
 Arbetsbok för DigiFlisp

3

KOMPLEMENT TILL

"ARBETSBOK FÖR DIGIFLISP" (BLÅ BOK)

FÖR ANVÄNDNING MED NY PROGRAMVARA DIGIFLISP 9.

Arbetsbok för DigiFlisp

 4

1 Transistorn som strömställare

I detta första kapitel behandlar vi transistorn som en grundläggande
byggsten. Vi kommer inte att beröra transistorns fysikaliska
egenskaper dvs. ämnet halvledarteknik, utan enbart transistorns
förmåga att uppträda som en strömställare. Genom att studera några
enkla transistorkopplingar kommer du samtidigt att bekanta dig med
logikfunktioner som är centrala inom digitaltekniken.

1.1 Spänningsnivåer och logikvärden
Inom digitaltekniken arbetar man med två olika värden, 1 och 0.
Dessa så kallade logikvärden (sanningsvärden) motsvaras i digitala
elektronikkretsar av två olika spänningsnivåer: vi kallar dem här VDD
respektive GND. Symbolen VDD används för att indikera en hög
spänningspotential, och motsvarande logikvärde är 1. Symbolen
GND, eller jordpotential, används för logikvärde 0.

Omkopplarna anger en punkt som kan kopplas antingen direkt till
VDD, eller direkt till GND i signalvägen. Genom att klicka på en
omkopplare kan du ändra dess läge och därmed logiknivån i en punkt
i signalvägen.

Uppåt, internt kopplad till VDD, logiknivå 1

 Nedåt, internt kopplad till GND, logiknivå 0

Signalnivåer kan avläsas på de små nivåindikatorerna som är
placerade omedelbart i anslutning till signalvägen. På vissa ställen,
vanligtvis utsignaler, används något större indikatorer. I DigiFlisp
använder vi grön eller röd färg för att indikera VDD, logikvärdet 1,
medan vi konsekvent använder ljusgrå färg för att indikera
logikvärdet 0.

Uppgift 1.1

I Navigator|Contents, märk ditt val,
 Transistor level | nMOS gates.
genom att högerklicka, välj Open.
Använd simulatorn och analysera följande kopplingar uppbyggda
med NMOS-teknik. Komplettera funktionstabellerna.

x u

x y u x y u

0 0 0 0 0
1 0 1 0 1
 1 0 1 0
 1 1 1 1

jordpotential
(GND)

omkopplare

nivåindikator

 Arbetsbok för DigiFlisp

5

 Uppgift 1.2

Vi studerar kopplingar i CMOS-teknik, välj denna gång
Navigator|Contents:
 Transistor level | CMOS gates.
Identifiera nu följande kopplingar i simulatorn, analysera
kopplingarna genom att variera logiknivåerna på ingångarna och
iaktta logiknivåerna på utgångarna. Komplettera funktionstabellerna
med utsignalernas logiknivåer (1 eller 0) för varje koppling.

x u

0
1

x y u

0 0
0 1
1 0

1 1

x y u

0 0
0 1
1 0
1 1

x y u

0 0
0 1
1 0

1 1

x y u

0 0
0 1
1 0

1 1

Arbetsbok för DigiFlisp

 6

2 Grindar

Grindar realiserar logikfunktioner och är de byggstenar vi använder
för att illustrera större och större logikblock som så småningom
resulterar i en komplett dator.

2.1 Enkla grindar
I simulatorns Navigator|Contents:
 Combinatorics | Elementary logic functions
finns grindar som realiserar de grundläggande logikfunktionerna.

Omkopplarna kan du klicka på för att ändra nivåerna hos grindarnas
ingångar. Ingångarnas nivåer kan avläsas på de små indikatorerna
omedelbart till vänster om varje grind.

Utgångarnas nivåer läser du av på de större indikatorerna till höger
om respektive grind.

Uppgift 2.1

Välj: Navigator|Contents:
 Combinatorics | Elementary logic functions
Verifiera, med hjälp av simulatorn, logikfunktionerna som visas i
Symbol-kolumnen i tabellen.

� Fyll i funktionstabellen till höger.
� Jämför funktionstabellerna med dina resultat från Uppgift 1.2

och identifiera motsvarande CMOS-koppling
(figur 1–5 i marginalen)

� Ange slutligen grindens engelska namn (logiknamn).
Symbol CMOS-

koppling
(1-5)

Grind
(logiknamn)

Funktionstabell

x u

0

1

x y u
0 0
0 1
1 0
1 1

x y u
0 0
0 1
1 0
1 1

VDD

x u

VDD

x

y

u

VDD

x

y
u

VDD

x

y
u

VDD

x

y

u

2

1

4

3

5

 Arbetsbok för DigiFlisp

7

2.2 Grindar med sammansatta logikfunktioner
Grindar som kombinerar olika logikfunktioner är vanliga. Speciellt
viktiga är de grindar som realiserar ”NOT-AND” (NAND) respektive
”NOT-OR” (NOR).

Funktionen NAND bildas genom att en INVERTERARE ansluts
direkt till utgången på AND-grinden. Denna sammansatta funktion
indikeras i symbolen för NAND genom att utgången försetts med en
liten ring:

På motsvarande sätt bildas funktionen NOR:

Förutom kombinerade grindar kan vi också skapa grindar med flera
ingångar som exempelvis en 3-ingångars NAND-grind.

Uppgift 2.2

Verifiera, med hjälp av simulatorn, (Combinatorics | Elementary logic
functions) de sammansatta logikfunktionerna NAND och NOR.

Fyll i funktionstabellen till höger, i kolumnen Grind logiknamn anger du
symbolens engelska logiknamn och i kolumnen Boolesk funktion ger du
det booleska uttrycket för utsignalen u.

Symbol Grind
logiknamn

Boolesk
funktion

Funktionstabell

x y u
0 0
0 1
1 0
1 1

x y u
0 0
0 1
1 0
1 1

x y z u
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Logiskt NOT-AND - ”NAND”

Logiskt NOT-OR - ”NOR”

Arbetsbok för DigiFlisp

 8

"EXKLUSIVT ELLER" (XOR) är ett annat viktigt exempel på en
grundläggande sammansatt logikfunktion.

Uppgift 2.3

Välj (Navigator|Contents):

 Combinatorics | XOR-function

Analysera symbolerna och använd simulatorn för att ge de svar som
krävs för att komplettera följande tabell.

Symbol Grind
logiknamn

Boolesk
Funktion

Funktionstabell

x y u
0 0
0 1
1 0
1 1

x y u
0 0
0 1
1 0
1 1

XOR-funktionen kan realiseras på olika sätt, med hjälp av enkla
grindfunktioner. Simulatorn vägleder dig i följande uppgifter.

Uppgift 2.4

Analysera följande koppling.

Uttryck nu funktionerna A, B, C, D och u som booleska funktioner av
insignalerna x och y.

A=f(y)=��y B=f(x)= x C=f(x,y)=

D=f(x,y)= u=f(x,y) =

Använd simulatorn och studera nätets signaler (A,B,C,D och u) för
olika insignaler x och y. Komplettera tabellen i marginalen och
jämför med dina funktioner ovan.

x y A B C D u

0 0 1
0 1 0
1 0 1
1 1 0

Arbetsbok för DigiFlisp

 10

3 Kopplingsboxen

I detta kapitel ges en introduktion till kopplingsboxen, och efter att ha
arbetat igenom kapitlet kommer du att självständigt kunna koppla och
analysera grindnät med varierande komplexitet.

Välj Switchbox|New switchbox.

Kopplingsboxen består av en arbetsyta som inledningsvis är tom.
Genom att placera markören i det vita arbetsfältet och högerklicka,
kan du välja någon av kopplingsboxens komponenter och därefter
placera ut denna någonstans på arbetsytan.

3.1 Inledande demonstration
Uppgift 3.1

Du ska börja med att verifiera de viktiga kommutativa lagarna inom
boolesk algebra med hjälp av kopplingsboxen, se punkt 1 i figuren i
marginalen.

Det första sambandet säger att:
 x×y = y×x

dvs. att:
 x AND y = y AND x

Det krävs alltså nu två AND-
grindar, en för varje led. Välj
Add component | Gates | 2-input AND

Flytta nu ut markören i kopplingsboxens arbetsyta; du ska se
komponentens siluett.

Placera komponenten på arbetsytan genom att
klicka på vänster knapp.

x×y=y×x
x+y=y+x

x×x=0

(x+y)=(x×y)
(x×y)=(x+y)

Satser från boolesk algebra

1. Kommutativa lagar

2. Distributiva lagar
 x×(y+z)=�x×y+x×z
 x+(y×z)=(x+y)×(x+z)

3. x+0 = x
 x×1 = x
4. x+x=1

5. x+1 = 1
 x×0 = 0
6. x+x = x
 x×x = x

7. Associativa lagar
 x+(y+z)=��x+y�+z

x×(y×z)=(x×y)×z

8. De Morgans lagar

9. (x)=x

Multiplikationstecknet (×) utelämnas
oftast där det inte kan missförstås och vi
skriver exempelvis enklare:

 xy i stället för x×y

 Arbetsbok för DigiFlisp

11

Komponenten ritas nu om och får dessutom små indikatorer som visar
signalnivåer (0 eller 1) på ingångar och utgång. Varje ingång har ett
litet "fönster" där du kan skriva in såväl konstanta värden, 0 eller 1,
som något godtyckligt variabelnamn. För nya komponenter är detta
värde alltid 0. Komponentens utgång har ett namn som bestäms av
kopplingsboxen, i detta fall "u0". Du kan använda denna utsignal om
du vill koppla utgången till en annan komponents ingång.

Placera ut ytterligare en AND-grind.

Du kan skapa oberoende variabler med hjälp av strömställare
(switch). Placera ut två strömställare.

Definiera nu två variabelnamn x och y genom att ange dessa i
strömställarnas kontrollfönster (se marginalen).

Variabelnamn som du har deklarerat på detta sätt kan nu användas
som insignaler till komponenter i kopplingsboxen.

Ge nu insignaler till de båda AND-grindarna genom att placera
markören i det fönster som hör till ingången och skriva in namnet på
den variabel som ska kopplas till ingången.

Notera att den första grinden realiserar x AND y, medan den andra
grinden realiserar y AND x.

Det är nu dags att simulera kopplingen.

Högerklicka någonstans i kopplingsboxens arbetsyta och välj Analyze
(se marginalen).

Nu händer flera saker: Fönster som tidigare kunde redigeras, blir grå
och kan inte längre ändras. Du kan inte heller placera ut nya
komponenter i detta läge.

Menyvalet Analyze byter namn till Design. Du gör detta val för att
återgå till det läge där du kan redigera din koppling. Dessutom har du
menyvalet Clock, som vi strax återkommer till (se marginalen).

Arbetsbok för DigiFlisp

 12

Du kan nu ändra de oberoende variablernas värden genom att klicka
på strömbrytarena. För att verifiera den första kommutativa lagen
(xy=yx) måste du undersöka de båda utsignalerna u0 och u1 för
varje insignalskombination. Gör detta och fyll i följande tabell.

Den andra satsen av de kommutativa lagarna säger att x+y = y+x,
vilket innebär att två OR-grindar ska användas. Du ska nu också
verifiera sambandet �x�=x genom att koppla samman två
inverterare.

Uppgift 3.2

För att ändra eller bygga vidare på din koppling klickar du på Design.
Du får då tillbaka de vita ändringsbara fälten.

Placera ut två OR-grindar på följande sätt:

Om du har kvar dina AND-grindar och strömställare kommer OR-
grindarnas utgångar här att tilldelats signalnamnen u4 och u5 av
kopplingsboxen.

För varje kombination av insignaler, fyll i utsignalerna u4 och u5 i
följande tabell:

x y u4 u5

0 0
0 1
1 0
1 1

Verifiera nu sambandet �x�=x genom att koppla samman två
inverterare enligt följande figur. Dvs. du kopplar samman utgången
från den första inverteraren med ingången till den andra genom att
skriva utsignalens namn i den andra inverterarens insignalfönster.
Komplettera avslutningsvis följande tabell:

x y u0 u1

0 0
0 1
1 0
1 1

x �x� �x�
0
1

uX, namn på utgångssignaler
som tilldelas av kopplings-
boxen i den ordning kom-
ponenter sätts ut. De kallas
också beroende variabler.

Oberoende variabler är de
(godtyckliga) variabelnamn du
själv inför med hjälp av
strömställare.

 Arbetsbok för DigiFlisp

13

3.2 En översikt av kopplingsboxen
Med kopplingsboxen kan du simulera enkla uppkopplingar av digitala
nät. Du har 26 olika komponenter att välja mellan (se några exempel
på symboler i marginalen). Du kan också använda upp till 16
oberoende invariabler i form av strömställare.

Kopplingsboxen har två olika lägen, för redigering eller simulering.

Redigering – Här kan du placera ut komponenter på arbetsytan. En
komponent kan ha en eller flera insignaler som måste definieras,
insignalerna ska vara någon av:

� Konstanten 1

� Konstanten 0

� uX (eller qX) utsignalen från någon komponent (X) i nätet

� någon oberoende variabel, som du själv definierar
genom att placera ut en strömställare och skriva in
variabelns symboliska namn i ett inmatnings-
fönster. Namnet får bestå av högst 4 ASCII-tecken
som får vara A–Z och/eller 0–9. Första tecknet i
variabelnamnet måste vara en bokstav.

I redigeringsläget har alla inmatningsfönster vit bakgrund och
innehållet kan ändras. Ändring av komponenters insignaler
reflekteras dock först då kopplingsboxen försätts i simuleringsläge.

Redigeringsläget tillåter också att du

� Sparar kopplingen (Save drawing to file)
� Laddar en tidigare sparad koppling (Load drawing from file)
� Rensar arbetsytan (Clear drawing)

Simulering – Då du är färdig med nätet, dvs. har placerat ut dina
komponenter, redigerat insignalerna till varje komponent och
dessutom definierat de oberoende variablerna du använder, väljer du
du på Analyze. Kopplingen kontrolleras då och alla utsignaler bestäms.
Du kan nu ändra oberoende variablers värden, genom att klicka på
strömställare, och studera hur nätets tillstånd påverkas av dessa.
Du kan inte ändra innehållet i ett inmatningsfönster (dessa är grå). I
simuleringsläget kan du inte heller lägga till eller ta bort
komponenter, du måste återgå till redigeringsläget för att göra detta.

Vill du flytta eller ta bort en komponent, högerklickar du med
markören över komponenten. Detta gäller både redigerings- och
simuleringsläge.

Klocksignal – Några komponenter har en
klockingång C. I simuleringsläge kan du generera en
(gemensam) klocksignal för dessa komponenter
genom att klicka på Clock. Klocksignalen har ingen
inverkan på komponenter utan klockingång.

Arbetsbok för DigiFlisp

 42

Uppgift 7.3

Starta kopplingsboxen, placera ut 4 st. 8-ingångars väljare så att deras
respektive utgångar får namnen, u0, u1 u2 och u3. Definiera
funktionssignalerna f2, f1 och f0, samt för in dessa hos respektive
väljare:

Spara kopplingen under filnamnet alu4.tb. Spara kopplingen
fortsättningsvis allt eftersom du bygger vidare på ALU:n.

Vi börjar implementera ALU:ns funktioner, dvs. bilda insignaler för
väljarnas ingångar. För dessa funktioner väntar vi tills vidare med att
bilda flaggorna N,Z,V och C.

 Uppgift 7.4

Implementera funktionerna 0 t.o.m 3, dvs följande:

funktion operation utsignaler
f2 f1 f0 RTN u3 u2 u1 u0
0 0 0 U=0 � U 0 0 0 0
0 0 1 U=D � U d3 d2 d1 d0
0 1 0 U=D1k � U d3 d2 d1 d0
0 1 1 U=D�E d3�e3

 d2�e2
 d1�e1

 d0�e0

Placera komponenterna så tätt som möjligt...

Fortsätt nu med att även definiera insignalerna d3, d2, d1 och d0,
respektive e3, e2, e1 och e0 och slutligen cin.

Arbetsbok för DigiFlisp

 50

9 Transmissionsgrinden

Vi inför här två nya logiknivåer (högimpedanstillstånd och
odefinierat tillstånd) som kan uppträda i nät där vi vill koppla
samman utgångar från två eller flera olika kretsar.

De olika logiknivåerna illustreras i simulatorn enligt följande:

 Röd, kopplad till VDD, logiknivå '1'
 Grå, kopplad till GND, logiknivå '0'

Vit, högimpedanstillstånd, inte kopplad till vare sig VDD
eller GND, logiknivå 'Z'

Svart, odefinierat tillstånd. Punkten utgör en
kortslutning mellan VDD och GND, logiknivå 'X'.

Uppgift 9.1

Välj Transistor level | CMOS transmission gate.

Figuren till höger visar hur en signal A kopplas via en transmissions-
grind, styrd av signalen EN, till punkten U. Undersök logiknivån i
punkten U och fyll i följande funktionstabell:

A EN U
0 0
1 0
0 1
1 1

I figuren till höger visas hur två oberoende signaler A och B kopplas
samman i punkten O, via var sin transmissionsgrind. Undersök
kopplingen och fyll i följande tabell med de resulterande
logiknivåerna.

A B OEA OEB O
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

 Arbetsbok för DigiFlisp

51

10 Registeröverföring

Vi har tidigare sett hur en ALU fungerar, hur data kan lagras i
minneselement som vi med ett gemensamt ord kan kalla register, hur
vi kan skriva nya data till ett sådant register och hur vi kan läsa från
registret. Vi ska nu också se hur flera register kan kopplas samman
via bussar och därmed påbörja konstruktion av en dataväg.

Med hjälp av datavägen och ALU:n ska registerinnehåll kunna
bearbetas på olika sätt. Data måste därför kunna överföras till och
från ALU:n där den egentliga bearbetningen utförs. Därför studerar
vi först hur data kan flyttas runt i datavägen från ett register till ett
annat register via en databuss. För ändamålet krävs ett antal
styrsignaler; vi kallar detta registeröverföring.

