV-modulen är i tillstånd Q0, tryck reset annars.
• Utför instruktionssekvensen cykelvis genom att ge klocksignaler, dvs. tryck in clk-omkopplaren.

Laborationer i grundläggande datorteknik: Laboration 3

27

Laborationsuppgift 3.2

I denna uppgift får du goda tips om hur du testar ett program i DV-modulen.
• Utför programmet instruktionsvis ("stega" igenom programmet)
• Utför programmet utan uppehåll (exekvera programmet)

Hemuppgift 3.C
Använd FLISP:s instruktionslista och komplettera följande tabell genom att översätta sekvensen av
mnemonics till maskinkod, dvs. assemblera programmet.

Adress
Maskin-

kod
 Assemblerkod

20 L1: LDA #316

21

22 L2 DECA

23 STA 1016

24

25 BEQ L1

26

27 JMP L2

28

FF 20

Vid laborationsplatsen:

Skriv manuellt in maskinprogrammet i DV-modulens minne på samma sätt som i föregående
laborationsuppgift.

DigiFlisp har en inbyggd terminalfunktion som kan användas för att kommunicera med DV-modulen via en
USB-anslutning.

• Starta DigiFlisp och välj fliken Console och sedan den COM-port som anvisats av laborationshandledare.
Klicka därefter på Connect. Ett terminalfönster (blå färg) öppnas nu.

• Ställ DV-modulens Memory address omkopplare i läge manual, och ställ in adressen 10 med omkopplarna

A7-A4/A3-A0. Genom att observera innehållet på denna adress kan du senare se att DEC-instruktionen i
programmet utförs korrekt.

• Gör reset på DV-modulen.
• Placera markören i terminalfönstret och ge kommandot 's' (step instruction) från tangentbordet. För

varje gång du ger detta kommando utförs en hel instruktion, på detta sätt blir det enklare att följa
programutförande genom instruktioner som är kända att fungera korrekt.

• Stega instruktionsvis några varv i programslingan, observera innehållet på adress 1016.
• Kontrollera att markören är placerad i terminalfönstret och ge kommandot 'e' (execute). Programmet

utförs nu utan att stanna. Studera speciellt innehållet på adress 1016 i minnet.

Vanligtvis den högsta
tillgängliga porten

Laborationer i grundläggande datorteknik: Laboration 3

28

Laborationsuppgift 3.3

I den här uppgiften ska du utföra samma program som i laborationsuppgift 3.2, fast den här gången ska du
använda dina egna implementationer av instruktionerna JMP, DECA och STA Adr.

• Eftersom kopplingsplattan endast kan användas för att ange styrsignaler för OP-koderna 0316, 0416, DF16

och EF16, kan du låta JMP använda OP-koden 0316. Byt därför ut motsvarande OP-kod i programmet från
laborationsuppgift 3.2.

• Implementera din lösning för JMP (uppgift 14.17 i blå arbetsboken, uppgift 14.12 i komplementet),
genom att koppla upp den på kopplingsplattan.

• Bekräfta att programmet får samma beteende som i föregående laborationsuppgift.
o Utför instruktionssekvensen för programmet cykelvis genom att ge klocksignaler, tills du ser

operationskoden 0316 i instruktionsregistret.
o Kontrollera nu, för exekveringsfasen dvs. Q4, att styrsignalerna aktiveras korrekt.

• Byt ut OP-koden för DECA i testprogrammet mot 0416.
• Koppla upp din implementation av instruktionen DECA (uppgift 14.15 i blå arbetsboken, uppgift 14.10 i

komplementet) på kopplingsplattan. Både DECA och JMP ska alltså vara uppkopplade samtidigt.
• Bekräfta att programmet fortfarande har samma beteende som tidigare.

o Utför instruktionssekvensen för programmet cykelvis genom att ge klocksignaler, tills du ser
operationskoden 0416 i instruktionsregistret.

o Kontrollera nu, för varje cykel i exekveringsfasen dvs. Q4 och uppåt, att styrsignalerna aktiveras
korrekt.

