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KOMPLEMENT TILL  

"ARBETSBOK FÖR DIGIFLISP" (BLÅ BOK) 

FÖR ANVÄNDNING MED NY PROGRAMVARA DIGIFLISP 9. 
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1  Transistorn som strömställare 
 

I detta första kapitel behandlar vi transistorn som en grundläggande 
byggsten. Vi kommer inte att beröra transistorns fysikaliska 
egenskaper dvs. ämnet halvledarteknik, utan enbart transistorns 
förmåga att uppträda som en strömställare.  Genom att studera några 
enkla transistorkopplingar kommer du samtidigt att bekanta dig med 
logikfunktioner som är centrala inom digitaltekniken.  

 

1.1 Spänningsnivåer och logikvärden 
Inom digitaltekniken arbetar man med två olika värden, 1 och 0. 
Dessa så kallade logikvärden (sanningsvärden) motsvaras i digitala 
elektronikkretsar av två olika spänningsnivåer: vi kallar dem här VDD 
respektive GND. Symbolen VDD används för att indikera en hög 
spänningspotential, och motsvarande logikvärde är 1. Symbolen 
GND, eller jordpotential, används för logikvärde 0. 

Omkopplarna anger en punkt som kan kopplas antingen direkt till 
VDD, eller direkt till GND  i signalvägen. Genom att klicka på en 
omkopplare kan du ändra dess läge och därmed logiknivån i en punkt 
i signalvägen.  

 
Uppåt, internt kopplad till VDD, logiknivå 1 

 Nedåt, internt kopplad till GND, logiknivå 0 

Signalnivåer kan avläsas på de små nivåindikatorerna som är 
placerade omedelbart i anslutning till signalvägen. På vissa ställen, 
vanligtvis utsignaler, används något större indikatorer. I DigiFlisp 
använder vi grön eller röd färg för att indikera VDD, logikvärdet 1, 
medan vi konsekvent använder ljusgrå färg för att indikera 
logikvärdet 0. 

 

Uppgift 1.1 

I Navigator|Contents, märk ditt val,  
 Transistor level | nMOS gates. 
genom att högerklicka, välj Open.  
Använd simulatorn och analysera följande kopplingar uppbyggda 
med NMOS-teknik. Komplettera funktionstabellerna.  

x u 

 

x y u x y u

0  0 0  0 0  
1  0 1  0 1  
  1 0  1 0  
  1 1  1 1  

 

 

 

jordpotential 
(GND) 

omkopplare 

nivåindikator 
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 Uppgift 1.2 

Vi studerar kopplingar i CMOS-teknik, välj denna gång 
Navigator|Contents:  
 Transistor level | CMOS gates. 
Identifiera nu följande kopplingar i simulatorn, analysera 
kopplingarna genom att variera logiknivåerna på ingångarna och 
iaktta logiknivåerna på utgångarna. Komplettera funktionstabellerna 
med utsignalernas logiknivåer (1 eller 0) för varje koppling.  

 

x u

0  
1  
  

  

 

 

x y u

0 0  
0 1  
1 0  

1 1  
 

 

x y u

0 0  
0 1  
1 0  
1 1  

 

 

x y u

0 0  
0 1  
1 0  

1 1  

 

 

x y u

0 0  
0 1  
1 0  

1 1  
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2  Grindar  
 

Grindar realiserar logikfunktioner och är de byggstenar vi använder 
för att illustrera större och större logikblock som så småningom 
resulterar i en komplett dator. 

2.1 Enkla grindar 
I simulatorns Navigator|Contents:  
 Combinatorics | Elementary logic functions  
finns grindar som realiserar de grundläggande logikfunktionerna.  

Omkopplarna kan du klicka på för att ändra nivåerna hos grindarnas 
ingångar. Ingångarnas nivåer kan avläsas på de små indikatorerna 
omedelbart till vänster om varje grind.  

Utgångarnas nivåer läser du av på de större indikatorerna till höger 
om respektive grind. 

Uppgift 2.1 

Välj: Navigator|Contents:  
 Combinatorics | Elementary logic functions  
Verifiera, med hjälp av simulatorn, logikfunktionerna som visas i 
Symbol-kolumnen i tabellen.  

� Fyll i funktionstabellen till höger. 
� Jämför  funktionstabellerna med dina resultat från  Uppgift 1.2 

och identifiera motsvarande CMOS-koppling  
(figur 1–5 i marginalen)  

� Ange slutligen grindens engelska namn (logiknamn). 
Symbol CMOS-

koppling 
(1-5) 

Grind 
(logiknamn) 

Funktionstabell 

 
  

x u 

0  

1  

 
  

x y u 
0 0  
0 1  
1 0  
1 1  

 
  

x y u 
0 0  
0 1  
1 0  
1 1  

 
 

VDD

x u

VDD

x

y

u

VDD

x

y
u

VDD

x

y
u

VDD

x

y

u

2

1

4

3

5
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2.2 Grindar med sammansatta logikfunktioner 
Grindar som kombinerar olika logikfunktioner är vanliga. Speciellt 
viktiga är de grindar som realiserar ”NOT-AND” (NAND) respektive 
”NOT-OR” (NOR). 

Funktionen NAND bildas genom att en INVERTERARE ansluts 
direkt till utgången på AND-grinden. Denna sammansatta funktion 
indikeras i symbolen för NAND genom att utgången försetts med en 
liten ring:  

 
På motsvarande sätt bildas funktionen NOR: 
 

 
Förutom kombinerade grindar kan vi också skapa grindar med flera 
ingångar som exempelvis en 3-ingångars NAND-grind.  

 

Uppgift 2.2 

Verifiera, med hjälp av simulatorn, (Combinatorics | Elementary logic 
functions) de sammansatta logikfunktionerna NAND och NOR.  

Fyll i funktionstabellen till höger, i kolumnen Grind logiknamn anger du 
symbolens engelska logiknamn och i kolumnen Boolesk funktion ger du 
det booleska uttrycket för utsignalen u.  

Symbol Grind 
logiknamn 

Boolesk 
funktion 

Funktionstabell 

 

  

x y u 
0 0  
0 1  
1 0  
1 1  

 

  

x y u 
0 0  
0 1  
1 0  
1 1  

 

  

x y z u 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

 

 
Logiskt  NOT-AND -  ”NAND” 

 

 
Logiskt  NOT-OR -  ”NOR” 
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"EXKLUSIVT ELLER" (XOR) är ett annat viktigt exempel på en 
grundläggande sammansatt logikfunktion. 

 

Uppgift 2.3 

Välj (Navigator|Contents):  

 Combinatorics | XOR-function  

Analysera symbolerna och använd simulatorn för att ge de svar som 
krävs för att komplettera följande tabell.  

Symbol Grind 
logiknamn 

Boolesk 
Funktion 

Funktionstabell 

 
  

x y u 
0 0  
0 1  
1 0  
1 1  

 
  

x y u 
0 0  
0 1  
1 0  
1 1  

 
 

 

XOR-funktionen kan realiseras på olika sätt, med hjälp av enkla 
grindfunktioner. Simulatorn vägleder dig i följande uppgifter. 

 

Uppgift 2.4 

Analysera följande koppling.  

 
Uttryck nu funktionerna A, B, C, D och u som booleska funktioner av 
insignalerna x och y. 

A=f(y)=��y B=f(x)=  x C=f(x,y)=  

D=f(x,y)=   u=f(x,y) =  

 

Använd simulatorn och studera nätets signaler (A,B,C,D och u) för 
olika insignaler x och y. Komplettera tabellen i marginalen och 
jämför med dina funktioner ovan. 
 

 

x y A B C D u 

0 0 1     
0 1 0     
1 0 1     
1 1 0     
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3  Kopplingsboxen 
 

I detta kapitel ges en introduktion till kopplingsboxen, och efter att ha 
arbetat igenom kapitlet kommer du att självständigt kunna koppla och 
analysera grindnät med varierande komplexitet. 

Välj Switchbox|New switchbox. 

Kopplingsboxen består av en arbetsyta som inledningsvis är tom. 
Genom att placera markören i det vita arbetsfältet och högerklicka, 
kan du välja någon av kopplingsboxens komponenter och därefter 
placera ut denna någonstans på arbetsytan.  

  

3.1 Inledande demonstration 
Uppgift 3.1 

Du ska börja med att verifiera de viktiga kommutativa lagarna inom 
boolesk algebra med hjälp av kopplingsboxen, se punkt 1 i figuren i 
marginalen. 

Det första sambandet säger att:  
 x×y = y×x  

dvs. att: 
 x AND y = y AND x 

Det krävs alltså nu två AND-
grindar, en för varje led. Välj  
Add component | Gates | 2-input AND 

Flytta nu ut markören i kopplingsboxens arbetsyta; du ska se 
komponentens siluett. 

Placera komponenten på arbetsytan genom att 
klicka på vänster knapp.  

 

x×y=y×x
x+y=y+x

x×x=0

(x+y)=(x×y)
(x×y)=(x+y)

Satser från boolesk algebra 
 

1. Kommutativa lagar 

  

2. Distributiva lagar   
 x×(y+z)=�x×y+x×z
 x+(y×z)=(x+y)×(x+z) 
 

3. x+0 = x 
 x×1 = x 
4. x+x=1

5. x+1 = 1 
 x×0 = 0 
6. x+x = x 
 x×x = x 
 

7. Associativa lagar  
  x+(y+z)=��x+y�+z

x×(y×z)=(x×y)×z
 

8. De Morgans lagar 

 

9. (x)=x

Multiplikationstecknet  (×)  utelämnas 
oftast där det inte kan missförstås  och vi 
skriver exempelvis enklare: 

 xy i stället för x×y  
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Komponenten ritas nu om och får dessutom små indikatorer som visar 
signalnivåer (0 eller 1) på ingångar och utgång. Varje ingång har ett 
litet "fönster" där du kan skriva in såväl konstanta värden, 0 eller 1, 
som något godtyckligt variabelnamn. För nya komponenter är detta 
värde alltid 0. Komponentens utgång har ett namn som bestäms av 
kopplingsboxen, i detta fall "u0". Du kan använda denna utsignal om 
du vill koppla utgången till en annan komponents ingång. 