Styrsignalerna talar om varifrån data hämtas och vart data ska
placeras. Något oegentligt kallas detta ofta att ”flytta” data. Det är
inte det som händer, utan egentligen kopierar vi data från ett ställe
(källan) till ett annat ställe (destinationen). Styrsignaler kan genereras
på olika sätt, och vi återkommer till detta längre fram. Tills vidare
anger vi styrsignaler i tabellform med penna och papper eller klickar
på olika symboler i simulatorn.

En koppling för överföring av data mellan olika register visas i Figur
10.1 nedan. Observera hur ingångar och utgångar förbinds med en
enda buss för att vi ska kunna flytta data från ett register till ett annat.

Figur 10.1 Dataöverföring mellan register via en buss

Vi ska nu studera hur kopiering av data från ett register till ett annat
går till. När man vill flytta (kopiera) data från ett register måste
registrets OE-signal aktiveras. För registret, vars innehåll ska
modifieras, måste LD-signalen aktiveras. Om vi, som exempel, vill
kopiera data som finns i register R till register A måste följande
styrsignaler ges:

Arbetsbok för DigiFlisp

 52

� OER = 1 Innehållet i register R kopplas till bussen via three-state-
bufferten. Därmed finns det på ingångarna till samtliga register.

� LDA = 1 Vid nästa positiva klockpulsflank laddas register A med
det som finns på bussen och får samma innehåll som register R.

RTN för operationen är:

R � A (= innehållet i register R kopieras till register A)

Då signalerna OER och LDA är aktiva, verkställs dataöverföringen vid
nästa positiva klockpulsflank. Lägg märke till att alla enheter i
systemet är anslutna till samma klocksignal CP; alla register klockas
följaktligen samtidigt. Operationen beskrivs också i form av
styrsignaler för datavägen i följande tabell. Samtliga styrsignaler med
värdet 1 i raden aktiveras under en klockcykel. En rad i tabellen avser
alltså en klockcykel.

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

0 0 0 0 1 1 0 0 0 R � A

Uppgift 10.1

Styrsignaler för enkel dataväg

Fyll i styrsignalvärdena för överföringen A � R i följande tabell.

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

 R � A

Uppgift 10.2

Styrsignaler för enkel dataväg

Fyll i styrsignalvärdena för överföringarna:

 A � T, B � A , T � B (A�B)
i följande tabell.

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

 A � T

 B � A

 T � B

Uppgift 10.3

Välj alternativet Datapath | Register transfer.

Exempel på RTN-symboler, fullständig
tabell finns i appendix
Nr Konstanten N uttryckt i

talbasen r.
M(Nr) Minnesinnehåll på adressen Nr
� Kopiering
Följande symboler är beteckningar som
reserverats för register
A Register A
T Register T
R Register R

 Arbetsbok för DigiFlisp

53

Figur 10.2 Dataöverföring mellan register

Simulatorns Register transfer, Figur 10.2 visar en dataväg, ett antal
register (A, B, T och R), en Data source modul (Source) och en Bus
display modul (Display). Respektive moduls styrsignaler (LD, OE) kan
sättas till 0 eller 1 med strömställarna i den manuella styrenheten.

Genom att klicka på brytaren Clock ger du en signal på samtliga
klockingångar (CP) vilket då försätter kretsen i ett "nästa tillstånd".

Raden Previous visar indikatorer för att hjälpa dig minnas hur du
ställde styrsignalerna innan du klickade på Clock. En klickning på
klockpuls innebär att nätets aktiverade register klockar in det som för
tillfället finns på bussen.

1. Observera att bussens värde FF16 visas i Display-modulen. Detta
kan tolkas som att bussen är i högimpedanstillstånd och att ingen
enhet för tillfället lägger ut något värde på bussen.

2. Skriv in 2716 i Source-modulen. Enklast är att märka upp
siffrorna i fönstret med musen och sedan skriva in ett nytt värde.

3. Aktivera nu styrsignalen OES (klicka på symbolen för
strömställaren) och....

4. ...notera hur transmissionsgrinden för Source-modulen aktiveras
och att bussens värde 2716 nu också visas på Display-modulen.

Display
Visar bussens värde

Source
Modul för att kunna ge bussen olika värden

Klockpuls
Ger klocksignal i hela kretsen

Transmissionsgrindar
"Three-state"-buffertar, för att placera ett
registerinnehåll på bussen

Arbetsbok för DigiFlisp

 54

5. Klicka på Clock

... notera hur OES-signalens indikator ”föregående” styrsignal nu
tänds. Detta har ingen annan praktisk betydelse än att hjälpa dig
komma ihåg vilka signaler som var aktiva vid den senaste
klockpulsen.

6. Aktivera nu även LDA och observera hur de aktiva styrsignalerna
märks ut.

7. Ge slutligen ytterligare en klockpuls: Vad innehåller register A?

För att flytta runt data mellan de olika registren krävs alltså att man
först ställer in lämpliga styrsignaler, och därefter verkställer
dataflyttningen med en klockpuls. Använd nu simulatorns Register
transfer och lös följande uppgifter.

Uppgift 10.4

� Sätt signalen OES till 1
� Ändra innehållet i Source-modulen
� Observera vad som händer på bussen via Display-modulen.

Ställ nu in värdet 3816 i Source-modulen, aktivera signalen LDR.
Händer det något med innehållet i register R?

Ge en klockpuls: Hände det nu något med innehållet i register R?

Ge en RTN-beskrivning av operationen.

 Arbetsbok för DigiFlisp

55

Uppgift 10.5

Värdet 7116 kan placeras i samtliga register A, T och R under en
klockcykel. Ge en RTN-beskrivning av operationen

Ange det nya värdet i Source-modulen samt de styrsignaler som måste
aktiveras för operationen.

Source OES OEA OEB OET OER LDA LDB LDT LDR

Kontrollera din lösning med hjälp avsimulatorn.

Uppgift 10.6

Du ska nu undersöka vad som händer om du aktiverar två (eller flera)
OE-signaler samtidigt.

Placera värdet 5C16 i register A och värdet 2116 i register T. Lägg ut
båda dessa registerinnehåll till bussen genom att aktivera signalerna
OEA och OET, och studera bussens värde i displaymodulen.

Vilket resultat får du?

Vad kan dra för slutsatser om bussens värde då flera moduler
samtidigt driver bussen (skriver ut på bussen)?

5316�A, 2116�T
OEA ; OET

Arbetsbok för DigiFlisp

 56

11 Dataväg med ALU

I detta kapitel kompletteras den enkla datavägen vi hittills använt oss
av med en ALU. Med vår modifierade arkitektur, se Figur 11.1, och
den enkla manuella styrenheten i Figur 11.2, ska vi nu utföra enklare
databearbetningar som en sekvens operationer kontrollerade av
styrsignaler från styrenheten. I detta kapitel studerar vi alltså speciellt
ALU:ns användning i datavägen.

Figur 11.1 Dataväg med ALU och dess funktionstabell

Figur 11.2 Manuell styrenhet för dataväg med ALU

”Fjädrande” strömbrytare för nollställning,
återställning och klockpuls

11 uppsättningar tvåvägs omkopplare för
styrsignaler.

Varje uppsättning (steg) motsvarar en
klockpuls.

Den manuella styrenheten kan därför
utföra ”program” om maximalt 11
klockpulser.

Längst ut till vänster finns en indikator
som är aktiv (röd) för det steg som står i
tur att utföras.

För varje steg finns också en Source-
modul som kan användas för att ge
indata i steget.

 Arbetsbok för DigiFlisp

57

Ett program för den enkla datavägen är helt enkelt en beskrivning av
hur styrsignalerna ska aktiveras i någon bestämd sekvens.
Styrsignalsekvensen måste följaktligen utformas speciellt för varje
enskild operation man vill att processorn ska kunna utföra. Följande
generella ”blankett” kan användas för att ”programmera” den
manuella styrenheten i en följd av steg, dvs. en sekvens, för en
operation.

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

För varje steg anges styrsignaler för registeröverföringar (OE och LD),
det finns möjlighet att ange konstanter i operationer och koppla in
dessa i datavägen via Source-fältet. Det har också tillkommit
styrsignaler samt en ”carry in”-signal för ALU:n.

Vi illustrerar hur blanketten fylls i med att konstruera två olika
styrsignalsekvenser för operationen:

 0�A
dvs. nollställ innehållet i register A.

Metod 1: använd Source-fältet, vars register initieras till 0:

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0

0�A 1 00 1 0 0 0 1 0 0 0 0 0 0 0 0

Metod 2: använd ALU’ns funktion för bitvis nollställning:

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0

0�R 1 xx 1 0 0 0 0
R�A 2 xx 1 1

Av skäl som vi ska återkomma till bör vi alltid välja lösningar som
utnyttjar ALU:n snarare än Source-fältet där sådana lösningar är
möjliga.

Under resten av detta kapitel kan du nu självständigt konstruera
styrsignalsekvenser för en rad olika operationer som kan utföras på
dataväg/ALU med denna enkla manuella styrenhet. Välj Datapath |
Datapath with ALU.
Du kan spara en styrsignalsekvens genom
att högerklicka, välj Save control, och ange
ett filnamn.

Återställ en tidigare sparad
styrsignalsekvens genom att högerklicka,
välja Load control, och ange dess filnamn.

Exempel på RTN-symboler, fullständig
tabell finns i appendix
Nr Konstanten N uttryckt i talbasen

r.
M(Nr) Minnesinnehåll på adressen Nr
� Kopiering
Följande symboler är beteckningar som
reserverats för register
A Register A
B Register B
T Register T
R Register R
Operatorer
+ Addition
- Subtraktion
� Logiskt ”OCH” (AND)
� Logiskt ”ELLER” (OR)
� Logiskt ”EXKLUSIVT ELLER”

(XOR)
Opr<<d ”Opr” skiftas vänster. Biten d

skiftas in i den minst signifikanta
positionen.

d>>Opr ”Opr” skiftas höger. Biten d
skiftas in i den mest signifikanta
positionen.

Opr’ Bitvis komplementering av
operanden ”Opr”

Fält där vi utelämnar
styrsignal 0 eller 1, ska
betraktas som signalen 0.

För att vara så tydliga som
möjligt kan vi alltså välja
om vi vill skriva ut nollan
eller ej.

xx betyder ”don’t care”.

Arbetsbok för DigiFlisp

 64

12 Dataväg med flaggregister och
minne

Vi har hittills bara kunnat utföra operationer på ett fåtal variabler
lagrade i datavägens arbetsregister A eller B. Nu utökar vi datavägen
med en minnesmodul som utökar kapaciteten till operationer med en
mängd olika variabler som då är lagrade i minnet, det är nu
tillräckligt med ett arbetsregister och vi tar därför bort register B.

För att kunna adressera minnet har vi infört det speciella registret TA
(temporary address). Vi har också lagt till logik för att kunna välja
Cin-funktionen till ALU:n med hjälp av styrenheten. Styrsignalerna g0
och g1 tillkommer för detta ändamål. Ett nytt register CC (condition
codes) tillsammans med en väljare och ytterligare styrsignaler g2
t.o.m. g9 används för att samla ihop ALU:ns flaggor.

Den manuella styrenheten har kompletterats med strömställare för de
nya styrsignalerna. Vi använder också en utökad ”blankett”, med
följande kolumner, vid programmering av den nya styrenheten.

RTN steg Source OES OEA OER OECC LDA LDT LDTA LDR LDCC f3 f2 f1 f0 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 MR MW

Exempel på RTN-symboler; fullständig
tabell finns i appendix
Nr Konstanten N uttryckt i

talbasen r.
M(Nr) Minnesinnehåll på adress Nr
M[Nr] Indirektion: = M(M(Nr))
� Kopiering
Följande symboler är beteckningar som
reserverats för register
A Register A
T Register T
R Register R
TA Register TA
CC Register CC
Operatorer
+ Addition
- Subtraktion
� Logiskt ”OCH” (AND)
� Logiskt ”ELLER” (OR)
� Logiskt ”EXKLUSIVT ELLER”

(XOR)
Opn<<d ”Opn” skiftas vänster. Biten d

skiftas in i den minst
signifikanta positionen.

d>>Opn ”Opn” skiftas höger. Biten d
skiftas in i den mest
signifikanta positionen.

Opn’ Bitvis komplementering av
”Opn”

Tabellen med RTN-koder har
kompletterats med symboler
för registren TA och CC.

 Arbetsbok för DigiFlisp

65

12.1 Simulatorns minnesmodul
Simulatorns minnesmodul har plats för 256 st. 8-bitars dataord.
Styrsignalerna MW (Memory Write) och MR (Memory Read) används
för att skriva till, respektive läsa från minnet. MW-signalen är
synkron, dvs. skrivning till minnet sker vid klockpuls om MW är
aktiv. MR-signalen är asynkron, dvs. då MR aktiveras kopplas en
minnescell omedelbart direkt till bussen. Detta kan jämföras med
registrens OE-signaler.

För att underlätta användningen av simulatorns minnesmodul kan
man skriva in data i minnet på ett förenklat sätt. Minnet har två små
”fönster”. ”Adress”-fönstret anger adressen till den minnescell som
för tillfället adresseras, minnescellens innehåll visas i ”Data”-fönstret.

Uppgift 12.1

Placera värdet 1516 i minnescell på adress 1016. Med RTN skriver vi
denna operation som:
 1516 � M(10 16)
Använd ”rullningslisten” hos minnesmodulen
för att bläddra fram adressen.

”Dubbelklicka” i ”Data”-fönstret.

Skriv in det nya värdet.

Metoden är lämplig att använda då man snabbt vill modifiera
minnesinnehållet för att kunna testa någon programmerad
minnesoperation.

12.2 Läscykeln
Minnet kan adresseras via datavägens TA-register.

En läscykel går till på följande sätt:
1. Minnesadress placeras i TA
2. MR-signalen aktiveras.

Om den aktuella adressen inte inte redan finns i TA-registret så kräver
läscykeln alltså ett extra steg än om vi läser data från ett register i
datavägen.

 Arbetsbok för DigiFlisp

91

13.6 Konstruktion av sekvensierare för FLISP
I detta avsnitt ska en räknare med två styrsignaler konstrueras.
Maskinen konstrueras med D-vippor och enkla grindar. Vi kommer
att använda maskinen som sekvensierare i styrenheten i nästa kapitel.

Uppgift 13.7

I denna uppgift ska du konstruera en något mer komplex
tillståndsmaskin. Maskinen har 16 olika tillstånd.

� Räknesekvensen är 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0...
� Den asynkrona signalen RESET = 1 sätter maskinen i tillstånd 0

oavsett vilket tillstånd maskinen befinner sig i.
� Den synkrona signalen NF=1 sätter maskinen i tillstånd 3 om

maskinen befinner sig i något av tillstånden Q4 t.o.m Q15.

Följande tillståndsgraf beskriver då maskinen:

Eftersom vi här har fem oberoende variabler men våra
Karnaughdiagram bara låter oss hantera fyra variabler åt gången delar
vi upp konstruktionen i två steg.

Under det första steget bestämmer vi konstruktionen för NF=0, dvs en
en autonom räknare med den angivna räknesekvensen. Detta ger oss
fyra Karnaughdiagram för att bilda vippornas insignaler.

I nästa steg bestämmer vi konstruktionen för NF=1, vilket ger oss fyra
nya Karnaughdiagram med ytterligare insignaler som ska adderas till
de tidigare.

Därmed har vi bestämt maskinens synkrona beteende.

Börja med att bestämma d-funktionerna i följande följande tabell.

Arbetsbok för DigiFlisp

 92

Nuvarande tillstånd Nästa tillstånd

NF q3 q2 q1 q0 d3 d2 d1 d0 q3+ q2+ q1+ q0+
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1
0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1
0 0 1 0 1 0 1 1 0
0 0 1 1 0 0 1 1 1
0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 0 1 1
0 1 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 1
0 1 1 0 1 1 1 1 0
0 1 1 1 0 1 1 1 1
0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1 1
1 0 0 1 1 0 1 0 0
1 0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 1 1
1 0 1 1 1 0 0 1 1
1 1 0 0 0 0 0 1 1
1 1 0 0 1 0 0 1 1
1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 0 1 1
1 1 1 0 0 0 0 1 1
1 1 1 0 1 0 0 1 1
1 1 1 1 0 0 0 1 1
1 1 1 1 1 0 0 1 1

Fyll därefter i Karnaughdiagrammen på nästa sida.

 Arbetsbok för DigiFlisp

93

d3 (NF=0) q1 q0 d2 (NF=0) q1 q0

q3 q2

 00 01 11 10

q3 q2

 00 01 11 10

00 00

01 01

11 11

10 10

d1 (NF=0) q1 q0 d0 (NF=0) q1 q0

q3 q2

 00 01 11 10

q3 q2

 00 01 11 10

00 00

01 01

11 11

10 10

d3 (NF=1) q1 q0 d2 (NF=1) q1 q0

q3 q2

 00 01 11 10

q3 q2

 00 01 11 10

00 00

01 01

11 11

10 10

d1 (NF=1) q1 q0 d0 (NF=1) q1 q0

q3 q2

 00 01 11 10

q3 q2

 00 01 11 10

00 00

01 01

11 11

10 10

Arbetsbok för DigiFlisp

 94

Ange de minimerade funktionerna på boolesk form och, observera:

 NF=0 NF=1

d3 = +

d2 = +
d1 = +
d0 = +

förenkla tills endast AND- och XOR-grindar används i uttrycken

 NF=0 NF=1

d3 = +

d2 = +
d1 = +
d0 = +

Koppla upp räknaren i kopplingsboxen.

� Använd komponenten Hex-sifferindikator för att kontrollera
räknesekvensen.

� Spara kopplingen, den ska strax utökas.

Vi tar nu hand om den asynkrona signalen RESET genom att "skjuta
in" ett kombinatoriskt nät där såväl våra d-funktioner som RESET-
signalen ingår. Utsignalerna D3, D2, D1 och D0 från detta nät kopplas nu
till vippornas ingångar i stället för d3, d2, d1 och d0 från det första
konstruktionssteget.

Följande skiss visar en koppling för hela tillståndsmaskinen.
Observera att uttrycken för d-signalerna här har förenklats för
användning av XOR-grindar.

Jämför med dina egna uttryck från den inledande uppgiften.