• Byt ut OP-koden för STA Adr i programmet mot DF16.
• Koppla även upp din implementation av STA Adr (uppgift 14.12 i blå arbetsboken, uppgift 14.7 i

komplementet)) på kopplingsplattan.
• Bekräfta att programmet fortfarande har samma beteende som tidigare.

o Utför instruktionssekvensen för programmet cykelvis genom att ge klocksignaler, tills du ser
operationskoden DF16 i instruktionsregistret.

o Kontrollera nu, för varje cykel i exekveringsfasen dvs. Q4 och uppåt, att styrsignalerna aktiveras
korrekt.

• Visa upp din koppling för en handledare.

Laborationer i grundläggande datorteknik: Laboration 3

29

Laborationsuppgift 3.4

Data kan kopieras i minnet med en MOVE-instruktion utan användning av de ordinarie "synliga" registren
hos FLISP, dvs. utan att förändra innehållet i något av A, X, Y, SP eller CC. Fördelarna med detta är att
datakopiering går snabbare, framför allt då de synliga registren är upptagna för annat, eftersom man slipper
spara/återställa register med hjälp av stacken. Samtidigt kan hela instruktionen kodas med endast tre bytes.
Exempelvis kan instruktionssekvensen
 PSHA
 LDA #FE16
 STA 1016
 PULA

ersättas av instruktionen
 MOVE #FE16,1016

Under denna uppgift ska du konstruera och testa instruktionen. Din styrsignalsekvens och ett tillhörande
testprogram (visas nedan) ska fungera såväl i simulator som med laborationsutrustningen.

MOVE-instruktionen specificeras enligt följande:

MOVE #Data,Adr
RTN Data → M(Adr)

Flaggor Påverkas ej.

Beskrivning Initierar en minnescell med en konstant.
Detaljer:

Instruktion Adressering Operation Flaggor
MOVE

 metod OP # ~ N Z V C
MOVE #Data,Adr Imm/

Absolute
DF 3 Data → M(Adr) - - - -

Instruktionsformat:

DF Adr Data

Hemuppgift 3.D

1. Konstruera MOVE- instruktionen med hjälp av DigiFlisp:s "Instruction builder", spara styrsignalsekvensen
i filen ”lab_3-4-instruction.fcs”

2. Skapa ett testprogram, enligt anvisningarna nedan, spara detta filen "lab_3_4-testprogram.fmem".
3. Kontrollera att MOVE-instruktionen utförs enligt specifikationen ovan, fyll därefter i tabellen med

styrsignaler nedan, du använder tabellen vid laborationen.

Laborationer i grundläggande datorteknik: Laboration 3

30

• Skapa ett testprogram enligt följande (komplettera med saknad maskinkod), för också in maskinkoden
som "setMemory"-direktiv i filen med testprogrammet.

Adress
Maskin-

kod
 Assemblerkod Direktiv för att initiera minne

20 DF L1 MOVE #FE16,1016 #setMemory 20=DF

21 10 #setMemory 21=10

22 FE #setMemory 22=FE

23 L2 INC 1016 #setMemory

24 #setMemory

25 BEQ L1 #setMemory

26 #setMemory

27 BRA L2 #setMemory

28 #setMemory

29

FF 20 #setMemory FF=20

Vid laborationsplatsen

Du ska nu verifiera att din MOVE-instruktion fungerar även i hårdvara.

• Koppla upp MOVE-instruktionens styrsignaler på kopplingsplattan. Tänk speciellt igenom hur många
(eller få) kopplingskablar som behövs. Varje OR-grind har tre utgångar för att kunna driva tre
styrsignaler samtidigt.

• Använd DigiFlisp:s nedladdningsfunktion och ladda testprogrammet "lab_3_4-testprogram.fmem"
till DV-modulen.

• Gör reset på DV-modulen.
• Utför nu instruktionssekvensen cykelvis genom att ge klocksignaler, tills du ser operationskoden DF16 i

instruktionsregistret.
• Kontrollera nu, för varje cykel i exekveringsfasen dvs. Q4 och uppåt, att styrsignalerna aktiveras korrekt.

Se till att värdet på minnesadress 1016 utvecklas enligt FE16 , FF16, 0016 för att sedan börja om på FE16.

Då MOVE-instruktionen fungerar som den ska tillkallar du en handledare och redovisar laborationsuppgiften.

Därefter kopplar du ner denna instruktion och fortsätter med nästa uppgift.