Placera ut ytterligare en AND-grind. 

 

Du kan skapa oberoende variabler med hjälp av strömställare 
(switch). Placera ut två strömställare. 

 
Definiera nu två variabelnamn x och y genom att ange dessa i 
strömställarnas kontrollfönster (se marginalen). 

Variabelnamn som du har deklarerat på detta sätt kan nu användas 
som insignaler till komponenter i kopplingsboxen.  

 

Ge nu insignaler till de båda AND-grindarna genom att placera 
markören i det fönster som hör till ingången och skriva in namnet på 
den variabel som ska kopplas till ingången. 

 
Notera att den första grinden realiserar x AND y, medan den andra 
grinden realiserar y AND x. 

Det är nu dags att simulera kopplingen.  

Högerklicka någonstans i kopplingsboxens arbetsyta och välj Analyze 
(se marginalen). 

Nu händer flera saker: Fönster som tidigare kunde redigeras, blir grå 
och kan inte längre ändras. Du kan inte heller placera ut nya 
komponenter i detta läge. 

Menyvalet Analyze byter namn till Design. Du gör detta val för att 
återgå till det läge där du kan redigera din koppling. Dessutom har du 
menyvalet Clock, som vi strax återkommer till (se marginalen).  
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Du kan nu ändra de oberoende variablernas värden genom att klicka 
på strömbrytarena. För att verifiera den första kommutativa lagen 
(xy=yx) måste du undersöka de båda utsignalerna u0 och u1 för 
varje insignalskombination. Gör detta och fyll i följande tabell.  

 
 
 
 
 
 
 
 

 

Den andra satsen av de kommutativa lagarna säger att  x+y = y+x,  
vilket innebär att två OR-grindar ska användas. Du ska nu också 
verifiera sambandet �x�=x  genom att koppla samman två 
inverterare.  

 

Uppgift 3.2 

För att ändra eller bygga vidare på din koppling klickar du på Design. 
Du får då tillbaka de vita ändringsbara fälten. 

Placera ut två OR-grindar  på följande sätt: 

 
Om du har kvar dina AND-grindar och strömställare kommer OR-
grindarnas utgångar här att tilldelats signalnamnen u4 och u5 av 
kopplingsboxen. 

För varje kombination av insignaler, fyll i utsignalerna u4 och u5 i 
följande tabell: 

x y u4 u5 

0 0   
0 1   
1 0   
1 1   

Verifiera nu sambandet �x�=x   genom att koppla samman två 
inverterare enligt följande figur. Dvs. du kopplar samman utgången 
från den första inverteraren med ingången till den andra genom att 
skriva utsignalens namn i den andra inverterarens insignalfönster. 
Komplettera avslutningsvis följande tabell:  

 

 
 

 

x y u0 u1 

0 0   
0 1   
1 0   
1 1   

x �x� �x�
0   
1   

uX, namn på utgångssignaler 
som  tilldelas av kopplings-
boxen i den ordning kom-
ponenter sätts ut. De kallas 
också beroende variabler. 

Oberoende variabler är de 
(godtyckliga) variabelnamn du 
själv inför med hjälp av 
strömställare. 
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3.2 En översikt av kopplingsboxen 
Med kopplingsboxen kan du simulera enkla uppkopplingar av digitala 
nät. Du har 26 olika komponenter att välja mellan (se några exempel 
på symboler i marginalen). Du kan också använda upp till 16 
oberoende invariabler i form av strömställare.  

Kopplingsboxen har två olika lägen, för redigering eller simulering. 

Redigering – Här kan du placera ut komponenter på arbetsytan. En 
komponent kan ha en eller flera insignaler som måste definieras, 
insignalerna ska vara någon av: 

� Konstanten 1 

� Konstanten 0 

� uX (eller qX) utsignalen från någon komponent (X) i nätet 

� någon oberoende variabel, som du själv definierar  
genom att  placera ut en strömställare och skriva in 
variabelns symboliska namn i ett inmatnings-
fönster. Namnet får bestå av högst 4 ASCII-tecken 
som får vara A–Z och/eller 0–9. Första tecknet i 
variabelnamnet måste vara en bokstav. 

I redigeringsläget har alla inmatningsfönster vit bakgrund och 
innehållet kan ändras. Ändring av komponenters insignaler 
reflekteras dock först då kopplingsboxen försätts i simuleringsläge. 

Redigeringsläget tillåter också att du 

� Sparar kopplingen (Save drawing to file) 
� Laddar en tidigare sparad koppling (Load drawing from file) 
� Rensar arbetsytan (Clear drawing) 

 
Simulering – Då du är färdig med nätet, dvs. har placerat ut dina 
komponenter, redigerat insignalerna till varje komponent och 
dessutom definierat de oberoende variablerna du använder, väljer du 
du på Analyze. Kopplingen kontrolleras då och alla utsignaler bestäms. 
Du kan nu ändra oberoende variablers värden, genom att klicka på 
strömställare, och studera hur nätets tillstånd påverkas av dessa.  
Du kan inte ändra innehållet i ett inmatningsfönster (dessa är grå). I 
simuleringsläget kan du inte heller lägga till eller ta bort 
komponenter, du måste återgå till redigeringsläget för att göra detta. 
 
Vill du flytta eller ta bort en komponent, högerklickar du med 
markören över komponenten. Detta gäller både redigerings- och 
simuleringsläge. 
 
 
Klocksignal – Några komponenter har en 
klockingång C. I simuleringsläge kan du generera en 
(gemensam) klocksignal för dessa komponenter 
genom att klicka på Clock. Klocksignalen har ingen 
inverkan på komponenter utan klockingång. 
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Uppgift 7.3 

Starta kopplingsboxen, placera ut 4 st. 8-ingångars väljare så att deras 
respektive utgångar får namnen, u0, u1 u2 och u3. Definiera 
funktionssignalerna f2, f1 och f0, samt för in dessa hos respektive 
väljare: 

 
Spara kopplingen under filnamnet alu4.tb. Spara kopplingen 
fortsättningsvis allt eftersom du bygger vidare på ALU:n. 

 
 
Vi börjar implementera ALU:ns funktioner, dvs. bilda insignaler för 
väljarnas ingångar. För dessa funktioner väntar vi tills vidare med att 
bilda flaggorna N,Z,V och C. 
 

 Uppgift 7.4 

Implementera funktionerna 0 t.o.m 3, dvs följande: 

funktion operation utsignaler 
f2 f1 f0 RTN u3 u2 u1 u0 
0 0 0 U=0 � U 0 0 0 0 
0 0 1 U=D � U d3 d2 d1 d0 
0 1 0 U=D1k � U d3 d2 d1 d0 
0 1 1 U=D�E d3�e3

 d2�e2
 d1�e1

 d0�e0
 

Placera komponenterna så tätt som möjligt... 

 
Fortsätt nu med att även definiera insignalerna d3, d2, d1 och d0, 
respektive e3, e2, e1 och e0 och slutligen cin.  
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9  Transmissionsgrinden  
 

Vi inför här två nya logiknivåer (högimpedanstillstånd och 
odefinierat tillstånd) som kan uppträda i nät där vi vill koppla 
samman utgångar från två eller flera olika kretsar. 

De olika logiknivåerna illustreras i simulatorn enligt följande: 

 Röd, kopplad till VDD, logiknivå '1' 
 Grå, kopplad till GND, logiknivå '0' 

 
Vit, högimpedanstillstånd, inte kopplad till vare sig VDD 
eller GND, logiknivå 'Z' 

 
Svart, odefinierat tillstånd. Punkten utgör en 
kortslutning mellan VDD och GND, logiknivå 'X'.  

 

Uppgift 9.1 

Välj Transistor level | CMOS transmission gate.  

Figuren till höger visar hur en signal A kopplas via en transmissions-
grind, styrd av signalen EN, till punkten U. Undersök logiknivån i 
punkten U och fyll i följande funktionstabell:  
 

A EN U 
0 0  
1 0  
0 1  
1 1  

 
I figuren till höger visas hur två oberoende signaler A och B kopplas 
samman i punkten O, via var sin transmissionsgrind. Undersök 
kopplingen och fyll i följande tabell med de resulterande 
logiknivåerna. 
 

A B OEA OEB O 
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
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10  Registeröverföring  
 

Vi har tidigare sett hur en ALU fungerar, hur data kan lagras i 
minneselement som vi med ett gemensamt ord kan kalla register, hur 
vi kan skriva nya data till ett sådant register och hur vi kan läsa från 
registret. Vi ska nu också se hur flera register kan kopplas samman 
via bussar och därmed påbörja konstruktion av en dataväg. 

Med hjälp av datavägen och ALU:n ska registerinnehåll kunna 
bearbetas på olika sätt. Data måste därför kunna överföras till och 
från  ALU:n där den egentliga bearbetningen utförs. Därför studerar 
vi först hur data kan flyttas runt i datavägen från ett register till ett 
annat register via en databuss. För ändamålet krävs ett antal 
styrsignaler; vi kallar detta registeröverföring. 

Styrsignalerna talar om varifrån data hämtas och vart data ska 
placeras. Något oegentligt kallas detta ofta att ”flytta” data. Det är 
inte det som händer, utan egentligen kopierar vi data från ett ställe 
(källan) till ett annat ställe (destinationen). Styrsignaler kan genereras 
på olika sätt, och vi återkommer till detta längre fram. Tills vidare 
anger vi styrsignaler i tabellform med penna och papper eller klickar 
på olika symboler i simulatorn. 