Färdigställ skissen genom att skriv in- och utsignalsnamn i anslutning
till de komponenter som saknar dessa.

 Arbetsbok för DigiFlisp

95

Koppla slutligen upp maskinen i kopplingsboxen och kontrollera
funktionen med avseende på räknesekvens och insignalerna.

Spara filen under namnet FlispStateMachine.tb.

Arbetsbok för DigiFlisp

 96

14 Den automatiska styrenheten

I detta kapitel arbetar vi med FLIS-processorn och dess automatiska
styrenhet. Simulatorn omfattar två fönster, FLISP:s dataväg och ett
fönster för att skapa instruktioner för FLISP.

Välj: Control | FLISP datapath.

Strömställarnas funktioner:

Control:
� reset – asynkron, återställ sekvensieraren till Q0
� NF – utför upprepade klocksignaler tills nästa tillstånd är Q3,

uttryckt på ett annat sätt, utför en hel instruktion
� clk – ge en klocksignal till datavägen.

Memory data:

� display/modify – i läge display, visas innehållet på den adress som
anges av indikator Address, på indikator Data.
I läge modify kan innehållet på adressen ändras med hjälp av
vippströmställarna D7-D4 och D3-D0

� D7-D4, D3-D0 används för att ställa in Data i modify-läge
� set – innehållet som visas på Data skrivs till adressen som anges

av Address.
Memory address:

� auto/manual, i läge auto visar Address den adress som bildats från
multiplexer med styrsignal g14, i läge manual kan adressen ändras
med hjälp av vippströmställarna A7-A4 och A3-A0

� A7-A4, A3-A0 används för att ställa in Address i manual-läge.

Menyer:

� File | Load, används för att ladda innehåll till primärminnet
� Control store | FLISP control enabled, aktivera styrenhetens FLISP-

instruktioner.

 Arbetsbok för DigiFlisp

97

Datavägens menyval:

File | Load – ladda en fil med fmem (flisp memory) format till
datavägen. Formatet är textbaserat och en fil kan enkelt skapas med
en textredigerare. Formatet utgörs av direktiv till datavägen. Varje
direktiv inleds på ny rad med tecknet ’#’, rader som inleds med annat
tecken tolkas som kommentarer. Följande direktiv kan användas:
#ClearAllMemory Nollställ primärminne
#ClearAllRegisters Nollställ alla register
#SetMemory ADR=VÄRDE Initiera minnescell, ADR och VÄRDE anges på

hexadecimal form
#SetRegister REG=VÄRDE REG kan vara något av: A,T,X,Y,PC,SP,TA,R,CC

eller I. VÄRDE anges på hexadecimal form

Control store | FLISP control enabled – Datavägen kan konfigureras att
använda en komplett styrenhet för FLISP, nya instruktioner måste då
ha någon av de odefinierade operationskoderna 03,04,DF eller EF. I
normalfallet är denna funktion deaktiverad och vi måste då
tillhandahålla alla styrsignalsekvenser.

Instruction builder används för att skapa styrsignalsekvenser för
instruktioner som kan utföras av FLIS-processorns styrenhet.

Välj: Control | FLISP instruction builder.

Instruction builders menyval

Clear – all styrsignalinformation raderas

Load – styrsignalinformation laddas från fil med fcs-format.

Save – styrsignalinformation sparas som fcs-format.

Save as – spara styrsignalinformation till en fil som fcs-format.

Export – spara styrsignalsinformation i form av C-kod.

Exit – stäng Instruction Builder.

Filer för datavägen har
ändelsen fmem (FLISP
memory).

Filer för Instruction
builder har filnamns-
ändelsen fcs (FLISP
control state).

Arbetsbok för DigiFlisp

 98

14.1 Styrenheten i FLISP
Instruction builder används för att redigera och testa instruktioner.
För instruktionsexekvering bildas styrsignalerna som en kombination
av tillstånd (betecknas Q) och operationskod (betecknas Opcode). För
att implementera villkorliga instruktioner krävs också att
statusflaggorna från CC (N,Z,V,C) finns tillgängliga i styrenheten.

I styrenheten har de Booleska funktioner som krävs för de villkorliga
instruktionerna implementerats med kombinatoriska nät. Utsignaler
från dessa nät finns tillgängliga i sektionen Condition.

Vi känner igen styrsignalerna som nu ska genereras automatiskt. Det
har dock tillkommit ytterligare en signal, NF (New Fetch) som anger
att en ny instruktion ska hämtas i minnet.

Figur 14.1 Översikt av automatisk styrenhet

Det kombinatoriska nätet utformas för att generera de summatermer
som används för att aktivera de olika styrsignalerna för olika
kombinationer av tillstånd och operationskod. En summaterm är alltså
en produkt av en operationskod hämtad från instruktionsregistret och
ett specifikt tillstånd hämtad från räknaren.

Figur 14.2 Illustration av styrenhetens kombinatoriska nät

Observera

Förväxla inte
styrsignalen NF med
datavägens funktion för
att utföra en hel
instruktion.

 Arbetsbok för DigiFlisp

99

Styrenhetens funktioner kan indelas i tre olika faser:

Återställningsfas (RESET): FLISP återställes genom att en startadress
läses från RESET-vektorn (adress FF16) i minnet och placeras i
programräknaren PC.

Hämtfas (FETCH): Innehållet på adress PC läses och placeras i
instruktionsregistret I, PC ökas med 1.

Exekveringsfas (EXECUTE): varje instruktion har en unik
styrsignalsekvens som ska genereras under respektive exekveringsfas.
Då exekveringsfasen utförts ska PC ha uppdaterats så att den
innehåller adressen till nästa instruktion i minnet.

Observera att styrsignalsekvenserna för RESET och FETCH är
oberoende av operationskoden.

Observera också att exekveringsfasen alltid måste avslutas med att
generera NF för att starta nästa instruktionshämtning. Om
tillståndsmaskinen klockas ur tillståndet Q15 utan att NF-signalen
genererats kommer FLISP att återstartas (RESET).

Figur 14.3 Tillståndsgraf för styrenheten

14.1.1 Styrsignalsekvens för RESET-fasen
Återställningsfasen utförs under tre steg och representeras av de tre
tillstånden Q0, Q1 och Q2.

Tillstånd

Summa-

term
RTN-

beskrivning
Styrsignaler Kommentarer

Q0 (Q0�1) (FF)16�R f1=1; f0=1;

LDR=1

ALU-funktionen väljs så att talet FF16 finns på ALU:ns utgång, dvs. funktionskod 3,
ALU-funktion = (0011)2.
Laddingången på R-registret ettställs så att utvärdet från ALU:n FF16 laddas i R-
registret vid nästa klockpuls.

Q1 (Q1�1) R�TA OER=1;
LDTA=1;

Talet FF16 i R-registret kopplas ut på bussen.
Talet FF16 på bussen laddas i temporäradressregistret vid nästa klockpuls.

Q2 (Q2�1) M�PC MR=1;
g14=1;
LDPC=1;

Minnesinnehållet på adress FF16 läses genom att minnet aktiveras för läsning.
Temporäradressregistret adresserar minnet
Det dataord som läses placeras i PC vid nästa klockpuls.

Vi kan nu börja skapa summatermer för styrsignalerna genom att först
identifiera de signaler som ska aktiveras vid tillståndssignal Q0. Av
tabellen ovan framgår att dessa är f1, f0 och LDR.

Dessa signaler ska aktiveras oavsett vad som finns i
instruktionsregistret. AND-villkoret blir därför här:

återställningsfas�
(RESET)�

������	�
���

��
����

������������

��
����

������������

�
��
����

hämtfas�
(FETCH)�

exekveringsfas�
(EXECUTE)�

�����
spänningstillslag�
eller�återstart�

Arbetsbok för DigiFlisp

 100

Denna summaterm skrivs alltså Q0�1, vilket är samma sak som Q0. Vi
påför därför Q0-signalen på ELLER-grindarna för de tre
styrsignalerna:

Figur 14.4 Bidrag till f1, f0 och LDR från RESET-fasen

På samma sätt ska styrsignalerna OER och LDTA aktiveras i tillstånd Q1:

Figur 14.5 Bidrag till OER och LDTA från RESET-fasen

och slutligen styrsignalerna MR, g14 och LDPC för tillstånd Q2.

Figur 14.6 Bidrag till MR, g14 och LDPC från RESET-fasen

Vi övergår nu till simulatorn.

Uppgift 14.1

Skapa styrsignaler för RESET-fasen i den automatiska styrenheten.

1. Aktivera styrsignalerna LDR f0 och
f1 för tillståndsterm Q0

2. Aktivera styrsignalerna OER och
LDTA för tillståndsterm Q1

3. Aktivera styrsignalerna MR, g14 och
LDPC för tillståndsterm Q2

 Arbetsbok för DigiFlisp

101

Det är nu dags att prova
återställningssekvensen. Växla
Instruction builder till Test-funktion.

Lägg in värdet 2016 i RESET-vektorn (adress FF16).

Återställ FLISP genom att klicka på datavägens reset-omkopplare.
Tillståndsindikatorn (Q-states) indikerar nu tillståndet Q0. Observera
datavägen, speciellt de signaler som ska vara aktiva i tillstånd Q0.

Ge styrenheten en klockpuls genom att klicka på omkopplaren CP.
Kontrollera de aktiva signalerna i datavägen, nu för tillståndet Q1.

Ge ytterligare två klockpulser så att RESET-fasen slutförs och
FETCH-fasen inleds. Tillståndsindikatorn visar då tillstånd Q3.
Kontrollera att adressen 2016 nu finns i PC.

14.1.2 Styrsignalsekvens för FETCH-fasen
Instruktionshämtningen sker i tillståndet Q3. Här förutsätts att PC
innehåller adressen till den instruktion som ska hämtas från minnet.

Tillstånd

Summa-

term
RTN-

beskrivning
Styrsignaler Kommentarer

Q3 (Q3�1) M(PC)�I;

0�T;

MR=1;
LDI=1;
INCPC=1;
CLRT=1;

Adressen för nästa instruktions operationskod, dvs. PC, kopplas till minnets
adressbuss. Läs operationskoden från minnet och placera i instruktionsregistret I.
Adressen som finns i PC ökas med ett.
Register för index vid adressberäkningar nollställs.

Dessa styrsignalers bidrag till AND/OR-nätet i styrenheten visas i
följande figur.

Figur 14.7 Bidrag till MR, LDI, INCPC och CLRT från FETCH-fasen

En anmärkning kan vara på sin plats angående CLRT-signalen.
Eftersom T-registret används för offset vid adressberäkningar för
vissa register (X, Y och SP) är det tillrådligt att nollställa detta i varje
FETCH-fas. Detta gynnar de instruktioner som gör sådana
adressberäkningar redan i exekveringsfasens första tillstånd.

Arbetsbok för DigiFlisp

 102

Uppgift 14.2

Skapa styrsignaler för FETCH-fasen i den automatiska styrenheten
genom att lägga in styrsignalerna MR, LDI, INCPC och CLRT för
summatermen Q3.

Du ska nu prova den sammanhängande RESET/FETCH-sekvensen,
dvs. återstart och den första instruktionshämtningen.

Lägg in värdet 2016 i RESET-vektorn (adress FF16).

Lägg in värdet 5516 på adress 2016, detta blir ”operationskoden” för
den instruktion som ska hämtas.

Återställ den automatiska styrenheten (klicka på RESET) och klocka
fram tillstånden, då du når tillstånd Q4, dvs. FETCH-fasen har utförts,
ska värdet 5516 finnas i instruktionssregistret (register I).
Välj File | Save as i Instruction Builder och spara styrsignalerna i filen
”flisp_reset.fcs”.

14.1.3 Exekveringsfasen
Med övergången till tillstånd Q4 inleds exekveringsfasen. Eftersom
varje instruktion (operationskod) har en unik styrsignalsekvens
kommer nu varje summaterm att utgöras av ett AND-villkor (tillstånd
och operationskod). Exekveringsfaserna har också olika längd (antal
tillstånd) beroende på komplexiteten hos instruktionerna. I Figur 14.8
illustreras antalet tillstånd hos styrsignalsekvenserna för såväl den
kortaste instruktionen (NOP, operationskod 00) som den längsta
möjliga styrsignalsekvensen (ogiltig operationskod, FF).

Figur 14.8 Lagrade programmets princip (FETCH/EXECUTE)

 Arbetsbok för DigiFlisp

103

Detaljerna hos varje FLISP-instruktion finns i instruktionslistan.
Instruktionen No Operation specificeras exempelvis på följande sätt:

NOP No operation
RTN
Flaggor Påverkas ej
Beskrivning Instruktionen utför ingenting

 Detaljer:

Instruktion Adressering Operation Flaggor
NOP
 metod OP # ~ N Z V C
NOP Inherent 00 1 2 No operation - - - -

Instruktionen är den enklast tänkbara, "utför ingenting". Ur kolumnen
Adressering läser vi ut att operationskoden (OP) är 00, att
instruktionen upptar 1 byte i minnet (#) och att den tar två cykler(~)
att utföra. I exekveringstiden ingår hämtfasen, varför antalet tillstånd i
exekveringsfasen alltid är ett mindre än vad som anges här.

Uppgift 14.3

Implementera instruktionen NOP. Avkodningen av instruktions-
registret ger att signalen I00 är aktiv endast för denna operationskod,
samtidigt som exekveringsfasens tillstånd är Q4. Detta ger oss
summatermen för den signal (de signaler) som är aktiva under
respektive tillstånd. De aktiva styrsignalerna anges i sin tur som
styrsignal=1.

Till-
stånd

Summa-
term

RTN-
beskrivning

Styrsignaler Kommentarer

Q4 (Q4�I00) NF=1; Instruktionen utför ingenting.

1. Aktivera View execute states, skriv in operationskoden 00 (avsluta med Enter), och kontrollera att rätt
summaterm (I00*Q4) visas i fönstret Expression.

2. Aktivera instruktionens styrsignal (NF) för summaterm.
3. Skriv eventuellt en kommentar i avsett fält.

Testa nu instruktionen NOP:

1. Lägg in värdet 2016 i RESET-vektorn (adress FF16).
2. Lägg in värdet 0016 på adress 2016, dvs. operationskoden för instruktionen NOP.
3. Återställ den automatiska styrenheten (klicka på RESET) och klocka fram tillstånden, då

du når tillstånd Q4, dvs. FETCH-fasen har utförts, ska värdet 0016 finnas i
instruktionssregistret (register I).

4. Ge nu ytterligare en klockpuls för att utföra NOP-instruktionens exekveringsfas.
Kontrollera att FLISP då återgår till FETCH-fasen. Instruktionen är därefter
implementerad.

5. Välj File | Save as i Instruction Builder och spara styrsignalerna i filen ”flisp_nop.fcs”.

Arbetsbok för DigiFlisp

 104

14.2 Implementering av instruktioner
Resten av detta kapitel ägnas åt en översikt av flertalet av de
instruktioner som definierats för FLISP. Instruktionerna delas in i
grupper med avseende på operationer. Observera att vi här nöjer oss
med att exemplifiera med några utvalda adresseringssätt och
instruktionsbeskrivningarna är därför inte fullständiga. För
detaljerade beskrivningar hänvisas till FLISP-handboken.

14.2.1 Läs från minne
Data kan läsas från minnet med en LD-instruktion ("load").
Alternativt kan andra registerinnehåll, ev. med någon offset, läsas
med en LEA-instruktion ("load effective address"). LD-instruktionen
finns för samtliga register, dvs.
 LDA, LDX, LDY, LDSP

LEA-instruktion finns bara för adressregistren:
 LEAX, LEAY, LEASP

Följande utdrag ur FLISP-handboken ger detaljer om instruktionen
LDA för tre olika adresseringssätt:

LD Load register
RTN M (EA)� R
Flaggor N: Ettställs om resultatets teckenbit (bit 7) får värdet 1.

Z: Ettställs om samtliga åtta bitar i resultatet blir noll.
V: Nollställs.
C: Påverkas ej.

Beskrivning Laddar dataord från minnet till angivet register R (A,X,Y eller SP)

 Detaljer:

Instruktion Adressering Operation Flaggor
LD
 metod OP # ~ N Z V C
LDA #Data Immediate F0 2 2 Data � A � � 0 -
LDA Adr Absolute F1 2 3 M(Adr) � A
LDA n,SP Indexed F2 2 3 M(n+SP) � A

LDA #Data
Av detaljinformationen ser vi att instruktionen, som upptar två bytes i
minnet (#), tar totalt två klockcykler (~) att exekveras. Eftersom
denna siffra även omfattar hämtfasen innebär detta att
exekveringsfasen ska utföras under en klockcykel.

Då exekveringsfasen inleds innehåller PC adressen till ordet efter
operationskoden, i detta fall data som ska läsas in till register A. RTN-
beskrivningen för att läsa in data blir då:

 M(PC)�A
Vi kopplar därför PC till MA, aktiverar MR och LDA. Se figuren i
marginalen: eftersom g13 och g12 båda är 0, väljs PC av "1–av–4"–
väljaren. Därefter passerar PC adderarsteget, dock utan att innehållet i
T adderas, detta utförs bara om någon av g13 eller g12 är 1, dvs för
register X,Y och SP. Slutligen väljs PC från utgången från
adderarsteget eftersom g14, som styr "1 av 2"-väljaren, är 0.

Samtidigt uppdateras PC för att peka på nästa instruktion:

F0
07

Data

MINNE

PC

 Arbetsbok för DigiFlisp

105

 PC+1�PC
För flaggsättningen observerar vi att data som ska påverka CC också
finns på ALU:ns D-ingång och genom att använda operationen:

 D+Cin�U; Cin=0
kan vi utnyttja ALU:ns flaggsättning för flaggorna N och Z. Vi
använder sedan styrsignaler (g-) för att nollställa V och låta C vara
opåverkad. Därmed är styrsignalsekvensen för denna variant klar.