Laborationer i grundläggande datorteknik: Laboration 3

31

Styrsignalsekvens, hemuppgift 3.D

MOVE #Data,Adr

Tillstånd

Summa-
term

RTN-
beskrivning

Styrsignaler
=1

Laborationer i grundläggande datorteknik: Laboration 3

32

Laborationsuppgift 3.5

Denna uppgift ger exempel på en mer komplex och instruktion än den föregående. Jämförelse, test och
villkorlig flödesändring kan utföras med en enda instruktion:
 CMJEQ #Data,Adress

Liknande funktion fås med instruktionsföljden
 CMPA #Data
 BEQ Adress

med skillnaden att CMJEQ implementerar ett absolut hopp istället för som i BEQ där hoppet är relativt. I vår
nya instruktion anger vi alltså destinationsadressen som en absolut adress, vilket förenklar implementeringen
av styrsignalsekvensen något.

Instruktionen specificeras av följande:

CMJEQ Compare register A with data, jump if equal
RTN A − Data, If Z = 1: Adr → PC
Flaggor N: Får värdet hos skillnadens teckenbit (bit 7).

Z: Ettställs om skillnaden blir noll.
V: Ettställs om 2-komplementoverflow uppstår vid subtraktionen
C: Ettställs om borrow uppstår vid subtraktionen.

Beskrivning Data subtraheras från innehållet i register A. Skillnaden lagras ej, utan påverkar endast flaggorna.
Därefter testas Z-flaggans värde. Om Z=1 utförs ett hopp till adressen Adr. Om Z=0 utförs inget hopp. Nästa
instruktion blir i så fall den direkt efter CMJEQ-instruktionen i minnet.

 Detaljer:

Instruktion Adressering Operation Flaggor
CMJEQ
Variant metod OP # ~ N Z V C
CMJEQ #Data,Adr Immediate/Absolute EF 3 A – Data,

If (Z = 1)
 Adr → PC

Δ Δ Δ Δ

Instruktionsformat:

EF Adr Data

Du får konstruera styrsignalsekvensen hur du vill; det finns inga "prestandakrav". Du kan exempelvis
använda följande tips:

Gör en lösning som liknar dem för BEQ- och CMPA-instruktionerna, observera dock att Adr här är kodad
som absolut adress, och inte relativ som i fallet med BEQ.

1. Läs in Adr, dvs. destinationsadress för uppfyllt villkor, placera i register R
2. Läs in Data till register T, jämför med register A och ladda CC-registret med flaggor från ALU:n
3. Överför adressen i R till PC (jfr BEQ) om Z=1; avsluta därefter styrsignalsekvensen.

Laborationer i grundläggande datorteknik: Laboration 3

33

Hemuppgift 3.E

1. Konstruera CMJEQ - instruktionen med hjälp av DigiFlisp:s "Instruction builder", spara
styrsignalsekvensen i filen ”lab_3-5-instruction.fcs”

2. Skapa ett testprogram, enligt anvisningarna nedan, spara detta filen "lab_3_5-testprogram.fmem".
3. Kontrollera att CMJEQ -instruktionen utförs enligt specifikationen ovan, fyll därefter i tabellen med

styrsignaler nedan, du använder tabellen vid laborationen.

• Skapa ett testprogram enligt följande (komplettera med den saknade maskinkoden), för också in
maskinkoden som "setMemory"-direktiv i filen med testprogrammet.

Adress
Maskin-

kod
 Assemblerkod Direktiv för att initiera minne

20 L1 CLRA #setMemory 20=

21 L2 INCA #setMemory 21=

22 CMJEQ #2,L1 #setMemory 22=

23 #setMemory 23=

24 #setMemory 24=

25 BRA L2 #setMemory 25=

26 #setMemory 26=

27

FF #setMemory FF=

Vid laborationsplatsen

Verifiera att din CMJEQ -instruktion fungerar även i hårdvara:

• Koppla upp CMJEQ -instruktionens styrsignaler på kopplingsplattan.
För att skapa villkor för programflöde krävs här en AND-grind med tre ingångar, men någon sådan finns
inte på laborationsplatsen, du kan i stället använda två AND/OR-nät enligt följande:

&I
Q

≥1

styrsignal

&flagga

≥1

• Gör reset på DV-modulen.
• Utför nu instruktionssekvensen cykelvis genom att ge klocksignaler, tills du ser operationskoden EF16 i

instruktionsregistret.
• Kontrollera nu, för varje cykel i exekveringsfasen dvs. Q4 och uppåt, att styrsignalerna aktiveras korrekt.
• Utför programmet tills värdet i register A är 2 och kontrollera att hoppet då blir till adress 2016.