En koppling för överföring av data mellan olika register visas i Figur 
10.1 nedan. Observera hur ingångar och utgångar förbinds med en 
enda buss för att vi ska kunna flytta data från ett register till ett annat. 

 

Figur 10.1  Dataöverföring mellan register via en buss 

Vi ska nu studera hur kopiering av data från ett register till ett annat 
går till. När man vill flytta (kopiera) data från ett register måste 
registrets OE-signal aktiveras. För registret, vars innehåll ska 
modifieras, måste LD-signalen aktiveras. Om vi, som exempel, vill 
kopiera data som finns i register R till register A måste följande 
styrsignaler ges:  
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� OER = 1 Innehållet i register R kopplas till bussen via three-state-
bufferten. Därmed finns det på ingångarna till samtliga register. 

� LDA = 1 Vid nästa positiva klockpulsflank laddas register A med 
det som finns på bussen och får samma innehåll som register R. 

RTN för operationen är: 

R � A  (= innehållet i register R kopieras till register A) 

Då signalerna OER och LDA är aktiva, verkställs dataöverföringen vid 
nästa positiva klockpulsflank. Lägg märke till att alla enheter i 
systemet är anslutna till samma klocksignal CP; alla register klockas 
följaktligen samtidigt. Operationen beskrivs också i form av 
styrsignaler för datavägen i följande tabell. Samtliga styrsignaler med 
värdet 1 i raden aktiveras under en klockcykel. En rad i tabellen avser 
alltså en klockcykel.  

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

0 0 0 0 1 1 0 0 0 R � A 

Uppgift 10.1 

Styrsignaler för enkel dataväg 

Fyll i styrsignalvärdena för överföringen A � R i följande tabell. 

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

         R � A 
 

 

Uppgift 10.2 

Styrsignaler för enkel dataväg 

Fyll i styrsignalvärdena för överföringarna: 

  A � T, B � A , T � B  (A�B) 
i följande tabell. 

OES OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

         A � T 

         B � A 

         T � B 
 

 

Uppgift 10.3 

Välj alternativet Datapath | Register transfer. 

 
 

Exempel på RTN-symboler, fullständig 
tabell finns i appendix 
Nr Konstanten N uttryckt i 

talbasen r.  
M(Nr) Minnesinnehåll på adressen Nr 
� Kopiering 
Följande symboler är beteckningar som 
reserverats för register 
A Register A 
T Register T 
R Register R 
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Figur 10.2 Dataöverföring mellan register 

Simulatorns Register transfer, Figur 10.2 visar en dataväg, ett antal 
register (A, B, T och R), en Data source modul (Source) och en Bus
display modul (Display). Respektive moduls styrsignaler (LD, OE) kan 
sättas till 0 eller 1 med strömställarna i den manuella styrenheten.  

Genom att klicka på brytaren Clock ger du en signal på samtliga 
klockingångar (CP) vilket då försätter kretsen i ett "nästa tillstånd". 

Raden Previous visar indikatorer för att hjälpa dig minnas hur du 
ställde styrsignalerna innan du klickade på Clock. En klickning på 
klockpuls innebär att nätets aktiverade register klockar in det som för 
tillfället finns på bussen.  

1. Observera att bussens värde FF16 visas i Display-modulen. Detta 
kan tolkas som att bussen är i högimpedanstillstånd och att ingen 
enhet för tillfället lägger ut något värde på bussen.  

 

2.  Skriv in 2716 i Source-modulen. Enklast är att märka upp 
siffrorna i fönstret med musen och sedan skriva in ett nytt värde.  

 

 

3. Aktivera nu styrsignalen OES (klicka på symbolen för 
strömställaren) och.... 

 

 

4. ...notera hur  transmissionsgrinden för Source-modulen aktiveras 
och att bussens värde 2716 nu också visas på Display-modulen. 

 

 

 

Display 
Visar bussens värde 

Source 
Modul för att kunna ge bussen olika värden 

Klockpuls 
Ger klocksignal i hela kretsen 

Transmissionsgrindar 
"Three-state"-buffertar,  för att placera ett 
registerinnehåll på bussen 
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5. Klicka på Clock .... 

 

... notera hur OES-signalens indikator ”föregående” styrsignal nu 
tänds. Detta har ingen annan praktisk betydelse än att hjälpa dig 
komma ihåg vilka signaler som var aktiva vid den senaste 
klockpulsen.  
 

6. Aktivera nu även LDA och observera hur de aktiva styrsignalerna 
märks ut.  

 
 

7. Ge slutligen ytterligare en klockpuls: Vad innehåller register A? 

 
 

 

För att flytta runt data mellan de olika registren krävs alltså att man 
först ställer in lämpliga styrsignaler, och därefter verkställer 
dataflyttningen med en klockpuls. Använd nu simulatorns Register 
transfer och lös följande uppgifter. 

 

Uppgift 10.4 

� Sätt signalen OES till 1  
� Ändra innehållet i Source-modulen  
� Observera vad som händer på bussen via Display-modulen. 

Ställ nu in värdet 3816 i Source-modulen, aktivera signalen LDR. 
Händer det något med innehållet i register R? 

 
Ge en klockpuls: Hände det nu något med innehållet i register R? 

 
Ge en RTN-beskrivning av operationen. 
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Uppgift 10.5 

Värdet 7116 kan placeras i samtliga register A, T och R under en 
klockcykel. Ge en RTN-beskrivning av operationen 

 
Ange det nya värdet i Source-modulen samt de styrsignaler som måste 
aktiveras för operationen. 

Source OES OEA OEB OET OER LDA LDB LDT LDR

Kontrollera din lösning med hjälp avsimulatorn. 
 

Uppgift 10.6 

Du ska nu undersöka vad som händer om du aktiverar två (eller flera) 
OE-signaler samtidigt.  

Placera värdet 5C16 i register A och värdet 2116 i register T. Lägg ut 
båda dessa registerinnehåll till bussen genom att aktivera signalerna 
OEA och OET, och studera bussens värde i displaymodulen.  

Vilket resultat får du?  

Vad kan dra för slutsatser om bussens värde då flera moduler 
samtidigt driver bussen (skriver ut på bussen)? 

 
 

 

5316�A, 2116�T 
OEA ; OET 
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11  Dataväg med ALU 
 
I detta kapitel kompletteras den enkla datavägen vi hittills använt oss 
av med en ALU. Med vår modifierade arkitektur, se Figur 11.1, och 
den enkla manuella styrenheten i Figur 11.2, ska vi nu utföra enklare 
databearbetningar som en sekvens operationer kontrollerade av 
styrsignaler från styrenheten. I detta kapitel studerar vi alltså speciellt 
ALU:ns användning i datavägen.  

 

 
Figur 11.1 Dataväg med ALU och dess funktionstabell 

Figur 11.2 Manuell styrenhet för dataväg med ALU 

”Fjädrande” strömbrytare för nollställning, 
återställning och klockpuls 

11 uppsättningar tvåvägs omkopplare för 
styrsignaler. 

Varje uppsättning (steg) motsvarar en 
klockpuls. 

Den manuella styrenheten kan därför 
utföra ”program” om maximalt 11 
klockpulser. 

Längst ut till vänster finns en indikator 
som är aktiv (röd) för det steg som står i 
tur att utföras. 

För varje steg finns också en Source-
modul som kan användas för att ge 
indata i steget. 
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Ett program för den enkla datavägen är helt enkelt en beskrivning av 
hur styrsignalerna ska aktiveras i någon bestämd sekvens. 
Styrsignalsekvensen måste följaktligen utformas speciellt för varje 
enskild operation man vill att processorn ska kunna utföra. Följande 
generella ”blankett” kan användas för att ”programmera” den 
manuella styrenheten i en följd av steg, dvs. en sekvens, för en 
operation.  

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0 

 1     
 2     
 3     
 4     
 5     
 6     
 7     
 8     
 9     
 10     
 11     

För varje steg anges styrsignaler för registeröverföringar (OE och LD), 
det finns möjlighet att ange konstanter i operationer och koppla in 
dessa i datavägen via Source-fältet. Det har också tillkommit 
styrsignaler samt en ”carry in”-signal för ALU:n.  

Vi illustrerar hur blanketten fylls i med att konstruera två olika 
styrsignalsekvenser  för operationen: 

 0�A 
dvs. nollställ innehållet i register A. 

Metod 1: använd Source-fältet, vars register initieras till 0: 

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0 

0�A 1 00 1 0 0 0 1 0 0 0 0 0 0 0 0 

Metod 2: använd ALU’ns funktion för bitvis nollställning: 

RTN steg Source OES OEA OEB OER LDA LDB LDT LDR Cin f3 f2 f1 f0 

0�R 1 xx        1  0 0 0 0 
R�A 2 xx    1 1         

Av skäl som vi ska återkomma till bör vi alltid välja lösningar som 
utnyttjar ALU:n snarare än Source-fältet där sådana lösningar är 
möjliga. 

Under resten av detta kapitel kan du nu självständigt konstruera 
styrsignalsekvenser för en rad olika operationer som kan utföras på 
dataväg/ALU med denna enkla manuella styrenhet. Välj Datapath | 
Datapath with ALU. 
Du kan spara en styrsignalsekvens genom 
att högerklicka, välj Save control, och ange 
ett filnamn. 

Återställ en tidigare sparad 
styrsignalsekvens genom att högerklicka,  
välja Load control, och ange dess filnamn. 

  

Exempel på RTN-symboler, fullständig 
tabell finns i appendix 
Nr Konstanten N uttryckt i talbasen 

r.  
M(Nr) Minnesinnehåll på adressen Nr 
� Kopiering 
Följande symboler är beteckningar som 
reserverats för register 
A Register A 
B Register B 
T Register T 
R Register R 
Operatorer 
+ Addition 
- Subtraktion 
� Logiskt ”OCH” (AND) 
� Logiskt ”ELLER” (OR) 
� Logiskt ”EXKLUSIVT ELLER” 

(XOR) 
Opr<<d ”Opr” skiftas vänster. Biten d 

skiftas in i den minst signifikanta 
positionen. 

d>>Opr ”Opr” skiftas höger. Biten d 
skiftas in i den mest signifikanta 
positionen. 