Till-

stånd
Summa-

term
RTN-

beskrivning
Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4�IF0) M(PC)�A;
PC+1�PC;
D+0�U;
0�V;
CC(C) �C;

LDA; MR;
INCPC;
f3; f0;
g5;
g3;g2;
LDCC;
NF;

Data från minnet till register A
Uppdatera PC
ALU-funktion 9 för flaggsättning N och Z
nollställ V
ingen påverkan C
uppdatera CC
ny instruktion

LDA Adr
Av detaljinformationen ser vi att exekveringsfasen av denna variant
av instruktionen, tar två klockcykler (~) för att exekveras. Den extra
cykeln kommer av att vi här måste göra två läsningar i minnet. Först
ska adressen (Adr) läsas från instruktionen, därefter ska data läsas från
denna adress.

Adressen från minnet läses till adressregister TA och PC uppdateras:

 M(PC)�TA; PC+1�PC
under nästa cykel kopplas TA till MA genom att g14 sätts till 1, varvid
MR och LDA-signalerna aktiveras.

 M(TA) �A

I följande tabell anges styrsignalerna för att läsa data från en adress
till register A. Observera att tabellen inte beskriver den fullständiga
instruktionsvarianten, jämför med LDA #Data.

Till-

stånd
Summa-

term
RTN-

beskrivning
Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4�IF1) M(PC)�TA;
PC+1�PC;

LDTA; MR;
INCPC;

Adress från minnet till temporär adress
Uppdatera PC

Q5 (Q5�IF1) M(TA) �A;

(etc.)

LDA; g14; MR;

(etc.)

Data från "Adr" till A

LDA n,SP
Även indexerade adresseringssätt kräver en extra läsning av
operanden (Data). Här måste vi dock först genomföra en beräkning av
den effektiva adressen, i detta fall n+SP.

 Datavägen i FLISP har förberetts för en sådan adressberäkning
genom att innehållet i temporärregister T adderas, som offset, till
innehållet i något adressregister. Observera att offset adderas endast i
3 av de 8 möjliga sätten att utföra adressberäkningarna. Följande
tabell beskriver funktionen för väljarsignalerna g14, g13 och g12.

Arbetsbok för DigiFlisp

 106

g14 g13 g12 Register till adressbuss: RTN
0 0 0 Register PC, ingen offset M(PC)
0 0 1 Register SP (”bas”) och register T (”offset”) M(T+SP)
0 1 0 Register Y (”bas”) och register T (”offset”) M(T+Y)
0 1 1 Register X (”bas”) och register T (”offset”) M(T+X)
1 0 0 Adressberäkningsregister TA, ingen offset M(TA)
1 0 1 Adressberäkningsregister TA, ingen offset M(TA)
1 1 0 Adressberäkningsregister TA, ingen offset M(TA)
1 1 1 Adressberäkningsregister TA, ingen offset M(TA)

Offseten (n) läses från minnet till register T och PC uppdateras:

 M(PC)�T; PC+1�PC
under nästa cykel kopplas adressen n+SP till MA genom att g12 sätts till
1, MR och LDA-signalerna aktiveras.

 M(T+SP) �A

Styrsignaler för inläsning av data från adress "n+SP" till register A
visas i följande tabell:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4�IF2) M(PC)�T;
PC+1�PC;

LDT; MR;
INCPC;

Offset från minnet till T
Uppdatera PC

Q5 (Q5�IF2) M(T+SP) �A;

(etc.)

LDA; g12; MR;

(etc.)

Data från "n+SP" till A

Vi ser här att styrsignalsekvenser för instruktioner med de indexerade
adresseringssätten n,R (R=X,Y eller SP) skiljs åt endast genom
användningen av g13 och g12.

Uppgift 14.4

Implementering och test av LDA-instruktioner.
1. Radera först all styrsignalinformation (File|Clear) och utgå från din

sparade fil flisp_nop.fcs, dvs. ladda filen (File|Load) till
Instruction Builder. Nu finns enbart styrsignaler för RESET och
FETCH faserna och instruktionen NOP i styrenheten.

2. Implementera nu instruktionerna LDA #Data, LDA Adr och
LDA n,SP enligt tidigare anvisningar. Spara styrsignal-
informationen (File|Save as) med namnet flisp_ins.fcs.

3. Skapa en fil test_load.fmem, för test av de implementerade
instruktionerna (se marginalen). Vi har placerat en instruktions-
sekvens med start på adress 2016 i minnet; detaljerna framgår av
följande:

Adress Maskin-
kod Assemblerkod RTN

20 LDA #7 7�A
21
22 LDA 1016 M(1016) �A
23
24 LDA 1,SP M(1+SP)�A
25
26

test_load.fmem
#ClearAllMemory
#ClearAllRegisters
Operationskoder och
operandinformation läggs i
minnet:
#SetMemory 20=F0
#SetMemory 21=07
#SetMemory 22=F1
#SetMemory 23=10
#SetMemory 24=F2
#SetMemory 25=01
Data läggs på plats och register
SP ges initialvärde
#SetMemory 10=00
#SetRegister SP=0F
#SetMemory 10=81
RESET-vektor
#SetMemory FF=20

Efterhand som du implementerar
och testar nya FLISP-
instruktioner lägger du till dessa i
filen:
flisp_ins.fcs.

Det är däremot lämpligt att skapa
separata testfiler:
test_XXX.fmem
för de olika instruktionerna.

Arbetsbok för DigiFlisp

 140

15 Maskinprogrammering

I detta kapitel fortsätter vi att studera hur maskininstruktioner sätts
samman i ett maskinprogram som vi placerar i minnet och därefter
låta FLISP utföra. Kapitlet omfattar:

� en översikt där du får tillfälle att bekanta dig med hur simulatorn
fungerar, samt

� maskinprogrammering, dvs. inmatning och test av operations-
koder och operander, för enklare instruktionssekvenser.

15.1 Översikt av simulatorn
Vi skall börja med att använda FLISP-simulatorn för att mata in ett
maskinprogram (ett antal maskininstruktioner) i minnet. Vi fortsätter
med att studera utförandet av programmet, dels genom att stega oss
genom programmet, dels genom att exekvera programmet
automatiskt.

Starta FLISP-simulatorn, välj Computer and peripherals|FLISP-computer.

FLISP-simulatorn innehåller en rad olika funktioner men vi
koncentrerar oss i detta kapitel på en övervakningsfunktion (monitor)
med vilken vi kan undersöka såväl minnesinnehåll som
programutförande i FLISP.

Välj nu därför menyalternativet File|Monitor.

Visar FLISP:s registerinnehåll

janjo
Rectangle

 Arbetsbok för DigiFlisp

 107

Testa implementeringen av instruktionerna genom att läsa in testfilen,
gör RESET och ge klockpulser tills instruktionssekvensen utförts.
Kontrollera mellan varje instruktion att denna utförs korrekt och ange
testresultaten i följande tabell; kontrollera även flaggsättningen.

 A N Z V C
initialt
LDA #Data
LDA Adr
LDA n,SP

Då vi jämför LD-instruktioner med samma adresseringssätt ser vi att
de är mycket lika: jämför exempelvis LDA, LDSP och LDX.

Instruktion Adressering Operation Flaggor
LD
 metod OP # ~ N Z V C
LDA #Data Immediate F0 2 2 Data  A   0 -
LDSP #Data Immediate 92 2 2 Data  SP
LDX #Data Immediate 90 2 2 Data X

För styrsignalsekvensen innebär detta att det är enbart
operationskoden och en enstaka styrsignal som skiljer dem åt:

LDSP #Data

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●I92) M(PC)→SP;
PC+1→PC;
D+0→U;
0→V;
CC(C) →C;

LDSP; MR;
INCPC;
f3; f0;
g5;
g3;g2;
LDCC;
NF;

Data från minnet till register SP
Uppdatera PC
ALU-funktion 9 för flaggsättning N och Z
nollställ V
ingen påverkan C
uppdatera CC
ny instruktion

Uppgift 14.5

Implementera först instruktionen:
 LDSP #Data

Lägg till instruktionen i filen flisp_ins.fcs.

Jämför styrsignaltabellen för LDSP #Data, med följande styrsignal-
tabell för LDX #Data, komplettera tabellen med operationskod
och aktiva styrsignaler.

LDX #Data:

Till-
stånd

Summaterm RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Q4 (Q4●) M(PC)→X;
PC+1→PC;
Flags→CC;

f3; f0; g5; g3; g2; LDCC;
NF;

Lägg även till instruktionen LDX #Data filen flisp_ins.fcs.
Skapa en lämplig fil för test av instruktionerna och kontrollera att de
fungerar som de ska.

Arbetsbok för DigiFlisp

 108

LEA-instruktionerna är i första hand avsedda för adressberäkningar.
De tillåter att adresser kopieras mellan adressregistren X,Y och SP, ev.
med addition/subtraktion av någon offset.

LEA Load effective address
RTN EA  R ; R kan vara X,Y eller SP
Flaggor Påverkas ej
Beskrivning Laddar effektiva adressen i R. Används för att addera/subtrahera

registerinnehåll.

 Detaljer:

Instruktion Adressering Operation Flaggor
LEA
 metod OP # ~ N Z V C
LEAX n,X Indexed CC 2 4 X + n  X - - - -
LEAX n,SP Indexed DC 2 4 SP + n  X
LEAY n,Y Indexed CD 2 4 Y + n  Y
LEAY n,SP Indexed DD 2 4 SP + n  Y
LEASP n,SP Indexed BE 2 4 SP + n  SP
LEASP n,X Indexed CE 2 4 X + n  SP
LEASP n,Y Indexed DE 2 4 Y + n  SP

Låt K beteckna det register (X,Y eller SP) som ingår i operanden,
källregistret, och låt D beteckna det register som är en del av
instruktionsnamnet, destinationsregistret. Det är den effektiva
adressen n+K som ska placeras i register D och vi kan därför inte,
som förut, använda metoden (T+K), vilket ger en adress som alltid
adresserar minnet. Vi måste därför göra själva adressberäkningen n+K
med hjälp av ALU:n. Utförandefasen kräver tre cykler:

Offseten (n) från minnet läses till register T och PC uppdateras:

 M(PC)→T; PC+1→PC
under nästa cykel kopplas register K till bussen och ALU:n utför
addition:

 T+K →R
Resultatet återförs till destinationsregistret:

 R→D
Styrsignaler för instruktionen med de generella beteckningarna visas i
följande tabell:

Till-

stånd
Summa-

term
RTN-

beskrivning
Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→T;
PC+1→PC

LDT; MR;
INCPC;

Offset från minnet till T
Uppdatera PC

Q5 (Q5●) T+K →R f3; f1;f0; OEK;LDR Bestäm effektiv adress "n+K"
Q6 (Q6●) R →D OER; LDD; NF Återför resultat

 Arbetsbok för DigiFlisp

 109

Uppgift 14.6

Implementera instruktionerna:

 LEASP n,SP
 LEAX n,X
 LEAX n,Y

Börja med att föra in styrsignalerna i följande tabeller:

LEASP n,SP

Till-
stånd

Summaterm RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→T;
PC+1→PC

 Offset från minnet till T
Uppdatera PC

Q5 (Q5●) T+SP →R Bestäm effektiv adress "n+SP"
Q6 (Q6●) R →SP Återför resultat till SP

LEAX n,X

Till-
stånd

Summaterm RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→T;
PC+1→PC

 Offset från minnet till T
Uppdatera PC

Q5 (Q5●) T+X →R Bestäm effektiv adress "n+X"
Q6 (Q6●) R →X Återför resultat till X

LEAX n,SP

Till-
stånd

Summaterm RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→T;
PC+1→PC

 Offset från minnet till T
Uppdatera PC

Q5 (Q5●) T+SP →R Bestäm effektiv adress "n+SP"
Q6 (Q6●) R →X Återför resultat till X

Lägg till instruktionerna i filen flisp_ins.fcs och använd följande
testsekvens för att kontrollera styrsignalsekvensernas funktion.

Adress Maskin-
kod Assemblerkod RTN

20 BE LEASP 5,SP SP+5→SP
21 05
22 BE LEASP -1,SP SP+(–1)→SP
23 FF
24 CC LEAX 2,X X+2→X
25 02
26 DC LEAX 2,SP SP+2→X
27 02

Kontrollera slutligen styrsignalsekvensernas funktion och rätta
eventuella fel.

test_lea.fmem
#ClearAllMemory
#ClearAllRegisters
Operationskoder och
operandinformation läggs i minnet:
#SetMemory 20=BE
#SetMemory 21=05
#SetMemory 22=BE
#SetMemory 23=FF
#SetMemory 24=CC
#SetMemory 25=02
#SetMemory 26=DC
#SetMemory 27=02
Registren ges initialvärden
#SetRegister X=05
#SetRegister SP=0F
RESET-vektor

#SetMemory FF=20

Arbetsbok för DigiFlisp

 110

14.2.2 Skriv till minne
Data kan skrivas till minnet med ST-instruktionen ("store").
Instruktionen finns för samtliga register, dvs.:
 STA, STX, STY, STSP

Följande utdrag ur FLISP-handboken ger detaljer om instruktionen
STA för två olika adresseringssätt:

ST Store register
RTN R  M (EA)
Flaggor Påverkas ej
Beskrivning Lagrar angivet registerinnehåll (A,X,Y,SP) i minnet på den

effektiva adressen

 Detaljer:

Instruktion Adressering Operation Flaggor
ST
Variant metod OP # ~ N Z V C
STA Adr Absolute E1 2 3 A  M(Adr) - - - -
STA n,SP Indexed E2 2 3 A  M(n+SP)

Uppgift 14.7

Implementera instruktionerna
 STA Adr
 STA n,SP

STA Adr
Exekveringsfasen delas upp i två steg:
 1: Adr→TA
 2: A→M(TA)
I följande tabell har vi detaljerat RTN-beskrivningen ytterligare.
Komplettera tabellen med operationskod och aktiva styrsignaler:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→TA;
PC+1→PC;

Effektiv adress från minnet till TA
Uppdatera PC

Q5 (Q5●) A→ M(TA);

Data från A till minne
Ny hämtfas

STA n,SP
Även i detta fall delas exekveringsfasen upp i två steg:
 1: n→T
 2: A→M(T+SP)
Komplettera även följande tabell med operationskod och aktiva
styrsignaler:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→T;
PC+1→PC;

Offset från minnet till T
Uppdatera PC

Q5 (Q5●) A→ M(T+SP);

 Data från A till minne
Ny hämtfas

 Arbetsbok för DigiFlisp

 111

Lägg till dessa instruktioner till instruktionsuppsättningen
flisp_ins.fcs och använd sedan följande instruktionssekvens för
att testa instruktionerna (se även marginalen).

Adress Maskin-
kod Assemblerkod RTN

20 E1 STA 1016 A→M(1016)
21 10
22 E2 STA 5,SP A→M(5+SP)
23 05

Kontrollera minnesadress 1016 och 1116 som båda ska innehålla värdet
3316 efter instruktionssekvensen.

14.2.3 Registeröverföringar
Instruktionerna TFR (“transfer”) och EXG (”exchange”) utgör en
liten grupp instruktioner för dataöverföring mellan olika register.

TFR Transfer register to register
RTN R1  R2
Flaggor Påverkas ej, såvida man inte kopierar ett registerinnehåll till CC-

registret
Beskrivning Data kopieras mellan angivna register

 Detaljer:

Instruktion Adressering Operation Flaggor
TFR
Variant metod OP # ~ N Z V C
TFR A,CC Inherent 18 1 2 A  CC Δ Δ Δ Δ
TFR X,Y Inherent 1A 1 2 X  Y - - - -

Instruktioner som kopierar data mellan register är speciellt enkla. De
kräver bara att källans OE-signal och destinationens LD-signal
aktiveras. Om CC är destinationsregister måste man dock också
aktivera rätt styrsignaler för väljaren på CC-registrets ingång.

Uppgift 14.8

I denna uppgift ska du implementera styrsignalsekvenserna för
 TFR X,Y
 TFR A,CC

I båda fallen räcker det med en klockcykel för exekveringsfasen. Fyll
i operationskoder, RTN-beskrivningar och aktiva styrsignaler i
förjande tabeller:

TFR X,Y

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) X→Y Data från X till Y
Nästa...

test_store.fmem
#ClearAllMemory
#ClearAllRegisters
Operationskoder och
operandinformation läggs i minnet:
#SetMemory 20=E1
#SetMemory 21=10
#SetMemory 22=E2
#SetMemory 23=05
Registren ges initialvärden
#SetRegister A=33
#SetRegister SP=0C
RESET-vektor
#SetMemory FF=20

Arbetsbok för DigiFlisp

 112

TFR A,CC

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) A→CC Data från A till bussen
buss kopplas till CC
data från buss till CC

Lägg till dessa instruktioner till instruktionsuppsättningen
flisp_ins.fcs. Skapa också en fil för test av de implementerade
instruktionerna. Placera instruktionssekvensen med start på adress
2016 i minnet. Detaljerna framgår av följande:

Adress Maskin-
kod Assemblerkod RTN

20 18 TFR A,CC A→CC
21 1A TFR X,Y X→Y
22

Utför instruktionerna och kontrollera funktionen.

EXG-instruktionen utbyter två registerinnehåll. För att temporärt
lagra det ena registret överför vi dess innehåll opåverkat via ALU:n
till register R. Betrakta exempelvis K  D. Den generella RTN-
sekvensen för instruktionen kan då skrivas:
 K→R, D→K, R→D

EXG Exchange register contents
RTN R1  R2
Flaggor Påverkas endast om CC-registret är det ena registret som

används
Beskrivning Data växlas mellan angivna register

 Detaljer:

Instruktion Adressering Operation Flaggor
EXG
Variant metod OP # ~ N Z V C
EXG A,CC Inherent 9F 1 4 A  CC    
EXG X,Y Inherent AF 1 4 X  Y - - - -

test_tfr.fmem
#ClearAllMemory
#ClearAllRegisters
Operationskoder och
operandinformation läggs i minnet:
#SetMemory 20=18
#SetMemory 21=1A
Registren A och X ges initialvärden
#SetRegister A=FF
#SetRegister X=FF
RESET-vektor
#SetMemory FF=20

 Arbetsbok för DigiFlisp

 113

Uppgift 14.9

Implementera instruktionerna:
 EXG X,Y
 EXG A,CC

Registerutbytet kräver tre cykler, komplettera tabellerna.

EXG X,Y

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) Data från X till R
Q5 (Q5●) Data från Y till X
Q6 (Q6●) Data från R till X; Nästa...