Då CMJEQ-instruktionen fungerar som den ska, tillkallar du en handledare och redovisar
laborationsuppgiften.

Därefter kopplar du ner och snyggar till din laborationsplats, laborationen är klar.

Laborationer i grundläggande datorteknik: Laboration 3

34

Styrsignalsekvens, hemuppgift 3.E

CMJEQ #Data,Adr

Tillstånd

Summa-
term

RTN-
beskrivning

Styrsignaler
=1

Laborationer i grundläggande datorteknik: Laboration 3

35

Tillägg till PM laboration 3:

Du kan ge kommandon till DV-modulen genom att klicka på terminalfönstret och skriva in något av följande

Kommando Betydelse

s Utför hel instruktion (till nästa NF)
e Utför program utan uppehåll, exekvera, avbryt exekvering genom att ge ytterligare ett ’e’-kommando.

wrZXX Skriv värdet XX till register Z. Värdet XX anges på hexadecimal form med precis två siffror. Registret,

Z, kan vara något av datavägens register enligt:
a,t,x,y,s=sp,p=pc,u=ta,r,c=cc.

wmXXYY Skriv värdet XX till minnesadress YY. Såväl värdet XX som adressen YY anges på hexadecimal form
med precis två siffror.

Laborationer i grundläggande datorteknik: Laboration 4

36

Laboration nr 4
Assemblerprogrammering

Följande uppgifter ur Arbetsbok för DigiFlisp ska vara utförda som
förberedelse för laborationen. Du ska på begäran av laborationshandledare
redogöra för dessa.

Uppgifter inom parentes är inte strikt obligatoriska, men om man gjort dem
blir arbetet med de obligatoriska uppgifterna lättare.

Hemuppgifter, i detta PM, som ska vara utförda
innan laborationen påbörjas.

Följande laborationsuppgifter skall redovisas för en handledare
för godkännande under laborationen.

OBSERVERA: Om du använder den nya versionen av DigiFlisp kommer IO-enheter att se något
annorlunda ut i simulatorn jämfört med laborationsutrustningen. Funktionsmässigt är dom dock lika.

Uppg.

(16.6)
(16.7)
(16.8)
16.9

16.10
16.11

Sign.

Hem-
Uppgifter 4.A 4.B 4.C

Sign.

Laborations-
uppgift 4.1 4.2 4.3 4.4

Sign.

Laborationer i grundläggande datorteknik: Laboration 4

37

Beskrivning av laborationssystemet

Laborationssystemets panel är indelad i olika sektioner:
• Registers, visar innehållet i FLIS-processorns register.
• Input/Output, anslutningar av externa enheter till FLIS- processorns, här visas också de värden som för

tillfället finns hos portarna.

• Address
 auto minnesenhetens adressväljare (Memory address) följer programräknaren PC.
 manual minnesenhetens adressväljare sätts med hjälp av omkopplarna A7-A4, de fyra mest
 signifikanta adressbitarna och A3-A0, de fyra minst signifikanta adressbitarna.

• Memory
Display innehållet i minnesenhetens dataindikator (Memory data) ges av minnesenhetens
 adressväljare

 modify minnesenhetens dataindikator sätts med hjälp av omkopplarna D7-D4/D3-D0
 set då omkopplaren står i modify-läge förs innehållet i dataindikatorn in i minnet på
 den adress som anges av adressväljaren.
• Execute, här manövreras FLIS-processorn.

reset processorn utför ett återstartsförlopp.
halt I detta läge kan ett program utföras instruktionsvis med omkopplaren step.
run i detta läge exekverar processorn instruktioner kontinuerligt och exekveringshastigheten
 (tre olika) kan väljas med omkopplaren step.

• Interrupt, indikerar om en avbrottsbegäran (Request) finns på FLIS-processorns avbrottsingång.
Dessutom indikeras (Acknowledge) då FLIS-processorn utför avbrottshantering.