Opr’ Bitvis komplementering av 
operanden ”Opr” 

 

Fält där vi utelämnar 
styrsignal 0 eller 1, ska 
betraktas som signalen 0. 

För att vara så tydliga som 
möjligt kan vi alltså välja 
om vi vill skriva ut nollan 
eller ej. 

xx betyder ”don’t care”.  
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12  Dataväg med flaggregister och 
minne 

Vi har hittills bara kunnat utföra operationer på ett fåtal variabler 
lagrade i datavägens arbetsregister A eller B. Nu utökar vi datavägen 
med en minnesmodul som utökar kapaciteten till operationer med en 
mängd olika variabler som då är lagrade i minnet, det är nu 
tillräckligt med ett arbetsregister och vi tar därför bort register B.  

 
För att kunna adressera minnet har vi infört det speciella registret TA 
(temporary address). Vi har också lagt till logik för att kunna välja 
Cin-funktionen till ALU:n med hjälp av styrenheten. Styrsignalerna g0 
och g1 tillkommer för detta ändamål. Ett nytt register CC (condition
codes) tillsammans med en väljare och ytterligare styrsignaler g2 
t.o.m. g9  används för att samla ihop ALU:ns flaggor. 

 
Den manuella styrenheten har kompletterats med strömställare för de 
nya styrsignalerna. Vi använder också en utökad ”blankett”, med 
följande kolumner, vid programmering av den nya styrenheten. 

RTN steg Source OES OEA OER OECC LDA LDT LDTA LDR LDCC f3 f2 f1 f0 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 MR MW

                  

Exempel på RTN-symboler; fullständig 
tabell finns i appendix 
Nr Konstanten N uttryckt i 

talbasen r.  
M(Nr) Minnesinnehåll på adress Nr 
M[Nr] Indirektion: = M(M(Nr)) 
� Kopiering 
Följande symboler är beteckningar som 
reserverats för register 
A Register A 
T Register T 
R Register R 
TA Register TA 
CC Register CC 
Operatorer 
+ Addition 
- Subtraktion 
� Logiskt ”OCH” (AND) 
� Logiskt ”ELLER” (OR) 
� Logiskt ”EXKLUSIVT ELLER” 

(XOR) 
Opn<<d ”Opn” skiftas vänster. Biten d 

skiftas in i den minst 
signifikanta positionen. 

d>>Opn ”Opn” skiftas höger. Biten d 
skiftas in i den mest 
signifikanta positionen. 

Opn’ Bitvis komplementering av 
”Opn” 

Tabellen med RTN-koder har 
kompletterats med symboler 
för registren TA och CC.
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12.1 Simulatorns minnesmodul 
Simulatorns minnesmodul har plats för 256 st. 8-bitars dataord. 
Styrsignalerna MW (Memory Write) och MR (Memory Read) används 
för att skriva till, respektive läsa från minnet. MW-signalen är 
synkron, dvs. skrivning till minnet sker vid klockpuls om MW är 
aktiv. MR-signalen är asynkron, dvs. då MR aktiveras kopplas en 
minnescell omedelbart direkt till bussen. Detta kan jämföras med 
registrens OE-signaler. 

För att underlätta användningen av simulatorns minnesmodul kan 
man skriva in data i minnet på ett förenklat sätt. Minnet har två små 
”fönster”. ”Adress”-fönstret anger adressen till den minnescell som 
för tillfället adresseras, minnescellens innehåll visas i ”Data”-fönstret. 

Uppgift 12.1 

Placera värdet 1516 i minnescell på adress 1016. Med RTN skriver vi 
denna operation som: 
  1516 � M(10 16) 
Använd ”rullningslisten” hos minnesmodulen 
för att bläddra fram adressen. 

 

 

 

 

”Dubbelklicka” i ”Data”-fönstret.  

 

 

 

 

Skriv in det nya värdet.  

 

 

 

Metoden är lämplig att använda då man snabbt vill modifiera 
minnesinnehållet för att kunna testa någon programmerad 
minnesoperation. 

 

 

12.2 Läscykeln 
Minnet kan adresseras via datavägens TA-register. 

En läscykel går till på följande sätt: 
1. Minnesadress placeras i TA 
2. MR-signalen aktiveras. 

Om den aktuella adressen inte inte redan finns i TA-registret så kräver 
läscykeln alltså ett extra steg än om vi läser data från ett register i 
datavägen. 
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13.6 Konstruktion av sekvensierare för FLISP 
I detta avsnitt ska en räknare med två styrsignaler konstrueras. 
Maskinen konstrueras med D-vippor och enkla grindar. Vi kommer 
att använda maskinen som sekvensierare i styrenheten i nästa kapitel.  

 

Uppgift 13.7 

I denna uppgift ska du konstruera en något mer komplex 
tillståndsmaskin. Maskinen har 16 olika tillstånd. 

� Räknesekvensen är 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0... 
� Den asynkrona signalen RESET = 1 sätter maskinen i tillstånd 0 

oavsett vilket tillstånd maskinen befinner sig i. 
� Den synkrona signalen NF=1 sätter maskinen i tillstånd 3 om 

maskinen befinner sig i något av tillstånden Q4 t.o.m Q15. 

Följande tillståndsgraf beskriver då maskinen: 

 

 
Eftersom vi här har fem oberoende variabler men våra 
Karnaughdiagram bara låter oss hantera fyra variabler åt gången delar 
vi upp konstruktionen i två steg.  

Under det första steget bestämmer vi konstruktionen för NF=0, dvs en  
en autonom räknare med den angivna räknesekvensen. Detta ger oss 
fyra Karnaughdiagram för att bilda vippornas insignaler. 

I nästa steg bestämmer vi konstruktionen för NF=1, vilket ger oss fyra 
nya Karnaughdiagram med ytterligare insignaler som ska adderas till 
de tidigare.  

Därmed har vi bestämt maskinens synkrona beteende. 

 

Börja med att bestämma d-funktionerna i följande följande tabell. 
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Nuvarande tillstånd  Nästa tillstånd 

NF q3 q2 q1 q0 d3 d2 d1 d0 q3+ q2+ q1+ q0+ 
0 0 0 0 0     0 0 0 1 
0 0 0 0 1     0 0 1 0 
0 0 0 1 0     0 0 1 1 
0 0 0 1 1     0 1 0 0 
0 0 1 0 0     0 1 0 1 
0 0 1 0 1     0 1 1 0 
0 0 1 1 0     0 1 1 1 
0 0 1 1 1     1 0 0 0 
0 1 0 0 0     1 0 0 1 
0 1 0 0 1     1 0 1 0 
0 1 0 1 0     1 0 1 1 
0 1 0 1 1     1 1 0 0 
0 1 1 0 0     1 1 0 1 
0 1 1 0 1     1 1 1 0 
0 1 1 1 0     1 1 1 1 
0 1 1 1 1     0 0 0 0 
1 0 0 0 0     0 0 0 1 
1 0 0 0 1     0 0 1 0 
1 0 0 1 0     0 0 1 1 
1 0 0 1 1     0 1 0 0 
1 0 1 0 0     0 0 1 1 
1 0 1 0 1     0 0 1 1 
1 0 1 1 0     0 0 1 1 
1 0 1 1 1     0 0 1 1 
1 1 0 0 0     0 0 1 1 
1 1 0 0 1     0 0 1 1 
1 1 0 1 0     0 0 1 1 
1 1 0 1 1     0 0 1 1 
1 1 1 0 0     0 0 1 1 
1 1 1 0 1     0 0 1 1 
1 1 1 1 0     0 0 1 1 
1 1 1 1 1     0 0 1 1 

 

Fyll därefter i Karnaughdiagrammen på nästa sida. 
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d3 (NF=0) q1 q0 d2 (NF=0) q1 q0 

 
 

q3 q2 

 00 01 11 10  
 

q3 q2

 00 01 11 10 

00     00     

01     01     

11     11     

10     10     

d1 (NF=0) q1 q0 d0 (NF=0) q1 q0 

 
 

q3 q2 

 00 01 11 10  
 

q3 q2

 00 01 11 10 

00     00     

01     01     

11     11     

10     10     

        

d3 (NF=1) q1 q0 d2 (NF=1) q1 q0 

 
 

q3 q2 

 00 01 11 10  
 

q3 q2

 00 01 11 10 

00     00     

01     01     

11     11     

10     10     

d1 (NF=1) q1 q0 d0 (NF=1) q1 q0 

 
 

q3 q2 

 00 01 11 10  
 

q3 q2

 00 01 11 10 

00     00     

01     01     

11     11     

10     10     
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Ange de minimerade funktionerna på boolesk form och, observera: 

 NF=0  NF=1 

d3 =  +  

d2 =  +  
d1 =  +  
d0 =  +  

 

förenkla tills endast AND- och XOR-grindar används i uttrycken 

 

 NF=0  NF=1 

d3 =  +  

d2 =  +  
d1 =  +  
d0 =  +  

 

Koppla upp räknaren i kopplingsboxen. 

� Använd komponenten Hex-sifferindikator för att kontrollera 
räknesekvensen. 

� Spara kopplingen, den ska strax utökas. 

 

 

 

Vi tar nu hand om den asynkrona signalen RESET genom att "skjuta 
in" ett kombinatoriskt nät där såväl våra d-funktioner som RESET-
signalen ingår. Utsignalerna D3, D2, D1 och D0 från detta nät kopplas nu 
till vippornas ingångar i stället  för d3, d2, d1 och d0 från det första 
konstruktionssteget. 

 
 

Följande skiss visar en koppling för hela tillståndsmaskinen. 
Observera att uttrycken för d-signalerna här har förenklats för 
användning av XOR-grindar. 