EXG A,CC

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) Data från A till R
Q5 (Q5●) Data från CC till A
Q6 (Q6●) Data från R till CC;

Nästa...

Lägg till de nya instruktionerna till filen misc.hwflisp.

Skapa nu en konfigurationsfil för test av de implementerade instruk-
tionerna. Placera instruktionssekvensen med start på adress 2016 i
minnet. Detaljerna framgår av följande:

Adress Maskin-
kod Assemblerkod RTN

20 9F EXG A,CC A↔CC
21 AF EXG X,Y X↔Y

Placera initialvärden i A och X;kontrollera funktionen.

14.2.4 Unära aritmetiska operationer
Vanligt förekommande operationer kan ges separata instruktioner av
prestandaskäl, trots att de kan utföras på andra sätt. I FLISP har vi
exempelvis CLR ("clear"), NEG ("negate"), DEC ("decrement") och
INC ("increment"). I detta avsnitt arbetar vi speciellt med decrement-
instruktionen. Implementering av styrsignalsekvenser för de övriga är
likartad. Vi börjar med att titta närmre på instruktionens beskrivning:

Arbetsbok för DigiFlisp

 114

DEC Decrement register or memory
RTN A–1→A eller M(EA)–1→M(EA)
Flaggor N: Ettställs om resultatets teckenbit (bit 7) får värdet 1

Z: Ettställs om samtliga åtta bitar i resultatet blir noll
V: Ettställs om 2-komplementoverflow uppstår
C: Påverkas ej

Beskrivning Subtraherar 1 från operanden

 Detaljer:

Instruktion Adressering Operation Flaggor
DEC
Variant metod OP # ~ N Z V C
DECA Inherent 08 1 3 A–1A ∆ ∆ ∆ -
DEC Adr Absolute 38 2 4 M(Adr) –1  M(Adr)
DEC n,SP Indexed 48 2 4 M(n+SP) –1  M(n+SP)
DEC n,X Indexed 58 2 4 M(n+X) –1  M(n+X)
DEC A,X Indexed 68 1 4 M(A+X) –1  M(A+X)
DEC n,Y Indexed 78 2 4 M(n+Y) –1  M(n+Y)
DEC A,Y Indexed 88 1 4 M(A+Y) –1  M(A+Y)

Instruktionen är av typ "Read/Modify/Write", dvs. operanden måste
först läsas, för att bli tillgänglig i ALU:n, därefter utförs själva
operationen och slutligen ska resultatet skrivas tillbaks till samma
plats som där det hämtades.

I de nästföljande uppgifterna ska styrsignalsekvenser för DEC-
instruktionen implementeras. Vi börjar med varianten DECA, speciellt
för att belysa själva operationen och dess flaggsättning. Vi fortsätter
därefter med tre ytterligare adresseringssätt Adr, n,SP och A,X, som
väsentligt utökar användbarheten av instruktionen.

Uppgift 14.10

Implementera styrsignalsekvens för instruktionen
 DECA.

Börja med att skapa ytterligare en konfigurationsfil test_dec.fmem,
för test av den nya instruktionen. Fortsätt komplettera
flisp_ins.fcs så att de nya instruktionerna läggs till
instruktionsuppsättningen.

Instruktionen beskrivs av följande RTN:

 A-1→R; ALU(N,Z,V)→CC

 R→A

För operationen kan lämpligen följande ALU-operation användas:

Flaggorna, utom C, ska sättas av ALU-operationen.

test_dec.fmem
#ClearAllMemory
#ClearAllRegisters

Operationskod och operandinformation
läggs i minnet:
#SetMemory 20=08

Register A ges initialvärde
#SetRegister A=FF

RESET-vektor
#SetMemory FF=20

 Arbetsbok för DigiFlisp

 115

DECA

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) Operationens resultat till R
 Flaggsättning

Q5 (Q5●) Resultatet återförs till A

Skapa också en konfigurationsfil för test av instruktionen.

Adress Maskin-
kod Assemblerkod RTN

20 08 DECA A←A–1
21

Uppgift 14.11

Implementera styrsignalsekvenser för instruktionsvarianterna:
 DEC Adr
 DEC n,SP
 DEC A,X

Gemensamt för varianterna är att instruktionen måste delas upp i tre
delar:

 Adressberäkning, dvs. läsning från minnet
 Operand läses från minnet, operation utförs
 Skrivcykel, återför resultat till minnet.

DEC Adr
Adressberäkningarna utförs under första cykeln samtidigt ökas PC för
att peka på nästa instruktion. Under andra cykeln utförs själva
operationen så att resultatet kan återföras till minnet under den sista
cykeln.

 Adr→TA; PC+1→PC
R→M(TA)

Operandens adress hålls här i TA-registret under instruktionen.
Komplettera följande tabell:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) Adr→TA;PC+1→PC Adressberäkning
Q5 (Q5●) Operandhämtning,

 Operation, resultat till R
 Flaggsättning

Q6 (Q6●) R→M(TA) Resultatet återförs till minnet

Arbetsbok för DigiFlisp

 116

DEC n,SP
Denna variant skiljer sig under adressberäkningen genom att vi nu i
stället läser den konstanta förskjutningen given av n, till register T.
Därefter bildar vi styrsignaler för att adressera minnet med n,SP.

 n→T; PC+1→PC
Operandens adress utgörs nu av n+SP, operanden betecknas M(n+SP),
komplettera tabellen:

Till-

stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) n→T;PC+1→PC Adressberäkning
Q5 (Q5●) Operandhämtning,

 Operation, resultat till R
 Flaggsättning

Q6 (Q6●) R→M(n+SP) Resultatet återförs till minnet

DEC A,X
I denna sista variant används innehållet i register A som förskjutning.
Denna variant skiljer sig därför under adressberäkningen från n,SP
genom att vi nu i stället läser den innehållet i A till register T. Därefter
bildar vi styrsignaler för att adressera minnet med A,X.

 A→T
Operandens adress utgörs nu av A+X, operanden betecknas M(A+X),
komplettera tabellen:

Till-

stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) A→T Adressberäkning
Q5 (Q5●) Operandhämtning,

 Operation, resultat till R
 Flaggsättning

Q6 (Q6●) R→M(A+X) Resultatet återförs till minnet

Då du konstruerat styrsignalsekvenserna fortsätter du med att föra in
dem i flisp_ins.fcs.

Modifiera nu också konfigurationsfilen för test av DEC (se exemplet i
marginalen) så att den innehåller följande testprogram:

Adress Maskin-
kod Assemblerkod RTN

20 08 DECA A←A+1
21 38 DEC B16 M(B16)←M(B16)+1
22 0B
23 48 DEC 3,SP M(3+SP)←M(3+SP)-1
24 03
25 68 DEC A,X M(A+X)←M(A+X)-1
26

test_dec.fmem
#ClearAllMemory
#ClearAllRegisters

Operationskoder och operandinformation
läggs i minnet:
#SetMemory 20=08
#SetMemory 21=38
#SetMemory 22=0B
#SetMemory 23=48
#SetMemory 24=03
#SetMemory 25=68

Initialvärden för minne och register:
#SetMemory 0B=45
#SetMemory 09=55
#SetMemory 08=65

#SetRegister A=06
#SetRegister SP=06
#SetRegister X=03

RESET-vektor:
#SetMemory FF=20

 Arbetsbok för DigiFlisp

 117

I konfigurationsfilen används också direktiv för att placera följande
värden i minne och register för att utföra test:

M(0B16)=4516
M(0916)=5516
M(0816)=6516
A=6
SP=6
X=3

Utför nu programsekvensen i simulatorn, rätta eventuella fel i
styrsignalsekvenserna så att alla instruktioner fungerar som de ska.
Då sekvensen har utförts ska du kunna avläsa följande
minnesinnehåll:

M(0B16)=4416
M(0916)=5416
M(0816)=6416

14.2.5 Ovillkorlig programflödeskontroll
Vi har hittills enbart sett exempel på instruktioner som uppdaterar PC
på ett sätt som gör att den lämnas pekande på nästa sekventiella
instruktion i programflödet. För att avbryta ett sådant sekventiellt
flöde används någon instruktion för "programflödeskontroll".
Instruktionen kan vara villkorlig, och är då kopplad till någon test av
flaggorna i CC-registret. Den kan annars vara ovillkorlig vilket
betyder att en programflödesändring sker, oavsett flaggornas tillstånd.
För ovillkorlig programflödeskontroll har vi bland andra
instruktionerna JMP (”jump”) och BRA (”branch”).

JMP Jump
RTN EA  PC
Flaggor Påverkas ej
Beskrivning Ovillkorlig programflödesändring; nästa instruktion hämtas från

effektiva adressen EA.

 Detaljer:

Instruktion Adressering Operation Flaggor
JMP
variant metod OP # ~ N Z V C
JMP Adr Absolute 33 2 2 Adr  PC - - - -

BRA Branch always
RTN PC+Offset  PC
Flaggor Påverkas ej
Beskrivning Ett hopp utförs till adressen ADRESS = PC+Offset. Offset räknas från

adressen efter branchinstruktionen, dvs. vid uträkningen av hoppadressen
pekar PC på operationskoden som (eventuellt) finns direkt efter
branchinstruktionen i minnet

 Detaljer:

Instruktion Adressering Operation Flaggor
BRA
 metod OP # ~ N Z V C
BRA Adr Relativ 21 2 4 PC+Offset  PC - - - -

Arbetsbok för DigiFlisp

 118

De visade instruktionsformerna åstadkommer samma sak, dvs.
placerar en ny adress i PC. Skillnaden är hur denna adressinformation
kodas in i instruktionen. I det första fallet, JMP, anges den absoluta
adressen, medan den andra varianten BRA, kodar adressen som en
offset till aktuell PC, dvs. instruktionens förhållande till
destinationsadressen är positionsoberoende.

Ytterligare en skillnad mellan instruktionerna är att BRA endast finns
med PC-relativ adressering, medan JMP kan användas med flera
adresseringssätt.

I detta och de kommande avsnitten ska vi gå igenom exempel på
styrsignalsekvenser för instruktioner för programflödeskontroll.

Uppgift 14.12

Då du konstruerat styrsignalsekvenserna fortsätter du med att föra in
dem i flisp_ins.fcs.

JMP Adr
Instruktionen placerar effektiva adressen i PC, observera att detta är
det värde som följer direkt efter operationskoden i minnet och det
räcker alltså med en läscykel. PC ska nu inte, som tidigare
inkrementeras för att peka på nästa instruktion. Ingen flaggsättning
ska heller utföras, varför implementeringen blir enkel:

M(PC)→PC
Komplettera följande tabell med de nödvändiga styrsignalerna:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) M(PC)→PC Data från minne till PC; Nästa...

BRA Adr
Den PC-relativa adressberäkningen för BRA-instruktionen är något
mer komplicerad. Instruktionen består av operationskod och "offset",
relativ PC, som beräknats då PC innehåller adressen till nästa
instruktion. Sambandet mellan BRA-instruktionens adress,
destinationens adress och offseten skrivs därför:

Instruktionsadress + 2 + OFFSET = Destinationsadress

Då exekveringsfasen inleds innehåller PC adressen till OFFSET, RTN
för hela instruktionen kan därför skrivas:

PC+1+(PC)→PC
Vi delar upp detta i en styrsignalsekvens genom att först placera PC i
T-registret för den kommande beräkningen och samtidigt placera PC i
register TA för inläsning av OFFSET från minnet. Observera att
värdet för PC i register T nu är 1 mindre än det värde som ska
användas vid beräkningen av destinationsadressen:

PC→T; PC→TA

OP-kod BRA
07

OFFSET

MINNE

OP-kod Destination

PC

O
FF

S
ET

Destinations-
adress

Instruktions-
adress

 Arbetsbok för DigiFlisp

 119

Därefter utförs själva adressberäkningen. Vi kompenserar nu värdet
för PC med att addera även konstanten 1 till den resulterande
destinationsadressen och resultatet placeras i register R:

M(TA)+T+1→R
Slutligen återförs resultatet till PC, varefter instruktionen är utförd:

R→PC
Komplettera följande tabell med de saknade styrsignalerna:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●I21) PC→T; PC→TA Operandhämtning
Q5 (Q5●I21) M(TA)+T+1→R Adressberäkning
Q6 (Q6●I21) R→PC Resultatet återförs till PC

Efter att ha lagt till styrsignalsekvenser för instruktionerna JMP och
BRA i kan vi använda följande enkla testprogram för kontroll (se även
exempel i marginalen):

Adress Maskin-
kod Assemblerkod RTN

20 33 JMP 2416 2416→PC
21 24
22
23
24 21 BRA 2016 2016→PC
25 FA
26

Observera hur offset och destinationsadress för BRA-instruktionen
bestämts i programexemplet: det ska gälla att:

 Instruktionsadress + 2 + OFFSET = Destinationsadress
dvs.

 (2416 + 2 + FA16) (mod 256) = 2016

14.2.6 Villkorlig programflödeskontroll
Villkorlig programflödesändring använder flaggorna i CC-registret
för att bestämma om en programflödesändring ska utföras, eller inte.
Vi kan välja att testa enskilda flaggor, men även olika kombinationer
av flaggbitar som realiserar önskade testvillkor.

Följande tabell listar de enkla flaggvillkoren:

Instruktion (Mnemonic) Funktion Villkorsindikation
“Branch if carry set” (BCS) “Hopp” om carry C=1
“Branch if carry clear” (BCC) “Hopp” om ICKE carry C=0
“Branch if equal” (BEQ) “Hopp” om zero Z=1
“Branch if not equal” (BNE) “Hopp” om ICKE zero Z=0
“Branch if minus” (BMI) “Hopp” om negative N=1
“Branch if plus” (BPL) “Hopp” om ICKE negative N=0
“Branch if overflow set” (BVS) “Hopp” om overflow V=1
“Branch if overflow clear” (BVC) “Hopp” om ICKE overflow V=0

test_jmpbra.fmem
#ClearAllMemory
#ClearAllRegisters

Operationskoder och operandinformation
läggs i minnet:
#SetMemory 20=33
#SetMemory 21=24
#SetMemory 24=21
#SetMemory 25=FA

RESET-vektor:
#SetMemory FF=20

Arbetsbok för DigiFlisp

 120

Betrakta nu som exempel instruktionen BCS (Branch if carry set).

BCS Adr
Instruktion Adressering Operation Flaggor
BCS
 metod OP # ~ N Z V C
BCS Adr Relativ 28 2 4 if(C=1)

 PC+Offset  PC
- - - -

Om C-flaggan är 1 ska programflödesändring utföras, annars ska
instruktionen omedelbart efter den villkorliga instruktionen utföras.
Detta kan kortare skrivas:

if(C=1)
 Destinationsadress→PC
else
 PC+2→PC

Om vi utgår från utförandefasen av BRA i föregående uppgift ersätts
nu den ovillkorliga överföringen i tillstånd Q6 (R→PC) av den
villkorliga överföringen:

if(C=1)
 R→PC
else
 PC+2→PC

Styrsignalsekvensen för en villkorlig instruktion ska därför dels
beräkna destinationsadressen vid uppfyllt villkor och placera denna
adress i register R, dels ska adressen till nästa instruktion placeras i
PC, för den händelse villkoret inte är uppfyllt. Avslutningsvis
aktiveras LDPC endast om villkoret är uppfyllt, RTN cykelvis blir:

PC→T; PC→TA,
M(TA)+T+1→R; PC+1→PC,
if(C=1) R→PC

Därefter är instruktionen utförd. Vi sätter samman och får den färdiga
styrsignalsekvensen enligt följande tabell:

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●I28) PC→T; PC→TA OEPC; LDT; LDTA Operandhämtning
Q5 (Q5●I28) M(TA)+T+1→R;

PC+1→PC
MR;f3; f1; f0;g0;g14; LDR;
INCPC

Adressberäkning

Q6 (Q6●I28) if(C=1) R→PC OER; LDPC =C; NF Om C=1 återförs resultatet
till PC

Styrsignalsekvenser för övriga villkorliga instruktioner är likartad; det
är bara bildandet av villkoret (LDPC=?) som skiljer dem åt. Följande
tabell ger en översikt av villkorsindikatorer med motsvarande uttryck
(syntax).

Instruktion (Mnemonic) Villkors-
indikation

Syntax

“Branch if carry set” (BCS) C=1 C
“Branch if carry clear” (BCC) C=0 !C
“Branch if equal” (BEQ) Z=1 Z
“Branch if not equal” (BNE) Z=0 !Z
“Branch if minus” (BMI) N=1 N

 Arbetsbok för DigiFlisp

 121

“Branch if plus” (BPL) N=0 !N
“Branch if overflow set” (BVS) V=1 V
“Branch if overflow clear” (BVC) V=0 !V
”Branch if higher” (BHI) C+Z = 0 !(C+Z)
“Branch if lower or same” (BLS) C+Z = 1 C+Z
“Branch if greater than” (BGT) (NV)+Z= 0 !((NXV)+Z)

“Branch if greater or equal” (BGE) NV=0 !(NXV)

“Branch if less than” (BLT) NV=1 NXV

“Branch if less or equal” (BLE) (NV)+Z=1 (NXV)+Z

Du kan använda Instuction Builder:s villkorsfält för att bilda AND-
villkor mellan enskilda styrsignaler och evaluerade villkor.

För att som exempel ladda PC under villkoret Z=0, väljer du först detta
villkor i Condition-fältet.

Därefter flyttar du styrsignalen från fältet Apply condition, till fältet
Remove Condition, genom att dubbelklicka på signalens namn.

Namnet flyttas nu:

och detta betyder att villkoret läggs till just denna styrsignal.
Observera att signaler som inte flyttas till detta fält inte heller
kommer att ingå i villkorsuttrycket. Vill du återställa, dvs. ta bort
villkoret från styrsignalen dubbelklickar du på dess namn i Remove
condition-fältet.

Uppgift 14.13

Implementera styrsignalsekvensen för instruktionen BNE.