• Connections, anslutningar, IRQ är direkt kopplad till FLIS-processorns avbrottsingång. IO Power out och
GND kan användas för att strömförsörja yttre enheter.

Laborationer i grundläggande datorteknik: Laboration 4

38

Nedladdning av program

ETERM har inbyggd funktion för att underlätta nedladdning av program och data till laborationsdatorn.
Funktionen filtrerar en fil av typen .fmem (skapas då du assemblerar din källtext) och skickar setMemory-
och setRegister- kommandon till laborationsdatorn.

• Välj Debug | Terminal och sedan den COM-port som anvisats av laborationshandledare. Ett

terminalfönster (blå färg) öppnas nu.
• Kontrollera att laborationsdatorn står i läge halt.
• Gör reset på laborationsdatorn.
• Placera markören i terminalfönstret och högerklicka, välj Load New och sedan fil för nedladdning.

Laborationsuppgift 4.1.
Sjusegmentsindikator

I denna uppgift ska du testa din lösning på uppgift 16.9 (DisplaySegE), i arbetsboken. Du ska tidigare ha
provat den i simulator så du vet att ditt program beter sig som det ska.
Du måste dock göra ett litet tillägg till din tidigare lösning: för att programräknaren (PC) i laborationsdatorn
ska få rätt värde (2016) från början ska du lägga till assemblerdirektiv som placerar programmets startadress i
RESET-vektorn.

• Laborationsdatorn ska vara ansluten till laborationskort ML4 via en 26-polig flatkabel.
• På ML4 ska sektionen DIPSWITCH input vara ansluten (10-polig flatkabel) till INPUT-sektionen.
• Sektionen 7-SEGMENT DISPLAY ansluts till OUTPORT-sektionen.

• Assemblera DisplaySegE.sflisp, det ska inte finnas några felmeddelanden.
• Kontrollera att laborationsdatorn står i läge halt.
• Placera markören i terminalfönstret och högerklicka, välj Load New och sedan filen

DisplaySegE.fmem för nedladdning.
• Gör reset på laborationsdatorn. Kontrollera att programmets startadress nu finns i PC.
• Öppna listfilen (DisplaySegE.lst) i texteditorn.
• Sätt visningsadressen (Address) på laborationsdatorn i läge auto.
• Tryck en gång på step-omkopplaren och observera hur PC och Memory address uppdateras med

programmets startadress.
• Läs av Memory data och se vad som finns i minnet på denna adress.
• Fortsätt med att utföra programmet instruktionsvis (step), följ med i listfilen, gör detta ett helt varv i

programmet, dvs. tills PC på nytt får värdet 2216.
• Starta exekvering av programmet genom att ställa omkopplaren i läge run.
• Öka exekveringshastigheten successivt genom att trycka på step-omkopplaren.

Laborationer i grundläggande datorteknik: Laboration 4

39

Laborationsuppgift 4.2.
Realtidsegenskaper, rinnande ljus.

Inför denna uppgift ska du ha utfört och testat uppgift 16.11 (RunDiodeDelay) i arbetsboken. Du ska
alltså tidigare ha provat den i simulator så du vet att ditt program beter sig som det ska.

OBS: I simulatorn har du använt värdet 255 som "fördröjningskonstant" men det är allt för stort för
laborationsdatorn. Använd i stället värdet 10.

Du måste även här lägga till assemblerdirektiv som placerar programmets startadress i RESET-vektorn för
att laborationsdatorn ska starta korrekt.

• Laborationsdatorn ska vara ansluten till laborationskort ML4 via en 26-polig flatkabel på samma sätt
som i föregående uppgift.

• I denna uppgift använde vi ljusdiodrampen på ML4:s OUTPUT-sektion. Vi använder inte
7-SEGMENT-DISPLAY denna gång men du kan ändå låta den 10-poliga flatkabeln sitta kvar (den
gör ingen skada).

• Assemblera RunDiodeDelay.sflisp, det ska inte finnas några felmeddelanden.
• Kontrollera att laborationsdatorn står i läge halt.
• Placera markören i terminalfönstret och högerklicka, välj Load New och sedan filen

RunDiodeDelay.fmem för nedladdning.