Jämför med dina egna uttryck från den inledande uppgiften. 

Färdigställ skissen genom att skriv in- och utsignalsnamn i anslutning 
till de komponenter som saknar dessa.  

 

  Arbetsbok för DigiFlisp  

95

 
 

 

Koppla slutligen upp maskinen i kopplingsboxen och kontrollera 
funktionen med avseende på räknesekvens och insignalerna. 

Spara filen under namnet  FlispStateMachine.tb. 
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14 Den automatiska styrenheten 
 

I detta kapitel arbetar vi med FLIS-processorn och dess automatiska  
styrenhet. Simulatorn omfattar två fönster, FLISP:s dataväg och ett 
fönster för att skapa instruktioner för FLISP. 

Välj: Control | FLISP datapath. 

 
Strömställarnas funktioner: 

Control: 
� reset – asynkron, återställ sekvensieraren till Q0 
� NF – utför upprepade klocksignaler tills nästa tillstånd är Q3, 

uttryckt på ett annat sätt, utför en hel instruktion 
� clk – ge en klocksignal till datavägen. 

Memory data: 

� display/modify – i läge display, visas innehållet på den adress som 
anges av indikator Address, på indikator Data.  
I läge modify kan innehållet på adressen ändras med hjälp av 
vippströmställarna D7-D4 och D3-D0 

� D7-D4, D3-D0 används för att ställa in Data i modify-läge 
� set – innehållet som visas på Data skrivs till adressen som anges 

av Address. 
Memory address: 

� auto/manual, i läge auto visar Address den adress som bildats från 
multiplexer med styrsignal g14, i läge manual kan adressen ändras 
med hjälp av  vippströmställarna A7-A4 och A3-A0 

� A7-A4, A3-A0 används för att ställa in Address i manual-läge. 

Menyer: 

� File | Load, används för att ladda innehåll till primärminnet 
� Control store | FLISP control enabled, aktivera styrenhetens FLISP-

instruktioner. 
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Datavägens menyval: 

File | Load – ladda en fil med fmem (flisp memory) format till 
datavägen. Formatet är textbaserat och en fil kan enkelt skapas med 
en textredigerare. Formatet utgörs av direktiv till datavägen. Varje 
direktiv inleds på ny rad med tecknet ’#’, rader som inleds med annat 
tecken tolkas som kommentarer. Följande direktiv kan användas: 
#ClearAllMemory Nollställ primärminne 
#ClearAllRegisters Nollställ alla register 
#SetMemory ADR=VÄRDE Initiera minnescell, ADR och VÄRDE anges på 

hexadecimal form 
#SetRegister REG=VÄRDE REG kan vara något av: A,T,X,Y,PC,SP,TA,R,CC 

eller I. VÄRDE anges på hexadecimal form 

 

Control store | FLISP control enabled – Datavägen kan konfigureras att 
använda en komplett styrenhet för FLISP, nya instruktioner måste då 
ha någon av de odefinierade operationskoderna 03,04,DF eller EF. I 
normalfallet är denna funktion deaktiverad och vi måste då 
tillhandahålla alla styrsignalsekvenser. 

Instruction builder används för att skapa styrsignalsekvenser för 
instruktioner som kan utföras av FLIS-processorns styrenhet. 

Välj: Control | FLISP instruction builder. 

 

Instruction builders menyval 

Clear – all styrsignalinformation raderas 

Load – styrsignalinformation laddas från fil med fcs-format.

Save – styrsignalinformation sparas  som fcs-format. 

Save as – spara styrsignalinformation till en fil som fcs-format. 

Export – spara styrsignalsinformation i form av C-kod.  

Exit – stäng Instruction Builder. 

 

Filer för datavägen har 
ändelsen fmem (FLISP
memory).  

Filer för Instruction
builder har filnamns-
ändelsen fcs (FLISP
control state). 
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14.1 Styrenheten i FLISP 
Instruction builder används för att redigera och testa instruktioner. 
För instruktionsexekvering bildas styrsignalerna som en kombination 
av tillstånd (betecknas Q) och operationskod (betecknas Opcode). För 
att implementera villkorliga instruktioner krävs också att 
statusflaggorna från CC (N,Z,V,C) finns tillgängliga i styrenheten.  

I styrenheten har de Booleska funktioner som krävs för de villkorliga 
instruktionerna implementerats med kombinatoriska nät. Utsignaler 
från dessa nät finns tillgängliga i sektionen Condition.  

Vi känner igen styrsignalerna som nu ska genereras automatiskt. Det 
har dock tillkommit ytterligare en signal,  NF (New Fetch) som anger 
att en ny instruktion ska hämtas i minnet. 

 
Figur 14.1 Översikt av automatisk styrenhet 

Det kombinatoriska nätet utformas för att generera de summatermer 
som används för att aktivera de olika styrsignalerna för olika 
kombinationer av tillstånd och operationskod. En summaterm är alltså 
en produkt av en operationskod hämtad från instruktionsregistret och 
ett specifikt tillstånd hämtad från räknaren. 

 
Figur 14.2 Illustration av styrenhetens kombinatoriska nät 

Observera 

Förväxla inte 
styrsignalen NF med 
datavägens funktion för 
att utföra en hel 
instruktion. 
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Styrenhetens funktioner kan indelas i tre olika faser: 

Återställningsfas (RESET): FLISP återställes genom att en startadress 
läses från RESET-vektorn (adress FF16) i minnet och placeras i 
programräknaren PC.  

Hämtfas (FETCH): Innehållet på adress PC läses och placeras i 
instruktionsregistret I, PC ökas med 1. 

Exekveringsfas (EXECUTE): varje instruktion har en unik 
styrsignalsekvens som ska genereras under respektive exekveringsfas. 
Då exekveringsfasen utförts ska PC ha uppdaterats så att den 
innehåller adressen till nästa instruktion i minnet. 

 

Observera att styrsignalsekvenserna för RESET och FETCH är 
oberoende av operationskoden.  

Observera också att exekveringsfasen alltid måste avslutas med att 
generera NF för att starta nästa instruktionshämtning. Om 
tillståndsmaskinen klockas ur tillståndet Q15 utan att NF-signalen 
genererats kommer FLISP att återstartas (RESET). 

 
Figur 14.3 Tillståndsgraf för styrenheten 

 

14.1.1 Styrsignalsekvens för RESET-fasen 
Återställningsfasen utförs under tre steg och representeras av de tre 
tillstånden Q0, Q1 och Q2. 

 
Tillstånd 

 
Summa-

term 
RTN- 

beskrivning  
Styrsignaler Kommentarer 

Q0 (Q0�1) (FF)16�R f1=1; f0=1; 
 
LDR=1 

ALU-funktionen väljs så att talet FF16 finns på ALU:ns utgång, dvs. funktionskod 3, 
ALU-funktion = (0011)2.  
Laddingången på R-registret ettställs så att utvärdet från ALU:n FF16 laddas i R-
registret vid nästa klockpuls. 

Q1 (Q1�1) R�TA OER=1; 
LDTA=1;  

Talet FF16 i R-registret kopplas ut på bussen. 
Talet FF16 på bussen laddas i temporäradressregistret vid nästa klockpuls. 

Q2 (Q2�1) M�PC MR=1; 
g14=1; 
LDPC=1; 

Minnesinnehållet på adress FF16 läses genom att minnet aktiveras för läsning.  
Temporäradressregistret adresserar minnet 
Det dataord som läses placeras i PC vid nästa klockpuls. 

 

Vi kan nu börja skapa summatermer för styrsignalerna genom att först 
identifiera de signaler som ska aktiveras vid tillståndssignal Q0. Av 
tabellen ovan framgår att dessa är f1, f0  och LDR. 

Dessa signaler ska aktiveras oavsett vad som finns i 
instruktionsregistret. AND-villkoret blir därför här: 

 

återställningsfas�
(RESET)�

������	�
���

��
����

������������

��
����

������������


�
��
����

hämtfas�
(FETCH)�

exekveringsfas�
(EXECUTE)�

�����
spänningstillslag�
eller�återstart�
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Denna summaterm skrivs alltså Q0�1, vilket är samma sak som Q0. Vi 
påför därför Q0-signalen på ELLER-grindarna för de tre 
styrsignalerna: 

 
Figur 14.4 Bidrag till f1, f0 och LDR från RESET-fasen 

 

På samma sätt ska styrsignalerna OER och LDTA aktiveras i tillstånd Q1: 

 
Figur 14.5 Bidrag till OER  och LDTA  från RESET-fasen 

 

och slutligen styrsignalerna MR, g14 och LDPC för tillstånd Q2. 

 
Figur 14.6 Bidrag till MR, g14 och LDPC  från RESET-fasen 

Vi övergår nu till simulatorn. 

Uppgift 14.1 

Skapa styrsignaler för RESET-fasen i den automatiska styrenheten. 

1. Aktivera styrsignalerna LDR f0 och 
f1 för tillståndsterm Q0 

 

 

 

 

2. Aktivera styrsignalerna OER och 
LDTA för tillståndsterm Q1 

 

 

 

 

3. Aktivera styrsignalerna MR, g14 och 
LDPC för tillståndsterm Q2  
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Det är nu dags att prova 
återställningssekvensen. Växla 
Instruction builder till Test-funktion. 

 

 

 

 

 

 

Lägg in värdet 2016 i RESET-vektorn  (adress FF16). 

 

 

 

 

Återställ FLISP genom att klicka på datavägens reset-omkopplare. 
Tillståndsindikatorn (Q-states) indikerar nu tillståndet Q0. Observera 
datavägen, speciellt de signaler som ska vara aktiva i tillstånd Q0.  

Ge styrenheten en klockpuls genom att klicka på omkopplaren CP.  
Kontrollera de aktiva signalerna i datavägen, nu för tillståndet Q1. 