Instruktion Adressering Operation Flaggor
BNE

metod OP # ~ N Z V C
BNE Adr Relativ 25 2 4 if(Z=0)

 PC+Offset  PC
- - - -

Komplettera följande tabell:

Arbetsbok för DigiFlisp

 122

BNE Adr

Till-
stånd

Summa-
term

RTN-
beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Q4 (Q4●) PC→T; PC→TA Operandhämtning
Q5 (Q5●) M(TA)+T+1→R;

PC+1→PC
 Adressberäkning

Q6 (Q6●) if(Z=0) R→PC Om Z=0 återförs resultatet
till PC

Lägg till instruktionen i flisp_ins.fcs.

Kontrollera funktionen med hjälp av följande testprogram, se även
exemplet i marginalen.

Adress Maskin-
kod Assemblerkod RTN

20 F0 LDA #3 3→A
21 03
22 08 DECA A-1→A
23 25 BNE 2216 if(Z=0)2216→PC
24 FD
25 21 BRA 2016 2016→PC
26 F9

Lägg slutligen till instruktionerna:

 BEQ, BCS och BCC

i flisp_ins.fcs.

14.2.7 Skiftoperationer
Instruktioner för skiftoperationer, dvs. aritmetiskt skift, logiskt skift
och rotation skiljer sig åt endast i hur bitar skiftas in och ut i
ändpositionerna. Vi ger här exempel på logiskt skift.

LSL Logical shift left
RTN A <<1  A eller M(EA) <<1  M(EA)
Flaggor N: Kopia av bit 7 efter skiftet.

Z: Ettställs om samtliga åtta bitar i resultatet blir noll.
V: Ettställs om C och bit 7 är olika efter operationen, dvs.
overflow vid 2-komplements-representation inträffar.
C: bit 7 före skiftet blir ny carrybit efter skiftet.

Beskrivning Skiftar operanden ett steg till vänster, dvs. multiplicerar ett tal med
eller utan inbyggt tecken med 2

 Detaljer:

Instruktion Adressering Operation Flaggor
LSL
variant metod OP # ~ N Z V C
LSLA Inherent 0B 1 3 A<<1  A Δ Δ Δ Δ

Konfigurationsfil för test av BNE
#ClearAllMemory
#ClearAllRegisters

Operationskoder och operandinformation
läggs i minnet:
#SetMemory 20=F0
#SetMemory 21=03
#SetMemory 22=08
#SetMemory 23=25
#SetMemory 24=FD
#SetMemory 25=21
#SetMemory 26=F9

RESET-vektor:
#SetMemory FF=20

1 1 0 1 D<<1 (Cin)→ U
1 1 1 0 (Cin) D >> 1→ U
1 1 1 1 (d7) D >> 1→ U

Skiftoperationer

Arbetsbok för DigiFlisp

 140

15 Maskinprogrammering

I detta kapitel fortsätter vi att studera hur maskininstruktioner sätts
samman i ett maskinprogram som vi placerar i minnet och därefter
låta FLISP utföra. Kapitlet omfattar:

 en översikt där du får tillfälle att bekanta dig med hur simulatorn
fungerar, samt

 maskinprogrammering, dvs. inmatning och test av operations-
koder och operander, för enklare instruktionssekvenser.

15.1 Översikt av simulatorn
Vi skall börja med att använda FLISP-simulatorn för att mata in ett
maskinprogram (ett antal maskininstruktioner) i minnet. Vi fortsätter
med att studera utförandet av programmet, dels genom att stega oss
genom programmet, dels genom att exekvera programmet
automatiskt.

Starta FLISP-simulatorn, välj Computer and peripherals|FLISP-computer.

FLISP-simulatorn innehåller en rad olika funktioner men vi
koncentrerar oss i detta kapitel på en övervakningsfunktion (monitor)
med vilken vi kan undersöka såväl minnesinnehåll som
programutförande i FLISP.

Välj nu därför menyalternativet File|Monitor.

Visar FLISP:s registerinnehåll

 Arbetsbok för DigiFlisp

 141

Uppgift 15.1

Placera nu följande programsekvens i minnet genom att mata in
maskinkoden för sekvensen med start på adress 2016.

Adress Maskin-
kod Assemblerkod RTN

20 F0 LDA #$44 4416→ A
21 44
22 94 SUBA #1 A-1→ A
23 01
24 E1 STA $05 A→ M(5)
25 05
26 21 BRA $22 2216→ PC
27 FA

Ställ markören på adress 2016 i minnet och märk upp innehållet. Skriv
in den första operationskoden (F016). Ställ därefter markören på
adress 2116. Skriv nu in operanden 4416.

 Du kan använda programsektionen för att kontrollera att du verkligen
matar in rätt instruktion. Placera programsekvensens startadress 2016 i
register PC och tryck <Enter>.

Program
Visar minnesinnehåll tolkat som
instruktioner (disassemblering).

Nollställ hela minnet

Memory:
Visar minnesinnehåll, minnets
innehåll kan ändras genom att
markören placeras i minnes-
adressens fönster och det nya
värdet skrivs in, avsluta med
<Enter>.

Registers
Visar registerinnehåll, dessa kan
ändras genom att markören
placeras i registrets fönster och
det nya värdet skrivs in, avsluta
med <Enter>.

Arbetsbok för DigiFlisp

 142

Observera hur innehållet i programsektionen nu uppdateras med
disassembleringen av den inmatade instruktionen.

Fortsätt mata in resten av maskinkoderna t.o.m adress 2716 i minnet,
observera ändringar i programsektionen allt eftersom
minnesinnehållen ändras. Då hela sekvensen matats in ska det se ut på
följande sätt:

Programexekvering styrs från FLISP-simulatorn. Med hjälp av
simulatorn ska du nu titta närmre på instruktionsexekveringen i
FLISP. Simulatorn har flera funktioner för detta men i detta kapitel
nöjer vi oss med funktionen step, utför nästa instruktion. Den
instruktion som står i tur att utföras, utpekad av register PC, märks
upp med gul bakgrund i simulatorns programsektion.

Uppgift 15.2

 Utför nästa instruktion genom att klicka på omkopplaren step
("stega").

PC ökas och pekar nu på nästa instruktion. Programsektionen
uppdateras och återspeglar detta varefter registersektionen
uppdateras med nytt innehåll i register A.

Observera att såväl monitorfönstret som FLISP-simulatorns fönster
uppdateras.

 Stega SUBA-instruktionen, observera innehållet i register A.
 Stega STA-instruktionen, observera innehållet i minnesadress 5.

 Arbetsbok för DigiFlisp

151

16 Assemblerprogrammering

I detta avslutande kapitel behandlar vi assemblerprogrammering, en
”ett–till–ett”–översättning från maskinspråket. Kapitlet behandlar
huvudsakligen:

� Programutveckling för FLISP och ytterligare funktioner hos
simulatorn.

� Grundläggande assemblerprogrammering:
o enkla programstrukturer som flödesval och subrutiner,

samt
o reservering av minne för program och data.

� Beskrivning av yttre enheter anslutna till FLISP-datorn:
o programstyrd in- och utmatning från/till yttre enheter,

samt
o avbrottstyrdstyrd in- och utmatning från/till yttre enheter.

16.1 Programutveckling i assemblerspråk
DigiFlisp kan användas för programutveckling i assemblerspråk och
innehåller funktioner för:
� Textredigering – programmet skrivs i form av källtext, dvs. en

textfil som innehåller instruktioner och direktiv till assemblatorn.
� Assemblering – då programmet är färdigt måste det översättas

till maskinkod innan det kan testas i en måldator eller simulator.
Översättningen av programmet, assembleringen, utförs auto-
matiskt av assemblatorn. Vid assembleringen skapas laddfiler
och en listfil.

� Test – i en laddfil finns programmet representerat på en form som
kan överföras till simulatorer och laborationsutrustning där det
tolkas som instruktioner och data. Då programmet har överförts
till simulator eller laborationsutrustning kan det utföras
(exekveras). Man kan då kontrollera programmets funktion.

16.1.1 Skapa ett assemblerprogram
Källtexten skrivs/redigeras med hjälp av en Editor, filnamnet ska
sluta med .sflisp (source FLISP) för att kännas igen som en
källtextfil för FLISP. Färgad syntax används för att hjälpa dig
upptäcka enklare stavningsfel.

Börja med att skapa ett lämpligt arbetsbibliotek för dina filer, (här har
vi valt C:\laborationer men du vill säkert placera dina filer på
något annat ställe). Använd Navigator, fliken Directory och välj
arbetsbiblioteket, se även figur i marginalen.

Du skapar en ny källtextfil genom att välja File | New från menyn.
Därefter skriver du in namnet på den fil du vill skapa, skriv nu
Moment1 och klicka på Save. Om du inte anger något filnamnstillägg
lägger DigiFlisp automatiskt till .sflisp. Nu skapas ett nytt fönster:

Arbetsbok för DigiFlisp

 152

DigiFlisp:s skapar ett nytt fönster där du kan redigera din källtext.

I Navigator, växla till fliken Files, här har du en översikt av alla filer i
ditt arbetsbibliotek. Expandera FLISP assembler source

Uppgift 16.1

Skriv nu in en källtext med följande instruktionssekvens:

Observera hur texteditorn färglägger din text:
� Ett giltigt symbolfält färgas grönt
� En giltig instruktion (eller ett assemblerdirektiv) färgas blå
� En giltig operand (eller argument till direktiv) färgas röd
� Kommentarer färgas grå.
Notera speciellt hur instruktionen:
 STAA $FB

färgas grön, dvs. tolkas som en symbol. Detta beror på att vi
(avsiktligt) stavat instruktionen fel: rätt stavning är STA. Låt felet
vara kvar, vi ska strax rätta till det.

� Rader som inleds med ’;’ tolkas som kommentarer.
� Med direktivet ORG (origin) anger du programmets startadress.
� Dollartecknet anger att påföljande talvärde ska tolkas på

hexadecimal form ($FB = FB16).

För att spara filen använder du nu File | Save.

Om du snabbt vill göra en kopia av denna källtext gör du File | Save As
och väljer ett nytt namn.

 Arbetsbok för DigiFlisp

153

16.1.2 Assemblering
Vid assembleringen översätts källtexten till en laddfil som innehåller
maskinkoden, med tillägget .s19 av den inbyggda assemblatorn.
Dessutom skapas ytterligare en laddfil, med annorlunda format och
med tillägget .fmem, som även kan användas med den fasta styr-
enheten i DigiFlisp. Slutligen skapas också en listfil (med tillägget .lst)
som kortfattat kan sägas innehålla information från såväl källtexten
som laddfilen.

Du kan välja på två olika sätt att assemblera källtexten.

1. Välj från menyn File|Assemble från menyn, då öppnas en
dialogruta där du får ange namnet på den fil du vill
assemblera.

2. I Navigator|Files, välj den fil du vill assemblera, högerklicka
och välj Assemble FLISP source.

Uppgift 16.2

� Assemblera filen Moment1.sflisp

Assemblatorn kommer att klaga på den felstavade instruktionen:

Felutskrift från assemblator

Efter filnamnet, med fullständig sökväg (som kan se annorlunda ut i
ditt exempel) skrivs radnummer inom parentes, därefter typ av fel.

’Illegal mnemonic’ betyder att det inte finns någon sådan
instruktion (STAA).

� Dubbelklicka nu (vänster knapp) på felutskriften. Markören i
marginalen pekar ut raden i källtextfilen som genererat felet.

� Det är meningslöst att försöka testa ett program som gett

felutskrift vid assembleringen. Rätta därför felet och assemblera
på nytt.

Tänk på att korrekt ”färgad syntax” inte nödvändigtvis innebär att ditt
assemblerprogram är korrekt: det är snarare till för att göra dig
uppmärksam på enklare stavfel, syntaxfel etc. Därför kan det i bland
hända att du får felmeddelanden även om du stavat såväl instruktioner
som operander riktigt.

Arbetsbok för DigiFlisp

 154

16.1.3 Laddfil, konfigurationsfil och listfil
Laddfilen används för att överföra programmet (som maskinkod) till
en måldator eller en simulator. Det är knappast nödvändigt att känna
till laddfilsformatet i detalj men vi visar ändå hur laddfilen
(Moment1.s19) för vårt programexempel Moment1.sflisp ser ut.

Exempel på en laddfil.

Vid assembleringen skapas också konfigurationsfilen
Moment1.fmem, med det format vi använde i kapitel 14. Detta ger
dig möjlighet generera testprogram för FLISP:s fasta styrenhet.

Listfilen (Moment1.lst) kan ofta vara användbar då man testar sitt
program. Listfilen innehåller dels det ursprungliga assembler-
programmet, men dessutom information om den maskinkod som
skapats vid assembleringen och på vilka adresser maskinkoden
hamnat. En del av listfilen för vårt programexempel ser ut på följande
sätt:

Listfilen innehåller förutom källtexten information om absoluta
adresser och den maskinkod som genereras vid assembleringen.

Listfilen används vanligtvis för att identifiera absoluta adresser som
man angett med hjälp av symboler. Exempelvis vill man kunna
kontrollera vissa variablers värden (minnesinnehåll på någon adress)
eller sätta så kallade brytpunkter för programexekvering.

I nästa avsnitt ska vi studera ytterligare funktioner hos FLISP-
simulatorn. Vi använder då en enkel programsekvens som du nu
skapar i följande uppgift.

Uppgift 16.3

Instruktionen COMA används för att invertera (bitkomplementera)
bitmönstret i register A. Utgå ifrån Moment1.sflisp, skapa en ny
källtext Complement.sflisp och skriv ett assemblerprogram som
utför operationer enligt flödesplanen i marginalen.

Spara programmet: du ska få tillfälle att undersöka det alldeles strax.

 Flödesplan

 Arbetsbok för DigiFlisp

155

16.2 Simulatorns grundläggande funktioner
Med FLISP-simulatorns hjälp kan du få en god förståelse för hur
assemblerinstruktioner fungerar. Du kan utföra ett assemblerprogram
instruktionsvis och i lugn och ro studera effekterna.

16.2.1 In- och utmatning
Vi ska nu fortsätta arbeta med programmet i Complement.sflisp
från föregående avsnitt. Eftersom programmet läser från och skriver
till portar (utför in- och utmatning) ska vi göra vissa förberedelser
innan vi provar programmet i simulatorn.

Öppna dialogfönstret för simulatorns anslutningar

Till simulatorn finns också en fristående del som kallas "IO-
simulator" (Input/Output-simulator). Dess uppgift är att simulera
olika omgivningar till FLISP-datorn, dvs. de enheter som inmatning
sker från och utmatning sker till. Eftersom IO-simulatorn innehåller
olika typer av kringenheter och dessa kan kopplas på olika sätt till
FLISP:s portar måste vi göra vissa inställningar.

Välj Connect peripherals:

Dialogfönster för IO-simulatorns möjliga anslutningar till in- och
utportar hos FLISP

De två minnesadresserna som upplåts för in- och utmatning möjliggör
totalt 4 portar eftersom vi använder MR och MW signalerna för att
avkoda riktningen.

Figur 16.1 FLISP avkodningslogik för IO

De två adresserna FB16 och FC16 är alltså var för sig försedda med en
inport och en utport, vilket gör att vi kan ansluta maximalt 4
kringenheter samtidigt. Genom att välja mellan de olika alternativen i
dialogfönstret kan du kombinera flera olika anslutningar.

� Välj nu först IO-porten Paralell inport at FC och därefter IO-
enheten 8 bit dipswitch. Klicka på Connect.

� Välj nu Paralell outport at FB och därefter 8 segment Bargraph,
klicka på Connect.

� Klicka slutligen på på OK för att återgå.

Arbetsbok för DigiFlisp

 156

Två nya fönster skapas nu: DIPSWITCH i IO-simulatorn används för
att simulera en 8-bitars omkopplare. Omkopplaren används för att ge
indata till vårt program.

Dessutom skapas den simulerade utenheten BARGRAPH, en
ljusdiodramp, som används som indikator för utdata från vårt
program.

De olika brytarnas lägen på omkopplaren kan nu läsas som ett 8-
bitars dataord från adress FC16:
 LDA $FC

Du kan ändra omkopplarnas lägen genom att klicka i de grå/svarta
fälten.

Ställ in värdet 1 på omkopplaren genom att klicka på fältet för bit 0.

Utdata som skrivs till adress FB16 kan avläsas på ljusdiodrampen:
 STA $FB

Värdet i ackumulator A skrivs till ljusdiodrampen.

Uppgift 16.4

1. Öppna filen Complement.sflisp

Assemblerdirektiv är EQU (equate) kan användas för att definiera
konstanter och fasta adresser. Om exempelvis en DIPSWITCH är
ansluten till adressen FC16 i måldatorns minne kan vi definiera:
DIPSWITCH EQU $FC

På motsvarande sätt kan en ljusdiodramp på adress FB16 definieras:
LED EQU $FB

1. Ändra i källtexten Complement.sflisp så att symbolerna
DIPSWITCH och LED används som portadresser.

2. Assemblera filen, rätta eventuella fel.
3. Du kan starta FLISP-simulatorn via Navigator|Files, expandera

Loadfile och välj filen Complement.s19, högerklicka:
4. För att kunna sätta programräknaren PC till programmets

startadress, 2016, kan vi använda simulatorns monitorfunktion på
samma sätt som i förra kapitlet. Välj File | Monitor i FLISP-
simulatorn.

Röda indikatorer tolkar du som ’1’, medan
de gula tolkas som ’0’.

De 8 omkopplarna representeras med fält av grå/svarta
ytor. Genom att klicka i ett sådant fält ändrar du
omkopplarens utsignal mellan 0 (off) och 1 (on).

Din ’klickning’ motsvarar en omställning av denna
knapp. Du kan ändra varje knapp på samma sätt.

Flödesplan

 Arbetsbok för DigiFlisp

157

5. Sätt programmets startadress 2016 i PC och tryck <Enter>.

6. Ställ in följande olika värden på omkopplaren – utför programmet

med run, dvs. klicka på strömställaren halt/run, du kan ändra
hastigheten genom att nu klicka på step, prova detta, upprepade
gånger. Under simulatorns programexekvering ändrar du
inställningarna på omkopplaren och observerar ändringarna hos
ljusdiodrampen. Fyll i följande tabell:

Inställt värde (binärt) Avläst värde (binärt)

1111 0000
1010 1010
1100 0011

 Uppgift 16.5

I denna uppgift används två omkopplare och en visningsindikator för
hexadecimala siffror (HEXDISPLAY).