• Gör reset på laborationsdatorn. Kontrollera att programmets startadress nu finns i PC.
• Starta programmet genom att ställa omkopplare i run-läge.
• Variera laborationsdatorns exekveringshastighet och observera skillnader hos ljusdiodrampen.

Laborationer i grundläggande datorteknik: Laboration 4

40

Laborationsuppgift 4.3.
Variabel reglering för stegmotor

ML4 är utrustad med en stegmotor.
• Laborationsdatorn ska vara ansluten till laborationskort ML4 via en 26-polig flatkabel på samma sätt

som i föregående uppgift.
o Sektionen INPUT ska vara ansluten till sektionen DIPSWITCH. Omkopplaren används för

att styra stegmotorns hastighet.
o Sektion OUTPUT (bit7 - bit4) ansluts till ML4:s stegmotor.

Stegmotorn som är avsedd för unipolär drivning är ansluten via fyra stycken
enpoliga kopplingskablar till PORT A:s stiftlist SL1. Stegmotorns axel fås att
rotera genom att de olika faserna (RED, BLUE, YELLOW och WHITE) styrs ut.
Betrakta figuren i marginalen. Faserna ansluts via stiftlist SL4.

Observera att dessa faser är anslutna till +5V. För att få stegmotorn att rotera
skall 0V kopplas till två av faserna medan de två andra faserna skall kopplas till
+5V. Riktningen som stegmotorn roterar ges av följande tabell.

Som tabellen visar har vi fyra olika tillstånd. Vi sätter först BLÅ och GUL fas till logiknivånivå 0 (GND)
samtidigt som faserna RÖD och VIT ges logiknivå 1 (+5V). Detta motsvarar tabellens första kolumn.

• Om stegmotorn ska rotera medurs, ska sedan faserna ges de nivåer som anges i kolumn två, dvs.
GUL och VIT ändras medan RÖD och BLÅ lämnas som de är. Efter kolumn två används i tur och
ordning kolumn tre, kolumn fyra, kolumn ett, osv.

• Om stegmotorn ska roteras moturs, regleras faserna i stället genom att kolumnerna genomlöps i
följande ordning: kolumn ett, kolumn fyra, kolumn tre, kolumn två, kolumn ett, osv.

Vid laborationsplatsen

Kontrollera att sektion OUTPUT är ansluten via stiftlisten SL1 direkt till stegmotorns stiftlist, SL4 enligt
följande:

 b7 b6 b5 b4 b3 b2 b1 b0

OUTPORT RÖD BLÅ GUL VIT x x x x

Hemuppgift 4.A

Fyll i följande tabell som anger stegmotorns faser för att rotera medurs.

 b7 b6 b5 b4 b3 b2 b1 b0 HEX

State_1 0 0 0 0
State_2 0 0 0 0
State_3 0 0 0 0
State_4 0 0 0 0

Skriv en instruktionssekvens som får stegmotorn att rotera medurs. Utforma instruktionssekvensen efter
följande flödesdiagram:

Stegmotorns rotationsriktning
Fas MEDURS →

 ← MOTURS
 1 2 3 4

RÖD +5V +5V GND GND
BLÅ GND GND +5V +5V
GUL GND +5V +5V GND
VIT +5V GND GND +5V

Laborationer i grundläggande datorteknik: Laboration 4

41

Start

OUTPORT ← State_1

OUTPORT ← State_2

OUTPORT ← State_3

OUTPORT ← State_4

• Redigera en källtextfil Lab_4-1.sflisp, enligt flödesplanen, assemblera filen och rätta
eventuella fel.

• Notera det inte finns en stegmotor i simulatorn. När du förbereder uppgiften, använd istället en
hexdisplay som output för att se att rätt värden skrivs ut till porten i rätt ordning.

Vid laborationsplatsen

• Kontrollera instruktionssekvensens funktion genom att använda step-funktionen hos FLISP.

• Fungerar nu detta? Vrider stegmotorn sig ett steg i taget? Om inte, kontrollera att faserna ges rätt
logiknivåer genom att observera vad lysdioderna för b7, b6, b5 och b4 på port OUTPUT visar.

• Rätta eventuella fel, stegmotorn skall vrida sig ett steg för varje nytt värde som matas ut.

• Starta därefter exekvering av instruktionssekvensen genom att ställa omkopplare i run-läge.