Ge ytterligare två klockpulser så att RESET-fasen slutförs och 
FETCH-fasen inleds. Tillståndsindikatorn visar då tillstånd Q3. 
Kontrollera att adressen 2016 nu finns i PC. 

 

14.1.2 Styrsignalsekvens för FETCH-fasen 
Instruktionshämtningen sker i tillståndet Q3. Här förutsätts att PC 
innehåller adressen till den instruktion som ska hämtas från minnet. 

 
Tillstånd 

 
Summa-

term 
RTN- 

beskrivning  
Styrsignaler Kommentarer 

Q3 (Q3�1) M(PC)�I; 
 
 
0�T; 

MR=1; 
LDI=1; 
INCPC=1; 
CLRT=1; 

Adressen för nästa instruktions operationskod, dvs. PC, kopplas till minnets  
adressbuss. Läs operationskoden från minnet  och placera i instruktionsregistret I.  
Adressen som finns i PC ökas med ett. 
Register för index vid adressberäkningar nollställs. 

Dessa styrsignalers bidrag till AND/OR-nätet i styrenheten visas i  
följande figur. 

 
Figur 14.7 Bidrag till MR, LDI, INCPC och CLRT från FETCH-fasen 

En anmärkning kan vara på sin plats angående CLRT-signalen. 
Eftersom T-registret används för offset vid adressberäkningar för 
vissa register (X, Y och SP) är det tillrådligt att nollställa detta i varje 
FETCH-fas. Detta gynnar de instruktioner som gör sådana 
adressberäkningar redan i exekveringsfasens första tillstånd.  
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Uppgift 14.2 

Skapa styrsignaler för FETCH-fasen i den automatiska styrenheten 
genom att lägga in styrsignalerna MR, LDI, INCPC och CLRT för 
summatermen Q3. 

 
Du ska nu prova den sammanhängande RESET/FETCH-sekvensen, 
dvs. återstart och den första instruktionshämtningen. 

Lägg in värdet 2016 i RESET-vektorn  (adress FF16). 

Lägg in värdet 5516 på adress 2016, detta blir ”operationskoden” för 
den instruktion som ska hämtas.  

Återställ den automatiska styrenheten (klicka på RESET) och klocka 
fram tillstånden, då du når tillstånd Q4, dvs. FETCH-fasen har utförts, 
ska värdet 5516 finnas i instruktionssregistret (register I). 
Välj File |  Save as i Instruction Builder och spara styrsignalerna i filen 
”flisp_reset.fcs”. 

 

 

14.1.3 Exekveringsfasen 
Med övergången till  tillstånd Q4 inleds exekveringsfasen. Eftersom 
varje instruktion (operationskod) har en unik styrsignalsekvens 
kommer nu varje summaterm att utgöras av ett AND-villkor (tillstånd 
och operationskod). Exekveringsfaserna har också olika längd (antal 
tillstånd) beroende på komplexiteten hos instruktionerna. I Figur 14.8 
illustreras antalet tillstånd hos styrsignalsekvenserna för såväl den 
kortaste instruktionen (NOP, operationskod 00) som den längsta 
möjliga styrsignalsekvensen (ogiltig operationskod, FF). 

 
Figur 14.8 Lagrade programmets princip (FETCH/EXECUTE) 
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Detaljerna hos varje FLISP-instruktion finns i instruktionslistan. 
Instruktionen No Operation specificeras exempelvis på följande sätt: 

NOP   No operation 
RTN  
Flaggor Påverkas ej 
Beskrivning Instruktionen utför ingenting 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
NOP          
 metod OP # ~  N Z V C
NOP Inherent 00 1 2 No operation - - - - 

Instruktionen är den enklast tänkbara, "utför ingenting". Ur kolumnen 
Adressering läser vi ut att operationskoden (OP) är 00, att 
instruktionen upptar 1 byte i minnet (#) och att den tar två cykler(~) 
att utföra. I exekveringstiden ingår hämtfasen, varför antalet tillstånd i 
exekveringsfasen alltid är ett mindre än vad som anges här.  

Uppgift 14.3 

Implementera instruktionen NOP. Avkodningen av instruktions-
registret ger att signalen I00 är aktiv endast för denna operationskod, 
samtidigt som exekveringsfasens tillstånd är Q4. Detta ger oss 
summatermen för den signal (de signaler) som är aktiva under 
respektive tillstånd. De aktiva styrsignalerna anges i sin tur som 
styrsignal=1. 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Styrsignaler Kommentarer 

Q4 (Q4�I00)  NF=1; Instruktionen utför ingenting. 

1. Aktivera View execute states, skriv in operationskoden 00 (avsluta med Enter), och kontrollera att rätt 
summaterm (I00*Q4) visas i fönstret Expression. 

2. Aktivera instruktionens styrsignal (NF) för summaterm. 
3. Skriv eventuellt en kommentar i avsett fält. 

 
Testa nu instruktionen NOP: 

1. Lägg in värdet 2016 i RESET-vektorn  (adress FF16). 
2. Lägg in värdet 0016 på adress 2016, dvs. operationskoden för instruktionen NOP.  
3. Återställ den automatiska styrenheten (klicka på RESET) och klocka fram tillstånden, då 

du når tillstånd Q4, dvs. FETCH-fasen har utförts, ska värdet 0016 finnas i 
instruktionssregistret (register I). 

4. Ge nu ytterligare en klockpuls för att utföra NOP-instruktionens exekveringsfas. 
Kontrollera att FLISP då återgår till FETCH-fasen. Instruktionen är därefter 
implementerad. 

5. Välj File |  Save as i Instruction Builder och spara styrsignalerna i filen ”flisp_nop.fcs”. 
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14.2 Implementering av instruktioner 
Resten av detta kapitel ägnas åt en översikt av flertalet av de 
instruktioner som definierats för FLISP. Instruktionerna delas in i 
grupper med avseende på operationer. Observera att vi här nöjer oss 
med att exemplifiera med några utvalda adresseringssätt och 
instruktionsbeskrivningarna är därför inte fullständiga. För 
detaljerade beskrivningar hänvisas till FLISP-handboken. 

14.2.1 Läs från minne 
Data kan läsas från minnet med en LD-instruktion ("load"). 
Alternativt kan andra registerinnehåll, ev. med någon offset, läsas 
med en LEA-instruktion ("load effective address"). LD-instruktionen 
finns för samtliga register, dvs. 
 LDA, LDX, LDY, LDSP 

LEA-instruktion finns bara för adressregistren: 
 LEAX, LEAY, LEASP 

Följande utdrag ur FLISP-handboken ger detaljer om instruktionen 
LDA för tre olika adresseringssätt: 

LD   Load register 
RTN M (EA)� R 
Flaggor N: Ettställs om resultatets teckenbit (bit 7) får värdet 1. 

Z: Ettställs om samtliga åtta bitar i resultatet blir noll. 
V: Nollställs. 
C: Påverkas ej. 

Beskrivning Laddar dataord från minnet till angivet register R (A,X,Y eller SP) 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
LD          
 metod OP # ~  N Z V C
LDA  #Data Immediate F0 2 2 Data � A � � 0 - 
LDA  Adr Absolute F1 2 3 M(Adr) � A 
LDA  n,SP Indexed F2 2 3 M(n+SP) � A 

LDA #Data
Av detaljinformationen ser vi att instruktionen, som upptar två bytes i 
minnet (#), tar totalt två klockcykler (~) att exekveras. Eftersom 
denna siffra även omfattar hämtfasen innebär detta att 
exekveringsfasen ska utföras under en klockcykel. 

Då exekveringsfasen inleds innehåller PC adressen till ordet efter 
operationskoden, i detta fall data som ska läsas in till register A. RTN-
beskrivningen för att läsa in data blir då: 

 M(PC)�A 
Vi kopplar därför PC till MA, aktiverar MR och LDA. Se figuren i 
marginalen: eftersom g13 och g12 båda är 0, väljs PC av "1–av–4"–
väljaren. Därefter passerar PC adderarsteget, dock utan att innehållet i 
T adderas, detta utförs bara om någon av g13 eller g12 är 1, dvs för 
register X,Y och SP. Slutligen väljs PC från utgången från 
adderarsteget eftersom g14, som styr "1 av 2"-väljaren, är 0. 

Samtidigt uppdateras PC för att peka på nästa instruktion: 

F0
07

Data

MINNE

PC
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 PC+1�PC 
För flaggsättningen observerar vi att data som ska påverka CC också 
finns på ALU:ns D-ingång och genom att använda operationen:  

 D+Cin�U; Cin=0 
kan vi utnyttja ALU:ns flaggsättning för flaggorna N och Z. Vi 
använder sedan styrsignaler (g-) för att nollställa V och låta C vara 
opåverkad. Därmed är styrsignalsekvensen för denna variant klar.  

 
Till-

stånd 
Summa-

term 
RTN- 

beskrivning  
Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4�IF0) M(PC)�A; 
PC+1�PC; 
D+0�U; 
0�V; 
CC(C) �C; 

LDA; MR; 
INCPC; 
f3; f0; 
g5; 
g3;g2; 
LDCC; 
NF; 

Data från minnet till register A 
Uppdatera PC 
ALU-funktion 9 för flaggsättning N och Z 
nollställ V 
ingen påverkan C 
uppdatera CC 
ny instruktion 

LDA Adr
Av detaljinformationen ser vi att exekveringsfasen av denna variant 
av instruktionen, tar två klockcykler (~) för att exekveras. Den extra 
cykeln kommer av att vi här måste göra två läsningar i minnet. Först 
ska adressen (Adr) läsas från instruktionen, därefter ska data läsas från 
denna adress. 

Adressen från minnet läses till adressregister TA och PC uppdateras: 

 M(PC)�TA; PC+1�PC 
under nästa cykel kopplas TA till MA genom att g14 sätts till 1, varvid 
MR och LDA-signalerna aktiveras. 