Skapa en källtextfil AddAndDisplay.sflisp. Skriv en program-
sekvens som läser av och adderar värden från två omkopplare
anslutna till adress FB16 (DIPSWITCH_1) och FC16 (DIPSWITCH_2) och
därefter skriver ut summan på visningsindikatorn ansluten till adress
FC16, vi bortser här ifrån spill. Skriv färdigt programsekvensen:
; Symbolfält Mnemonic/

direktiv Operand

DIPSWITCH_1:

DIPSWITCH_2:

HEXDISPLAY:

 ORG $20

AddAndDisplay:

Assemblera och testa programsekvensen, rätta eventuella fel.

Arbetsbok för DigiFlisp

 158

16.2.2 Sju-sifferindikator
Med en sju-sifferindikator kan man på ett enkelt sätt presentera
tecken som kan hänföras till de välbekanta siffrorna 0-9. Namnet
kommer av att det faktiskt går att representera dessa siffror, om än
något kantigt, med endast sju olika streck, vilka också kallas segment.
Det finns också ett åttonde segment vars uppgift är att tända en
decimalpunkt.

Under detta moment ska du konstruera ett assemblerprogram som
utför översättning och utmatning av de binära siffrorna 0 t.o.m. 9 till
motsvarande representationer på sju-sifferindikatorn.

Sju-sifferindikatorn 7-SEG DISPLAY fungerar enligt följande:
� Varje bit, i det dataord (8 bitar) som skrivs till utporten, motsvarar

ett segment på sju-sifferindikatorn.
� En etta tänder ett segment, en nolla släcker segmentet.

Översättningen från en siffra (0-9, A-F) till motsvarande sju-
segmentskod beror naturligtvis helt och hållet på vilken typ av sju-
sifferindikator man använder.

Se exemplet på översättningen av den decimala siffran ’2’ till dess
motsvarande sju-sifferkod i marginalen. För att representera siffran 2
måste vi tända de segment som (tillsammans) ger det mest ”2-lika”
utseendet, i detta fallet segmenten 0,1,3,4 och 6. Detta motsvarar
hexadecimala talet 5B16 som därför formar siffran två på
sifferindikatorn

Uppgift 16.6

Följande tabell illustrerar förhållandet mellan binära koder och sju-
segmentskod. Studera speciellt föregående exempel och komplettera i
tabellen med med de saknade sju-segmentskoderna.

Decimal
siffra

Sju-segmentskod

 Binär
kod

Binär form Hexadecimal
form

0 0000 0111 0111 3F
1 0001
2 0010 0101 1011 5B
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

 Arbetsbok för DigiFlisp

159

16.2.3 Statisk minnesinitiering
Med ”statisk minnesinitiering” menar man att ett bestämt värde
placerats på en given adress innan programmet startas.

Detta görs med assemblerdirektivet FCB (Form Constant Byte) som
instruerar assemblatorn att placera ett värde i måldatorns
primärminne.
 FCB värde

Flera argument (värden) kan ges med direktivet. Dessa måste då
skiljas åt med kommatecken.

 FCB värde1,värde2,värde3 etc.

Observera att inga blanka tecken får finnas mellan värden och
kommatecken.

Uppgift 16.7

Följande exempel illustrerar en tabell, med start på adress 7016.
Tabellen innehåller de decimala värdena 0–9.
 ORG $70
 FCB 0,1,2,3,4,5,6,7,8,9

Om tabellen är stor kan man dela upp den i flera rader,
assemblerdirektivet ska då upprepas. Följande konstruktion är
exempelvis ekvivslent med ovanstående:
 FCB 0,1,2,3,4

 FCB 5,6,7,8,9

Skapa en ny källtextfil DisplaySeg.sflisp och lägg här in en
liknande tabell som i stället för de decimala värdena innehåller de
segmentkoder du bestämde i föregående uppgift.
; Symbolfält Mnemonic/

direktiv
Operand

 ORG $70

Segmentkod: FCB

I ett flödesdiagram kan vi symboliskt skriva:

 A�M(X+A)
Dvs.
� Bestäm en minnesadress genom att addera X och A.
� Placera innehållet på denna adress i A.

Motsvarande operation utförs av assemblerinstruktionen:
 LDA A,X

Arbetsbok för DigiFlisp

 160

Uppgift 16.8

I denna uppgift skapas en programsekvens där vi läser ett värde från
omkopplaren ansluten till adress FC16, använder detta värde för att
indexera i en tabell med start på adress 7016 och slutligen skriver ut
det indexerade tabellvärdet till sjusifferindikatorn som är ansluten till
adress FB16.
� Fortsätt nu med DisplaySeg.sflisp, dvs. tabellen med start

på adress 7016 som innehåller segmentskoder för siffrorna 0..9 i
tur och ordning. Skapa programtexten enligt flödesplanen i
marginalen och färdigställ följande:

; Symbolfält

Mnemonic/
direktiv Operand

DIPSWITCH:

SEGMENT7:

 ORG $20

DisplaySeg:

DisplaySeg_1:

 ORG $70

Segmentkod:

� Assemblera och rätta eventuella fel, koppla 7-SEG DISPLAY till

adress FB16 och DIPSWITCH till adress FC16.
� Använd simulatorn och övertyga dig om att programmet fungerar

som det ska, dvs. ställ in värdena 0 t.o.m. 9 (00002 –10012) på
omkopplaren och läs av sifferindikatorn.

� Om du gjort allting rätt ska programmet kunna visa siffrorna 0–9
på sifferindikatorn. Om inte, felsök och rätta i programmet och
tabellen.

� Prova slutligen med att ställa in värden som är större än 9 på
omkopplaren.

Eftersom segmentkodtabellen bara innehåller segmentkoder för de 10
första fallen kommer värdena 10–15 att resultera i "odefinierade"
segmentkoder utanför tabellen. Det finns olika sätt att lösa det
uppkomna problemet.

� Komplettera tabellen med någon speciell segmentkod för "fel",
exempelvis 'E' för alla otillåtna värden hos indata.

� Gör en kontroll (jämförelse) av indata och skriv direkt ut
felkoden om det är ett otillåtet värde.

 Flödesplan

 Arbetsbok för DigiFlisp

161

16.2.4 Villkorlig programflödesändring
Instruktionstypen BCC (”Branch on condition”) används också för att
ange så kallade ”villkorliga programflödesändringar”, dvs. beroende
på hur någon test har utfallit så utförs antingen den ena ”grenen” eller
den andra. Vi ska nu titta närmare på hur detta är tänkt att användas.

Evaluering av villkor

Villkorsevaluering kan göras explicit med speciella test- eller
jämförelse-instruktioner. För jämförelse av två operander kan någon
av följande instruktioner (compare) användas:

Mnemonic Funktion Operation

CMPA Jämför A med minne (A)–(M)

CMPSP Jämför SP med minne (SP)–(M)

CMPX Jämför X med minne (X)–(M)

CMPY Jämför Y med minne (Y)–(M)

Observera att även andra instruktioner sätter flaggor på samma sätt
som dessa. Det kan exempelvis vara överflödigt att använda en jäm-
förelseinstruktion direkt efter en aritmetikinstruktion.

För test av en operand kan någon av följande instruktioner användas:

Mnemonic Funktion Operation

TST Testa minnesinnehåll (M)–$00

TSTA Testa register A (A)–$00

Testinstruktionerna påverkar endast Z- och N-flaggorna. Även dessa
kan i vissa fall utelämnas, då många andra instruktioner påverkar
flaggorna på samma sätt.

Arbetsbok för DigiFlisp

 162

Villkorstest

14 olika villkor (condition codes) kan anges,

Assemblersyntaxen är:
 Bcc <symbol>

Där cc står för något flaggvillkor givet i tabellen nedan och
<symbol> är någon lägesangivelse i programmet. Flaggorna N,Z,V
och C som används för att bilda de olika villkoren finns samlade i CC-
registret i simulatorns registersektion.

Mnemonic Funktion Flaggvillkor
Enkla test

BEQ “Hopp” om zero Z=1
BNE “Hopp” om ICKE zero Z=0
BMI “Hopp” om negative N=1
BPL “Hopp” om ICKE negative N=0
BVS “Hopp” om overflow V=1
BVC “Hopp” om ICKE overflow V=0

Jämförelse av tal utan tecken
BHI Villkor: R>M C + Z = 0
BCC Villkor: R	M C=0
BCS Villkor: R<M C=1
BLS Villkor: R
M C + Z = 1

Jämförelse av tal med tecken
BGT Villkor: R>M Z + (N � V) = 0
BGE Villkor: R	M N � V = 0
BLT Villkor: R<M N � V = 1
BLE Villkor: R
M Z + (N � V) = 1

Ett exempel på flödesplan och kodning är följande:
 CMPA #10
 BCS SANT
FALSKT: ..
 BRA SLUT
SANT: ..

SLUT:

dvs. ”SANT”-grenen utförs om värdet i register A är i intervallet 0..9.

Man kan också koda genom att välja komplementärvillkoret. I vårt
fall är exempelvis följande instruktionssekvenser likvärdiga:
 CMPA #10 CMPA #10
 BCC FALSKT BCS SANT
SANT: .. FALSKT: ..
 BRA SLUT BRA SLUT
FALSKT: .. SANT: ..

SLUT: SLUT:

 Arbetsbok för DigiFlisp

163

Uppgift 16.9

I denna uppgift förbättrar vi funktionen hos programsekvensen vi
skapade under föregående uppgift.

� Felkoden ’E’ kan visas på sjusifferindikatorn
enligt figuren till höger. Definiera segmentkoden
som en konstant enligt:
SEG_ERROR: EQU

� Skapa en ny källtext DisplaySegE.sflisp, som en kopia av
källtexten från föregående uppgift.

� Modifiera programsekvensen så att hänsyn tas till icke-befintliga
segmentkoder, se flödesplanen i marginalen. Färdigställ följande
assemblerprogram.

; Symbolfält

Mnemonic/
direktiv Operand

DIPSWITCH: EQU $FC

SEGMENT7: EQU $FB

SEG_ERROR EQU

 ORG $20

DisplaySegE:

DisplaySegE_1:

DisplaySegE_2:

DisplaySegE_3:

 JMP DisplaySegE_1

Segmentkod: FCB

 FCB

� Assemblera, testa och verifiera att programsekvensen fungerar

korrekt.

Flödesplan

Arbetsbok för DigiFlisp

 164

16.2.5 Rinnande ljus, fördröjning
I detta avsnitt ska vi skapa ett ”rinnande ljus”, och samtidigt se
exempel på hur exekveringshastigheten påverkar funktion av en
programsekvens.

Uppgift 16.10

Flödesdiagrammet i marginalen visar en programsekvens som
åstadkommer ett "rinnande ljus" på en ljusdisdiodramp.

� Komplettera följande ofullständiga programsekvens som en
direkt implementering av flödesdiagrammet i marginalen. Spara
programsekvensen i filen RunDiode.sflisp.

; Symbolfält
Mnemonic/
direktiv Operand

LED: EQU $FB

 ORG $20

RunDiode:

RunDiode_1:

 JMP RunDiode_1

� Assemblera filen, rätta eventuell fel.
� Anslut ljusdiodrampen till adress FB16.
� Kontrollera programsekvensen med simulatorns funktion run,

ljusdioderna ska nu tändas en efter en från höger till vänster och
ge illusionen av ett "rinnande ljus". Kontrollera programmets
funktion och rätta eventuella fel.

� Prova nu även programexekvering i högre hastighet (klicka på
step för att ändra hastigheten). Det "rinnande ljuset" ersätts då av
ett flimmer på ljusdioderna.

Eftersom snabb exekvering ger intrycket av att samtliga dioder
flimrar, beroende på att dioderna tänds och släcks i allt för högt
tempo, behöver vi fördröja programexekveringen mellan det att en
diod tänds och släcks. En sådan fördröjning är lämplig att utföra i
form av en subrutin.

Flödesplan

 Arbetsbok för DigiFlisp

165

16.2.7 Subrutiner
Det är vanligt att man försöker organisera ett program i olika
funktioner (procedurer) eller som vi vanligtvis, då det gäller
assemblerspråk, kallar det subrutiner. FLIS-processorn tillhandahåller
instruktionerna JSR, BSR och RTS för att underlätta modularisering
av program genom användande av subrutiner.

En subrutin karakteriseras av att den har ett inträde och ett utträde.
Inträdet anges oftast genom att man placerar en symbol i
symbolfältet. Utträdet, dvs. ”åter från subrutin” specificeras av en
speciell maskininstruktion, RTS.

Operanden för JSR är en subrutins inträde. Denna kan anges med
flera olika adresseringssätt, men det vanligaste är en symbolisk
adress.

JSR-instruktionen utför två väsentliga operationer:
� adressen till nästa instruktion sparas på stacken
� programräknaren initieras med adressen till subrutinen.

RTS-instruktionen utför operationen:
� adressen till nästa instruktion återställs från stacken.

Stackpekaren, register SP, måste alltså ha initierats med en lämplig
adress innan JSR används. För detta måste man dessuom först ha
avdelat en lämplig del av minnet för stackanvändningen.

I följande figur, som delvis beskriver adressrummet i FLISP (en
fullständig beskrivning finns i appendix E), visar hur 16 bytes har
reserverats för stackanvändning (adresser 1016–1F16), ytterligare 16
bytes reserverats för data (adresser 0–F16) och utrymme för
programkod börjar på adress 2016.

Figur 16.2 Minnesanvändning i FLISP

För att initiera stackpekaren används då lämpligen instruktionen:
 LDSP #$20

Vi utformar nu ett nytt huvudprogram RunDiodeDelay för användning
tillsammans med en subrutin som vi kallar Delay. Flödesplanerna för
den föregående och den nya lösningen visas i marginalen.

Då vi utformar subrutinen Delay, måste vi också ta hänsyn till själva
huvudprogrammet. Av flödesplanen framgår tydligt att såväl register
A som C-flaggan i register CC används i huvudprogrammet. Deras
innehåll måste därför bevaras över anropet till subrutinen Delay.

Följaktligen måste subrutinen Delay spara dessa registerinnehåll innan
de används, för att avslutningsvis återställs dem.

Stacken används också för att tillfälligt spara registerinnehåll i sådana
här fall. Instruktionerna PSH (PuSH register) respektive PUL (PULl
register) används för detta ändamål.

Flödesplansymbol för
subrutin

Arbetsbok för DigiFlisp

 166

Uppgift 16.11

Flödesdiagrammet i marginalen visar en subrutin Delay.

Komplettera följande ofullständiga programsekvens av det
modifierade huvudprogrammet tillsammans med subrutinen. Spara
programmet i filen RunDiodeDelay.sflisp.

; Symbolfält Mnemonic/
direktiv

Operand

LED: EQU $FB

 ORG $20

RunDiodeDelay:

RunDiodeDelay_1:

 JSR Delay

 JMP RunDiodeDelay_1

Delay: PSHA

 PSHC

Delay_1:

 PULC

 PULA

 RTS

� Assemblera filen, rätta eventuella fel.
� Anslut ljusdiodrampen till adress FB16.
� Kontrollera programsekvensen med simulatorns största

exekveringshastighet. Ljusdioderna ska nu tändas en efter en från
höger till vänster och ge illusionen av ett "rinnande ljus".
Kontrollera programmets funktion och rätta eventuella fel.

16.2.8 Terminal, parametrar och returvärden
En terminal är en kombinerad in- utmatningsenhet för
inmatning av ASCII-tecken från ett tangentbord och
utmatning av ASCII-tecken till en bildskärm. I detta
avsnitt använder vi FLISP-simulatorns termin al för
att dels illustrera enkel parameteröverföring till och
från subrutiner, dels för att visa hur du kan använda
brytpunkter då du testar ett program.

Flödesplan för subrutinen
'Delay'

FLISP-simulatorns terminal

 Arbetsbok för DigiFlisp

167

Terminalen ansluts till två portar samtidigt, en utport och en inport.
Ett tecken som matas in i terminalens fönster (svart) blir tillgängligt
på terminalens inport, adress FC16. Tecknet finns kvar tills det
kvitterats genom att 0 skrivs till terminalens utport, adress FB16.

Tecken matas ut till terminalens fönster genom att ett 7-bitars ASCII-
tecken (1-7F16) skrivs till utporten. För en fullständig beskrivning av
ASCII-koderna, se appendix G.

Parametrar och returvärden i register

För att ge en så enkel användning av terminalen som möjligt
definierar vi två olika subrutiner:

� TerminalOut, skriver ett tecken till terminalens bildskärm.
� TerminalIn, läser ett tecken från terminalens tangentbord.

Register A kan användas för att rymma ett enstaka 7-bitars ASCII-
tecken. En lämplig konvention är då att överföra tecknen till
TerminalOut respektive från TerminalIn via register A.
Utmatningsrutinen kan då beskrivas på följande sätt (se även
flödesplanen i marginalen).
; subrutin TerminalOut
; Skriver ett ASCII-tecken till terminalens bildskärm
; Parametrar: Register A, tecken som ska skrivas

Uppgift 16.12

Vi kan använda subrutinen för en programsekvens som matar ut en
textsträng till terminalen. Ett nytt assemblerdirektiv kommer då till
användning:
 FCS "ascii text" ; Form Constant String

Med direktivets hjälp skapar vi alltså en sträng med ASCII-tecken i
minnet. För att markera strängens slut är det brukligt att placera 0
efter ascii-tecknen. Skapa en ny källtextfil HelloWorld.sflisp,
implementera programsekvensen enligt flödesdiagrammet.

; Symbolfält Mnemonic/

direktiv
Operand

 ORG $20

HelloWorld: LDSP #$20

 LDX #Text

HelloWorld_1:

HelloWorld_2:

TerminalOut:

Text: FCS "Hello World"

 FCB 0

Flödesplan för enkel
utmatningsrutin

Flödesplan för
programsekvens som matar

ut en textsträng

Arbetsbok för DigiFlisp

 168

Då terminalfönstret är aktivt skickas tecken från tangentbordet till
terminalen. Tecknet placeras i en intern buffert och blir tillgängligt
för ett program.