• Variera laborationsdatorns exekveringshastighet och observera eventuella skillnader i stegmotorns
beteende.

Hemuppgift 4.B

Konstruera ett program för variabel reglering av stegmotorns rotationshastighet enligt följande
flödesdiagram:

Start

A ← INPORT

OUTPORT ← A

state_index←0
X←state_vector

Delay(A)

A ← state_index
A ← M(A+X)

NextState

• Redigera en källtextfil Lab_4-2.sflisp, enligt flödesplanen, lägg till subrutinerna Delay och
NextState, assemblera filen och rätta eventuella fel.

Laborationer i grundläggande datorteknik: Laboration 4

42

Utforma subrutinen, Delay, så att fördröjningen anges i register A vid anrop, jämför med uppgift 16.11 i
arbetsboken.

Konstruera en subrutin NextState som en "modulo-4 räknare", dvs. bestämmer "kolumn" för
stegmotorns nästa tillstånd då den ska vridas ett steg medurs. Tillståndet ska returneras i A. Subrutinen måste
ges någon form av "minne", dvs. det värde som rutinen ska returnera beror av det föregående värdet. Ett sätt
att göra detta är att använda en global variabel, vi kallar den state_index, och denna variabel kan enbart
anta värdena 0,1,2,3.

NextState

state_index ←
 state_index +1

state_index ←
 state_index

AND
(00000011)2

Retur(state_index)

Vi definierar också subrutin och data i pseudokod:

initialt värde indexvariabel
state_index = 0;

konstant vektor
state_vector={State_1, State _2, State _3, State _4};

NextState:
 state_index = state_index+1;
 state_index = state_index & 3;
 return (state_index);

Vid laborationsplatsen

• Kontrollera programmets funktion i run-läge.

• Variera stegmotorns hastighet genom att ställa in olika värden på DIPSWITCHEN.

• Då programmet fungerar som det ska tillkallar du handledare för att redovisa lösningen på
laborationsuppgiften.

Laborationer i grundläggande datorteknik: Laboration 4

43

Laborationsuppgift 4.4.
Översättning till morsekod

Hemuppgift 4.C

Förbered den här laborationsuppgiften genom att skriva kod för de rutiner som beskrivs nedanför. I
beskrivningen av rutinerna nämns en DA-omvandlare och lampa som finns på ML4-kortet. Dessa finns inte i
simulatorn – använd istället en diodramp som utenhet. I laborationssystemet är utporten ansluten till adress
$FB och inporten till adress $FC.

Målet med den här uppgiften är att skriva ett program som får en lampa att blinka Morsekod för en bokstav,
vars ASCII-kod matats in på Dipswitchar. Programmeringen är indelad i tre delar:

1) En rutin som läser in ASCII-kod från Dipswitcharna

2) En rutin som får lampan att blinka en gång, snabbt eller långsamt

3) Ett huvudprogram som använder de två ovanstående rutinerna för att översätta från ASCII-kod till
blinkningar

Deluppgift 4.4.1. Inläsning av ASCII-tecken
Från Dipswitcharnas högsta sju bitar, bit1 till bit7, ska en ASCII-kod för en VERSAL bokstav läsas in.
Stigande flank på den lägsta biten, bit0, används för att markera att man är klar med att mata in ett tecken.
Pseudokod för inmatningsrutinen:

Medan bit0 på dipswitchen = 1 // De två looparna väntar på en stigande flank på bit0

 (Gör inget)

Medan bit0 på dipswitchen = 0

 (Gör inget)

A ← Dipswitch

A ← A >> 1 // Placera ASCII-koden i de lägsta bitarna

Retur

Gör en subrutin av ovanstående, anropa den från ett huvudprogram, och säkerställ att rätt värde finns i A-
registret när subrutinen returnerar.

Deluppgift 4.4.2. Blinkande lampa
På ML4 finns det en lampa, ansluten till en DA-omvandlare, som i sin tur är ansluten till utporten på FLISP.
Ju högre binärtal som skrivs till utporten, desto starkare lyser lampan.