 M(TA) �A 

I följande tabell anges styrsignalerna för att läsa data från en adress 
till register A. Observera att tabellen inte beskriver den fullständiga 
instruktionsvarianten, jämför med  LDA #Data. 

  
Till-

stånd 
Summa-

term 
RTN- 

beskrivning  
Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4�IF1) M(PC)�TA; 
PC+1�PC; 

LDTA; MR; 
INCPC; 

Adress från minnet till temporär adress 
Uppdatera PC 

Q5 (Q5�IF1) M(TA) �A; 
 
(etc.) 

LDA; g14; MR; 
 
(etc.) 

Data från "Adr" till A 
 
 
 

LDA n,SP
Även indexerade adresseringssätt kräver en extra läsning av 
operanden (Data). Här måste vi dock först genomföra en beräkning av 
den effektiva adressen, i detta fall n+SP. 

 Datavägen i FLISP har förberetts för en sådan adressberäkning 
genom att innehållet i temporärregister T adderas, som offset, till 
innehållet i något adressregister. Observera att offset adderas endast i 
3 av de 8 möjliga sätten att utföra adressberäkningarna. Följande 
tabell beskriver funktionen för väljarsignalerna g14, g13 och g12. 
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g14 g13 g12 Register till adressbuss: RTN 
0 0 0 Register PC, ingen offset M(PC) 
0 0 1 Register SP (”bas”) och register T (”offset”) M(T+SP) 
0 1 0 Register Y (”bas”) och register T (”offset”) M(T+Y) 
0 1 1 Register X (”bas”) och register T (”offset”) M(T+X) 
1 0 0 Adressberäkningsregister TA, ingen offset M(TA) 
1 0 1 Adressberäkningsregister TA, ingen offset M(TA) 
1 1 0 Adressberäkningsregister TA, ingen offset M(TA) 
1 1 1 Adressberäkningsregister TA, ingen offset M(TA) 

Offseten (n) läses från minnet till register T och PC uppdateras: 

 M(PC)�T; PC+1�PC 
under nästa cykel kopplas adressen n+SP till MA genom att g12 sätts till 
1, MR och LDA-signalerna aktiveras.  

 M(T+SP) �A 

Styrsignaler för inläsning av data från adress "n+SP" till register A 
visas i följande tabell: 

Till-
stånd 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4�IF2) M(PC)�T; 
PC+1�PC; 

LDT; MR; 
INCPC; 

Offset  från minnet till T 
Uppdatera PC 

Q5 (Q5�IF2) M(T+SP) �A; 
 
(etc.) 

LDA; g12; MR; 
 
(etc.) 

Data från "n+SP" till A 
 
 
 

Vi ser här att styrsignalsekvenser för instruktioner med de indexerade 
adresseringssätten n,R (R=X,Y eller SP) skiljs åt endast genom 
användningen av g13 och g12. 

Uppgift 14.4 

Implementering och test av  LDA-instruktioner. 
1. Radera först all styrsignalinformation (File|Clear) och utgå från din 

sparade fil flisp_nop.fcs, dvs. ladda filen (File|Load) till 
Instruction Builder. Nu finns enbart styrsignaler för RESET och 
FETCH faserna och instruktionen NOP i styrenheten.   

2. Implementera nu instruktionerna LDA #Data, LDA Adr och  
LDA n,SP enligt tidigare anvisningar. Spara styrsignal-
informationen (File|Save as) med namnet flisp_ins.fcs. 

3. Skapa en fil test_load.fmem, för test av de implementerade 
instruktionerna (se marginalen). Vi har placerat en instruktions-
sekvens med start på adress 2016 i minnet; detaljerna framgår av 
följande: 

Adress  Maskin- 
kod  Assemblerkod  RTN 

      
20   LDA #7 7�A 
21    
22   LDA 1016 M(1016) �A 
23    
24   LDA 1,SP M(1+SP)�A 
25    
26    
      

test_load.fmem 
#ClearAllMemory
#ClearAllRegisters
Operationskoder och 
operandinformation läggs i 
minnet: 
#SetMemory  20=F0 
#SetMemory  21=07 
#SetMemory  22=F1 
#SetMemory  23=10 
#SetMemory  24=F2 
#SetMemory  25=01 
Data läggs på plats och register 
SP ges initialvärde 
#SetMemory  10=00 
#SetRegister SP=0F 
#SetMemory  10=81 
RESET-vektor 
#SetMemory FF=20

Efterhand som du implementerar 
och testar nya FLISP-
instruktioner lägger du till dessa i 
filen:
flisp_ins.fcs.

Det är däremot lämpligt att skapa 
separata testfiler: 
test_XXX.fmem  
för de olika instruktionerna. 
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15 Maskinprogrammering 
  

I detta kapitel fortsätter vi att studera hur maskininstruktioner sätts 
samman i ett maskinprogram som vi placerar i minnet och därefter 
låta FLISP utföra. Kapitlet omfattar: 

� en översikt där du får tillfälle att bekanta dig med hur simulatorn 
fungerar, samt 

� maskinprogrammering, dvs. inmatning och test av operations-
koder och operander,  för enklare instruktionssekvenser.  

15.1 Översikt av simulatorn 
Vi skall börja med att använda FLISP-simulatorn för att mata in ett 
maskinprogram (ett antal maskininstruktioner) i minnet. Vi fortsätter 
med att studera utförandet av programmet, dels genom att stega oss 
genom programmet, dels genom att exekvera programmet 
automatiskt.  

Starta FLISP-simulatorn, välj Computer and peripherals|FLISP-computer. 

 
FLISP-simulatorn innehåller en rad olika funktioner men vi 
koncentrerar oss i detta kapitel på en övervakningsfunktion (monitor) 
med vilken vi kan undersöka såväl minnesinnehåll som 
programutförande i FLISP. 

 

Välj nu därför menyalternativet File|Monitor. 
 
  

Visar FLISP:s registerinnehåll 

janjo
Rectangle
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Testa implementeringen av instruktionerna genom att läsa in testfilen, 
gör RESET och ge klockpulser tills instruktionssekvensen utförts. 
Kontrollera mellan varje instruktion att denna utförs korrekt och ange 
testresultaten i följande tabell; kontrollera även flaggsättningen.  

 A N Z V C 
initialt      
LDA #Data      
LDA Adr      
LDA n,SP      

 

Då vi jämför LD-instruktioner med samma adresseringssätt ser vi att 
de är mycket lika: jämför exempelvis LDA, LDSP och LDX. 

Instruktion Adressering Operation Flaggor
LD          
 metod OP # ~  N Z V C
LDA  #Data Immediate F0 2 2 Data  A   0 - 
LDSP #Data Immediate 92 2 2 Data  SP 
LDX  #Data Immediate 90 2 2 Data X 

För styrsignalsekvensen innebär detta att det är enbart 
operationskoden och en enstaka styrsignal som skiljer dem åt: 

LDSP #Data 

Till-
stånd 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●I92) M(PC)→SP; 
PC+1→PC; 
D+0→U; 
0→V; 
CC(C) →C; 

LDSP; MR; 
INCPC; 
f3; f0; 
g5; 
g3;g2; 
LDCC; 
NF; 

Data från minnet till register SP 
Uppdatera PC 
ALU-funktion 9 för flaggsättning N och Z 
nollställ V 
ingen påverkan C 
uppdatera CC 
ny instruktion 

 

Uppgift 14.5 

Implementera först instruktionen: 
 LDSP  #Data 

Lägg till instruktionen i filen flisp_ins.fcs. 

Jämför styrsignaltabellen för LDSP #Data, med följande styrsignal-
tabell för LDX #Data, komplettera tabellen med  operationskod 
och aktiva styrsignaler. 

LDX #Data: 

Till-
stånd 

Summaterm RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Q4 (Q4●     ) M(PC)→X; 
PC+1→PC; 
Flags→CC; 

 
 
f3;  f0; g5; g3; g2; LDCC; 
NF; 

Lägg även till instruktionen LDX #Data  filen flisp_ins.fcs.  
Skapa en lämplig fil för test av instruktionerna och kontrollera att de 
fungerar som de ska. 
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LEA-instruktionerna är i första hand avsedda för adressberäkningar. 
De tillåter att adresser kopieras mellan adressregistren X,Y och SP, ev. 
med addition/subtraktion av någon offset. 

 

LEA   Load effective address 
RTN EA  R ; R kan vara X,Y eller SP 
Flaggor Påverkas ej 
Beskrivning Laddar effektiva adressen i R. Används för att addera/subtrahera 

registerinnehåll. 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
LEA           
 metod OP # ~  N Z V C
LEAX   n,X Indexed CC 2 4 X + n  X - - - -
LEAX   n,SP Indexed DC 2 4 SP + n  X 
LEAY   n,Y Indexed CD 2 4 Y + n  Y 
LEAY   n,SP Indexed DD 2 4 SP + n  Y 
LEASP  n,SP Indexed BE 2 4 SP + n  SP 
LEASP  n,X Indexed CE 2 4 X + n  SP 
LEASP  n,Y Indexed DE 2 4 Y + n  SP 

 

 

Låt K beteckna det register (X,Y eller SP) som ingår i operanden, 
källregistret, och låt D beteckna det register som är en del av 
instruktionsnamnet, destinationsregistret. Det är den effektiva 
adressen  n+K som ska placeras i register D och vi kan därför inte, 
som förut, använda metoden (T+K), vilket ger en adress som alltid 
adresserar minnet. Vi måste därför göra själva adressberäkningen n+K 
med hjälp av ALU:n. Utförandefasen kräver tre cykler: 

Offseten (n) från minnet läses till register T och PC uppdateras: 

 M(PC)→T; PC+1→PC 
under nästa cykel kopplas register K till bussen och ALU:n utför 
addition: 

 T+K →R 
Resultatet återförs till destinationsregistret: 

 R→D 
Styrsignaler för instruktionen med de generella beteckningarna visas i 
följande tabell: 