Subrutinen TerminalIn, undersöker om det finns något tecken i
bufferten. Om bufferten är tom innehåller den tecknet 0; om en
tangent tryckts ned innehåller bufferten ASCII-tecknet för tangenten.
För att indikera för terminalen att tecknet tagits om hand måste det
kvitteras genom att 0 skrivs till terminalens utport.
; subrutin TerminalIn
; Läser ett ASCII-tecken från terminalens tangentbord
; Returvärde: Register A, tecken som lästs från
; tangentbordet

Subrutinen TerminalIn "väntar" alltså på att en tangent trycks ned,
kvitterar ASCII-tecknet och returnerar sedan koden för den
nedtryckta tangenten.

Uppgift 16.13

För att kontrollera funktionen skapar vi ett enkelt testprogram, Echo,
som kontinuerligt läser ett tecken från terminalens tangentbord för att
därefter skriva samma tecken till terminalens bildskärm. Färdigställ
följande programsekvens och implementera den i filen
Echo.sflisp, vi testar den i nästa uppgift.

; Symbolfält Mnemonic/
direktiv

Operand

 ORG $20

Echo:

Echo_1:

TerminalIn:

TerminalOut:

Brytpunkter

En brytpunkt kan sättas på på en adress i programmet som innehåller
en operationskod. Då simulatorn ska utföra instruktionen och
upptäcker att dess adress överensstämmer med någon brytpunkt
stoppas i stället exekveringen. Detta ger dig ett bekvämt sätt att
exekvera programmet tills något villkor är uppfyllt eller helt enkelt
till någon speciell subrutin, där du sedan kan undersöka
programexekveringen i detalj.

Flödesplan för enkel
inmatningsrutin

 Flödesplan för test av
inmatningsrutin

 Arbetsbok för DigiFlisp

169

Brytpunkter kan sättas på någon adress med användning av
brytpunktstabellen. För att bestämma vilken adress brytpunkten ska
placeras på är det lämpligt att använda den listfil som skapas vid
assembleringen.

Lägg till en brytpunkt genom att högerklicka på en rad i
programfönstret.

Två alternativ ges nu, antingen en tillfällig brytpunkt, Go to..., eller en
permanent brytpunkt (Set breakpoint). Den tillfälliga brytpunkten
använder du då du vill stoppa programmet en gång vid denna punkt.
Permanent brytpunkt används då programmet ska stoppas varje gång
programmet når denna adress.

En brytpunkt illustreras genom att raden får en röd bakgrund, för en
tillfllig brytpunkt är texten svart, för en permanent brytpunkt är texten
vit.

För att ta bort en permanent brytpunkt högerklickar du på den
uppmärkta raden och väljer Remove breakpoint.

Bekanta dig snabbt med brytpunktsfunktionerna innan du utför nästa
uppgift.

Uppgift 16.14

� Assemblera filen Echo.sflisp.
� Ladda programmet till simulatorn.
� Anslut terminalen till portarna.
� Öppna listfilen Echo.lst och lokalisera subrutinen TerminalOut,

använd monitorns programsektion och sätt en brytpunkt på
adressen till subrutinens första instruktion.

� Starta programmet, aktivera (klicka i) terminalfönstret och skriv
in tecknet ’b’. Programmet ska nu stanna på den första
instruktionen i TerminalOut. Fortsätt med att stega instruktionsvis
och kontrollera att tecknet ’b’ nu också skrivs till terminalens
bildskärm.

� Ta bort brytpunkten och starta programmet igen, skriv några
godtyckliga tecken och kontrollera att de skrivs ut korrekt.

� Prova också med att sätta ut en tillfällig brytpunkt, dvs. Go to....

Arbetsbok för DigiFlisp

 170

16.2.10 Tangentbord
KEYPAD är ett enkelt tangentbord med 16 tangenter och lämpar sig för
inmatning av numeriska värden till ett program. Tangentbordet måste
avkodas programvarumässigt, till skillnad från terminalens
tangentbord som genererar ASCII-tecken.

Tangentbordet kan också konfigureras för att generera avbrott, men
detta återkommer vi till i nästa avsnitt.

Tangentbordet är organiserat i rader och kolumner. Raderna har
anslutits till bit 4 t.o.m bit 7 i utporten på adress FC16. Kolumnerna är
anslutna till bit 0 t.o.m bit 3 hos inporten på adress FB16.

För att känna av en tangentnedtryckning måste någon rad i utporten
aktiveras. Genom att sätta någon bit till '1' aktiveras motsvarande rad.

Efter att en rad aktiverats kan kolumnerna läsas av från inporten. En
tangents omkopplarfunktion är sluten då tangenten trycks ned och
öppen då tangenten släpps upp. Om någon rad aktiverats och någon
av kolumnerna har logikvärdet '1' betyder detta därför att tangenten i
motsvarande kolumn är nedtryckt (det kan vara fler än en tangent).
Om ingen tangent är nedtryckt så läses endast ettor från kolumnerna.

Med vetskap om vilken rad som aktiverats och vilken kolumn som
ger indikation ('0') vet vi den nedtryckta tangentens position och kan
därför också bestämma dess tangentkod.

Uppgift 16.15

Undersök tangentbordets funktion.

1. Anslut enheten KEYPAD.

 Arbetsbok för DigiFlisp

171

2. Ställ in adressen FB16 och värdet 1016 hos FLISP-simulatorn.

3. ”Tryck ned” (klicka en gång) på tangentbordets första tangent och

observera hur värdet på inporten ändras. Klicka ytterligare en gång
för att ”släppa upp” tangenten.

4. Upprepa förfarandet, aktivera andra rader och tryck ned tangenter i
andra kolumner.

För att avgöra om en tangent är nedtryckt avsöks tangentbordet rad
för rad, dvs. en rad aktiveras och kolumnerna läses av. Om en
nedtryckt tangent upptäcks, ska den avkodas och dess tangentkod
bestämmas. Om ingen tangent är nedtryckt ska en felkod, i detta fall
FF16, ange just detta. Följande algoritm kan användas för en sådan
funktion:

Arbetsbok för DigiFlisp

 172

Uppgift 16.16

Skapa en ny källtext, CheckKey.sflisp och implementera
CheckKey enligt flödesplanen. Testa med ett enkelt program enligt
följande:

; Symbolfält
Mnemonic/
direktiv Operand

 ORG $20

TestCheckKey: LDSP #$20

TestCheckKey_1: JSR CheckKey

 JMP TestCheckKey_1

CheckKey: LDA #$10 ;bitmönster rad 1

CheckKey_1: STA $FB ;aktivera (nästa) rad

 LDY $FC ;läs kolumner

;om nedtryckt,avkoda

;nästa rad

;om fler, nästa rad

;alla genomsökta

;ingen nedtryckt

CheckKey_2: LSRA ;tangent nedtryckt...

 LSRA ;skifta radmönster till

 LSRA ;låg nybble

 LSRA

 LSRA ;.. omvandla radmönster..

 CMPA #4 ;.. till radoffset...

 BNE CheckKey_3 ;.. 0,1,2,3

 SUBA #1

CheckKey_3: ; multiplicera radoffset..

 ; med 4 och spara ..

 PSHA ; .. på stacken

 ; kopiera Y till A

 ; via stacken

; översätt kolumnmönster

; till kolumnoffset

CheckKey_4: ; bestäm tangentoffset

; som (radoffset*4)+

; kolumnoffset

; balansera stacken

 RTS

KeyCode: FCB 1,2,3,$A,4,5,6,$B,7,8,9,$C,$F,0,$E,$D

 Arbetsbok för DigiFlisp

173

Flödesdiagrammet i marginalen visar funktionen GetKey som
utformats så att den väntar tills en tangent tryckts ned, därefter väntar
till tangenten släpps upp och slutligen returnerar den nedtryckta
tangentens värde.

Lokala variabler

Register A måste här användas både för att undersöka nedtryckt och
uppsläppt tangent eftersom registret används för returvärdet fån
CheckKey. Själva tangentkoden, som ju läses samtidigt som
programsekvensen detekterar en nedtryckt tangent måste därför
sparas på något annat sätt. En möjlighet är att först reservera utrymme
på stacken och sedan använda denna plats för tillfällig lagring av den
nedtryckta tangentens kod. Då tangenten släppts upp igen kan
tangentkoden återställas från stacken och returneras i register A.

Instruktionen LEASP -1,SP kan användas för att minska
stackpekaren med 1, dvs. reservera 1 byte minnesutrymme. Adressen
till detta minnesutrymme, dvs. 0,SP, kallar vi symboliskt för keycode.

Flödesplanen i marginalen beskriver en tangentbordsrutinen GetKey
där följande instruktioner är lämpliga för hantering av den lokala
variabeln keycode:

"Reservera keycode”
 LEASP -1,SP

”keycode�A”
 STA 0,SP

”RETUR(keycode)”
 LDA 0,SP ; återställ ’keycode’ från stack till register A
 LEASP 1,SP ; återställ stackpekare
 RTS ; återgå från subrutin

Vi konstruerar nu subrutinen GetKey.

Uppgift 16.17

Skapa en ny källtext, TestGetKey.sflisp och implementera
GetKey enligt flödesplanen. Testa med ett enkelt program på samma
sätt som tidigare.:

Flödesplan för
tangentbordsrutin 'GetKey'

Arbetsbok för DigiFlisp

 174

Uppgift 16.18

I denna uppgift ska du konstruera ett program DisplayKbd som visar
den sist nedtryckta tangenten som en hexadecimal siffra på en
sjusegmentsindikator.

Programmet ska delas upp i

� huvudprogram DisplayKbd.
� subrutin för tangentbordsinmatning, GetKey enligt föregående

uppgift.
� subrutin för utmatning av hexadecimal siffra (0..F16) på en

sjusegmentsindikator DispSeg7; jämför med Uppgift 16.9.

För DispSeg7 gäller att rutinen anropas med det hexadecimala värdet
(tangentkoden) i register A. Alla möjliga tangentkoder ska kunna
visas och det behövs därför ingen felkontroll.

� Skapa en ny källtextfil DisplayKbd.sflisp. Återanvänd kod
från tidigare uppgifter. Börja sedan med att komplettera
segmentskodtabellen med giltiga sjusegmentskoder för de
hexadecimala värdena A16 till och med F16.

� Utforma huvudprogrammet enligt flödesdiagrammet i marginalen
och färdigställ enligt följande.

; Symbolfält

Mnemonic/
direktiv Operand

SEGMENT7: EQU $FC

 ORG $20

DisplayKbd:

DisplayKbd_1:

 JMP DisplayKbd_1

GetKey: ... enligt tidigare...

DispSeg7:

 RTS

Segmentkod: FCB

 FCB

 FCB

� Kontrollera att programmet fungerar som avsett.

Flödesplan för 'DisplayKbd'

Decimal
siffra

Sju-segmentskod

 Binär
kod

Binär form Hex
form

0 0000 0111 0111 3F
1 0001
2 0010 0101 1011 5B
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

 Arbetsbok för DigiFlisp

175

16.2.11 Avbrott
FLISP initieras för avbrott genom att:

� Stackpekare initieras.
� En avbrottsrutin, speciellt konstruerad för den

avbrottsgenererande enheten, konstrueras.
� Avbrottsvektorn, dvs. adress FD16, initieras med adressen till

denna avbrottsrutinen.
� Processorns avbrottsmask, dvs. I-flaggan i CC-registret, nollställs

så att processorn accepterar ett avbrott då detta aktiveras.

Uppgift 16.19

I denna uppgift ska du konstruera en enkel applikation för användning
av avbrott.

� En DIPSWITCH ska anslutas till adress FC16 och två indikatorer
ska anslutas, HEXDISPLAY_1 till adress FB16 och HEXDISPLAY_2
till adress FC16.

� Huvudprogrammet ska konstrueras som en ”räknare” som hela
tiden räknar upp värdet hos HEXDISPLAY_2.

� En avbrottsrutin ska läsa data från omkopplaren och skriva värdet
till HEXDISPLAY_1.

� Skapa en källtextfil FlispIRQ.sflisp, implementera
applikationen.

; Symbolfält
Mnemonic/
direktiv Operand

DIPSWITCH: EQU $FC

HEXDISPLAY_1: EQU $FB

HEXDISPLAY_2: EQU $FC

 ORG $20

FlispIRQ:

FlispIRQ_1:

AtIrq:

 RTI

Flödesplan för avbrottsrutinen

Flödesplan för

huvudprogrammet

Arbetsbok för DigiFlisp

 176

För att testa funktionen använder vi en inbyggd simulatorfunktion för
att generera avbrottsignalen IRQ.

Avbrottet aktiveras genom att du klickar på
Interrupt request i monitorfönstret.

Då FLISP detekterar avbrottet lyser dioden
Request.

Då FLISP startar avbrottshanteringen tänds
dioden Acknowledge, samtidigt släcks dioden
Request.

Avbrottet deaktiveras då simulatorn utför
instruktionen RTI.

Testa programmet på följande sätt:

� Stega ett antal instruktioner så att initieringar i huvudprogrammet
har utförts några värden skrivits till HEXDISPLAY_2.

� Generera ett avbrott genom att klicka på interrupt request.
Observera att dioden interrupt pending ännu inte påverkas; det sker
först då nästa instruktion ska utföras (flanktriggad IRQ).

� Stega nästa instruktion, observera hur avbrottshantering inleds
och indikatordioden tänds. Stega igenom avbrottsrutinen och
notera hur indikatordioden släcks då RTI utförs.

Det är vanligt att yttre enheter kan generera avbrott. Exempelvis kan
tangentbordet fås att generera avbrott (IRQ) genom att menyvalet
Interrupts aktiveras.

Aktivering av tangentbordets avbrottsmekanism

Då avbrottsmekanismen hos tangentbordet är aktiverad kommer en
godtycklig tangentnedtryckning att signaleras till FLIS-processorns
avbrottssystem. Om även processorns avbrottsmekanism är aktiverad,
dvs. I-flaggan i CC-registret är 0, kommer avbrottet att betjänas.
Observera att avbrottssignalen är aktiv så länge någon tangent är
nedtryckt (nivåtriggad IRQ).

 Arbetsbok för DigiFlisp

177

Globala variabler

Överföring av data mellan avbrottsrutin och huvudprogram måste ske
via ett delat (”globalt”) minnesutrymme. Utrymme för globala
variabler skapas med assemblerdirektivet
 RMB <antal> ; Reserve memory bytes

där <antal> anger hur många bytes som ska reserveras.

För att exempelvis definiera och reservera utrymme för en global
variabel kbdBuffer som upptar 1 byte, skriver vi:
kbdBuffer: RMB 1

Vi kan sedan använda denna för att kommunicera data mellan den
avbrottsdrivna tangenbordsrutinen och huvudprogrammet.

Uppgift 16.20

I denna uppgift ska du konvertera programmet från

Flödesplan för huvudprogrammet

Flödesplan för den avbrottsdrivna
subrutinen

Arbetsbok för DigiFlisp

 178

Uppgift 16.18 för användning med avbrott. Båda subrutinerna GetKey
och DispSeg7 ska återanvändas i oförändrat skick.

� Skapa en ny källtextfil DisplayKbdIrq.sflisp.
� Kopiera subrutinerna GetKey och DispSeg7.
� Implementera det nya huvudprogrammet DisplayKbdIrq och

avbrottsrutinen GetKeyIrq enligt flödesdiagrammen i marginalen.
; Symbolfält

Mnemonic/
direktiv

Operand

 ORG $20

DisplayKbdIrq:

GetKeyIrq:

GetKey: ... som tidigare...

DispSeg7: ... som tidigare...

 ORG 0

kbdBuffer RMB 1

Glöm inte att aktivera tangentbordets avbrottsmekanism då du testar
programmet. Kontrollera funktionen och rätta eventuella fel

 Arbetsbok för DigiFlisp

179

16.2.12 Otillåten operationskod
Instruktionslistan innehåller ett fåtal otillåtna operationskoder. Då
FLISP försöker avkoda en sådan vidtar i stället undantagshantering
och i följande uppgift ser vi exempel på hur sådan kan utföras.

Uppgift 16.21

I denna uppgift ska du konstruera en hanteringsrutin för ”otillåten
operationskod”, som bestämmer och skriver ut den otillåtna
operationskoden till en HEXDISPLAY och därefter återupptar
exekveringen efter den otillåtna operationskoden.

� Skapa en källtext IllegalOp.sflisp.
� Färdigställ följande följande program där hanteringsrutinen

IllOpService är ofullständig. I rutinen har stacken följande
utseende:

Vid detta undantag pekar PC
på instruktionen omedelbart
efter den otillåtna
operationskoden.

; Symbolfält Mnemonic/

direktiv
Operand

HEXDISPLAY: EQU $FB

 ORG $20
IllegalOp: LDSP #$20
 LDX #IllOpService
 STX $FE
 NOP
 FCB $DF
 NOP
 FCB $EF
 NOP
 FCB $FF
 NOP
 JMP IllegalOp

IllOpService: LDX

 LDA

 STA HEXDISPLAY

 RTI

� Assemblera, rätta eventuella fel och ladda därefter till simulatorn.
Koppla en HEXDISPLAY till adress FB16.

� Testa programmet genom att stega instruktionsvis. Utskrifterna
ska i tur och ordning vara DF, EF och FF.

Arbetsbok för DigiFlisp

 180

16.2.13 RESET
Som sista övningsmoment ska du undersöka FLIS-processorns
återstartsförlopp.

Uppgift 16.22

Fortsätt arbeta med IllegalOp.sflisp. Placera startadressen till
programmet (symbolisk adress IllegalOp) på RESET-vektorns plats,
adress FF16 med hjälp av assemblerdirektiv enligt följande exempel.

; Symbolfält Mnemonic/

direktiv
Operand

HEXDISPLAY: EQU $FB

 ORG $20
IllegalOp: ... som tidigare

IllOpService: ... som tidigare

ORG $FF

FCB IllegalOp

� Assemblera programmet och rätta eventuella fel.
� Nollställ simulatorns minnesinnehåll (Clear memory).

� Ladda programmet till simulatorn.

� Återställ FLISP (”RESET”)

� Kontrollera att programräknaren PC nu innehåller programmets

startadress.