Skriv nu en subrutin som tänder lampan och sedan släcker den efter att en viss tid har gått. Om den mest
signifikanta biten i A-registret är ettställd när rutinen anropas, så ska lampan vara tänd i tre sekunder innan
den släcks, och om den är nollställd, ska lampan vara tänd i en sekund innan den släcks. Efter att lampan
släckts, ska rutinen även skapa en fördröjning på en sekund innan den returnerar. Till er hjälp har ni en
fördröjningsrutin, Delay1s, som orsakar en fördröjning på ungefär 1s i simulatorn.

Laborationer i grundläggande datorteknik: Laboration 4

44

Pseudokod för att blinka med lampan:

Pusha A // Pusha A-registret för att kunna återställa i slutet av rutinen

Pusha A

Tänd lampan

Pulla A

Om bit7 i A = 1

 Anropa Delay1s tre gånger

Annars

 Anropa Delay1s en gång

Släck lampan

Anropa Delay1s

Pulla A

Retur

Gör en subrutin av ovanstående, anropa den från ett huvudprogram, och testa att den fungerar som avsett,
både med korta och långa blinkningar.

Deluppgift 4.4.3. En översättare från ASCII till Morse
På Pingpong finns en fil med en tabell med värden, svarande mot Morsekod för alfabetiska tecken. I denna
tabell är det två byte för varje bokstav: en byte som anger antalet pulser i koden för en viss bokstav, och en
byte med ett bitmönster som anger följden av långa/korta pulser för en viss bokstav. Exempelvis ser första
raden i tabellen ut så här:

MorseCode FCB 2,%01000000 ; Morsekod för bokstaven ’A’

Detta betyder att första bokstaven i Morsealfabetet har två pulser, och dessa är en kort puls följt av en lång.
De sex sista bitarna i bitmönstret för andra byten är godtyckligt satta till 0 i exemplet ovan.

Nu är det dags att sätta samman allt till ett program som läser in ASCII-kod från dipswitcharna och sedan får
lampan att blinka motsvarande Morsekod på lampan på ML4. Nedan finns pseudokod för detta.

Anropa inläsningsrutinen

A ← A - $61 // Räkna ut ordningstalet för bokstaven som lästes in. (Ordningstalet för ’A’ = 0)

A ← 2A // Eftersom det är två byte per bokstav i tabellen, måste offset dubbleras

Pusha A

X ← Startadress för tabell med Morsekoder

A ← M(X + A) // Här hämtar vi antalet pulser för bokstaven

Count ← A // Count är en variabel (en reserverad byte i minnet)

Pulla A

A ← A + 1 // Beräkna offset för pulsmönstret

A ← M(X + A) // Här hämtar vi pulsmönstret (Morsekoden) för bokstaven

Repetera så länge som Count ≠ 0

 Anropa blinkrutinen

 A ← A << 1

 Count ← Count – 1

 Börja om från början

Laborationer i grundläggande datorteknik: Laboration 4

45

Tillägg till PM laboration 4:

Du kan ge kommandon till FLIS-processorn genom att klicka på terminalfönstret i ETERM och skriva in
något av följande:

Kommando Betydelse
i Interaktiv mode, alla tecken skickas tillbaks och syns i terminalfönstret
q Tyst mode, inga tecken skickas tillbaks
v Om mode=i, skriv versionsnummer till terminal
t Testsekvens, testar FLIS-processorns indikatorer genom att tända dessa succesivt, avsluta genom att

ge kommandot 't' igen.

a reset, utför åtesrtällning av FLIS-processorn

s Utför hel instruktion (till nästa NF)
e Utför program utan uppehåll, exekvera, avbryt exekvering genom att ge ytterligare ett ’e’-kommando.

wrZXX Skriv värdet XX till register Z. Värdet XX anges på hexadecimal form med precis två siffror. Registret,

Z, kan vara något av datavägens register enligt:
a,x,y,s=sp,p=pc, r,c=cc.

wmXXYY Skriv värdet XX till minnesadress YY. Såväl värdet XX som adressen YY anges på hexadecimal form
med precis två siffror.

rrZ Om mode=i, Skicka värdet (hexadecimal form) i register Z till terminalen. Registret, Z, kan vara något
av datavägens register enligt:
a,x,y,s=sp,p=pc, c=cc.

rmXX Om mode=i, Skicka värdet (hexadecimal form) på minnesadress XX till terminalen

FLIS-datorn är i ”interaktiv mode” efter RESET.