 
Till-

stånd 
Summa-

term 
RTN- 

beskrivning  
Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●     ) M(PC)→T; 
PC+1→PC 

LDT; MR; 
INCPC; 

Offset  från minnet till T 
Uppdatera PC 

Q5 (Q5●     ) T+K →R f3; f1;f0;  OEK;LDR Bestäm effektiv adress  "n+K"  
Q6 (Q6●     ) R →D OER; LDD; NF Återför resultat 
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Uppgift 14.6 

Implementera instruktionerna: 

 LEASP n,SP 
 LEAX  n,X 
 LEAX  n,Y 

Börja med att föra in styrsignalerna i följande tabeller: 

LEASP  n,SP 

Till-
stånd 

 

Summaterm RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→T; 
PC+1→PC 

 Offset  från minnet till T 
Uppdatera PC 

Q5 (Q5●    ) T+SP →R  Bestäm effektiv adress  "n+SP"  
Q6 (Q6●    ) R →SP  Återför resultat till SP 

LEAX  n,X 

Till-
stånd 

 

Summaterm RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→T; 
PC+1→PC 

 Offset  från minnet till T 
Uppdatera PC 

Q5 (Q5●    ) T+X →R  Bestäm effektiv adress  "n+X"  
Q6 (Q6●    ) R →X  Återför resultat till X 

LEAX  n,SP 

Till-
stånd 

 

Summaterm RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→T; 
PC+1→PC 

 Offset  från minnet till T 
Uppdatera PC 

Q5 (Q5●    ) T+SP →R  Bestäm effektiv adress  "n+SP"  
Q6 (Q6●    ) R →X  Återför resultat till X 

Lägg till instruktionerna i filen flisp_ins.fcs och använd följande 
testsekvens för att kontrollera styrsignalsekvensernas funktion.  

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 BE  LEASP 5,SP SP+5→SP 
21 05     
22 BE  LEASP -1,SP SP+(–1)→SP 
23 FF     
24 CC  LEAX 2,X X+2→X 
25 02     
26 DC  LEAX 2,SP SP+2→X 
27 02     
      

Kontrollera slutligen styrsignalsekvensernas funktion och rätta 
eventuella fel.  

 

 

test_lea.fmem 
#ClearAllMemory 
#ClearAllRegisters 
Operationskoder och 
operandinformation läggs i minnet: 
#SetMemory  20=BE 
#SetMemory  21=05 
#SetMemory  22=BE 
#SetMemory  23=FF 
#SetMemory  24=CC 
#SetMemory  25=02 
#SetMemory  26=DC 
#SetMemory  27=02 
Registren ges initialvärden 
#SetRegister X=05 
#SetRegister SP=0F 
RESET-vektor 

#SetMemory FF=20 
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14.2.2 Skriv till minne 
Data kan skrivas till minnet med ST-instruktionen ("store"). 
Instruktionen finns för samtliga register, dvs.: 
 STA, STX, STY, STSP 

Följande utdrag ur FLISP-handboken ger detaljer om instruktionen 
STA för två olika adresseringssätt: 

ST   Store register 
RTN R  M (EA) 
Flaggor Påverkas ej 
Beskrivning Lagrar angivet registerinnehåll (A,X,Y,SP) i minnet på den 

effektiva adressen 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
ST           
Variant metod OP # ~ N Z V C
STA  Adr Absolute E1 2 3 A  M(Adr) - - - - 
STA  n,SP Indexed E2 2 3 A  M(n+SP) 

 

Uppgift 14.7 

Implementera instruktionerna  
 STA Adr 
 STA n,SP 

STA Adr 
Exekveringsfasen delas upp i två steg: 
 1: Adr→TA 
 2: A→M(TA) 
I följande tabell har vi detaljerat RTN-beskrivningen ytterligare. 
Komplettera tabellen med operationskod och aktiva styrsignaler: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→TA; 
PC+1→PC; 

 
 

Effektiv adress från minnet till TA 
Uppdatera PC 

Q5 (Q5●   ) A→ M(TA); 
 

 
 

Data från A till minne 
Ny hämtfas 

STA n,SP 
Även i detta fall delas exekveringsfasen upp i två steg: 
 1: n→T 
 2: A→M(T+SP) 
Komplettera även följande tabell med operationskod och aktiva 
styrsignaler: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→T; 
PC+1→PC; 

 
 

Offset från minnet till T 
Uppdatera PC 

Q5 (Q5●   ) A→ M(T+SP); 
 

 Data från A till minne 
Ny hämtfas 
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Lägg till dessa instruktioner till instruktionsuppsättningen 
flisp_ins.fcs och  använd sedan följande instruktionssekvens för 
att testa instruktionerna (se även marginalen). 

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 E1  STA 1016 A→M(1016) 
21 10     
22 E2  STA 5,SP A→M(5+SP) 
23 05     
      

Kontrollera minnesadress 1016 och 1116 som båda ska innehålla värdet 
3316 efter instruktionssekvensen. 

 

 

14.2.3 Registeröverföringar 
Instruktionerna TFR (“transfer”) och EXG (”exchange”) utgör en 
liten grupp instruktioner för dataöverföring mellan olika register. 
 

TFR   Transfer register to register 
RTN R1  R2 
Flaggor Påverkas ej, såvida man inte kopierar ett registerinnehåll till CC-

registret 
Beskrivning Data kopieras mellan angivna register 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
TFR   
Variant metod OP # ~  N Z V C
TFR  A,CC Inherent 18 1 2 A  CC Δ Δ Δ Δ
TFR  X,Y Inherent 1A 1 2 X  Y - - - - 

Instruktioner som kopierar data mellan register är speciellt enkla. De 
kräver bara att källans OE-signal och destinationens LD-signal 
aktiveras. Om CC är destinationsregister måste man dock också 
aktivera rätt styrsignaler för väljaren på CC-registrets ingång. 

 

Uppgift 14.8 

I denna uppgift ska du implementera styrsignalsekvenserna för 
 TFR X,Y 
 TFR A,CC 

I båda fallen räcker det med en klockcykel för exekveringsfasen. Fyll 
i operationskoder, RTN-beskrivningar och aktiva styrsignaler i 
förjande tabeller: 

TFR X,Y 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) X→Y  Data från X till Y 
Nästa... 

test_store.fmem 
#ClearAllMemory 
#ClearAllRegisters 
Operationskoder och 
operandinformation läggs i minnet: 
#SetMemory  20=E1 
#SetMemory  21=10 
#SetMemory  22=E2 
#SetMemory  23=05 
Registren ges initialvärden 
#SetRegister A=33 
#SetRegister SP=0C 
RESET-vektor 
#SetMemory FF=20 
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TFR A,CC 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) A→CC  Data från A till bussen 
buss kopplas till CC 
data från buss till CC 
 

Lägg till dessa instruktioner till instruktionsuppsättningen 
flisp_ins.fcs. Skapa också en fil för test av de implementerade 
instruktionerna. Placera instruktionssekvensen med start på adress 
2016 i minnet. Detaljerna framgår av följande: 

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 18  TFR A,CC A→CC 
21 1A TFR X,Y X→Y 
22      
      

Utför instruktionerna och kontrollera funktionen. 

 
 

 

EXG-instruktionen utbyter två registerinnehåll. För att temporärt 
lagra det ena registret överför vi dess innehåll opåverkat via ALU:n 
till register R. Betrakta exempelvis K  D. Den generella RTN-
sekvensen för instruktionen kan då skrivas: 
 K→R, D→K, R→D 

 

EXG  Exchange register contents 
RTN R1  R2 
Flaggor Påverkas endast om CC-registret är det ena registret som 

används 
Beskrivning Data växlas mellan angivna register 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
EXG           
Variant metod OP # ~  N Z V C
EXG  A,CC Inherent 9F 1 4 A  CC    
EXG  X,Y Inherent AF 1 4 X  Y - - - - 

 
  

test_tfr.fmem 
#ClearAllMemory 
#ClearAllRegisters 
Operationskoder och 
operandinformation läggs i minnet: 
#SetMemory  20=18 
#SetMemory  21=1A 
Registren A och X ges initialvärden 
#SetRegister A=FF 
#SetRegister X=FF 
RESET-vektor 
#SetMemory FF=20 
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Uppgift 14.9 

Implementera instruktionerna: 
 EXG X,Y 
 EXG A,CC 

Registerutbytet kräver tre cykler, komplettera tabellerna. 

EXG X,Y 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   )   Data från X till R 
Q5 (Q5●   )   Data från Y till X 
Q6 (Q6●   )   Data från R till X; Nästa... 

 

 

 

 

EXG A,CC 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   )   Data från A till R 
Q5 (Q5●   )   Data från CC till A 
Q6 (Q6●   )   Data från R till CC;  

Nästa... 

Lägg till de nya instruktionerna till filen misc.hwflisp. 

Skapa nu en konfigurationsfil för test av de implementerade instruk-
tionerna. Placera instruktionssekvensen med start på adress 2016 i 
minnet. Detaljerna framgår av följande: 

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 9F  EXG A,CC A↔CC 
21 AF  EXG X,Y X↔Y 
      

Placera initialvärden i A och X;kontrollera funktionen. 
 

 

 

 

14.2.4 Unära aritmetiska operationer 
Vanligt förekommande operationer kan ges separata instruktioner av 
prestandaskäl, trots att de kan utföras på andra sätt. I FLISP har vi 
exempelvis CLR ("clear"), NEG ("negate"), DEC ("decrement") och 
INC ("increment"). I detta avsnitt arbetar vi speciellt med decrement-
instruktionen. Implementering av styrsignalsekvenser för de övriga är 
likartad. Vi börjar med att titta närmre på instruktionens beskrivning: 
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DEC  Decrement register or memory 
RTN A–1→A eller M(EA)–1→M(EA) 
Flaggor N: Ettställs om resultatets teckenbit (bit 7) får värdet 1 

Z: Ettställs om samtliga åtta bitar i resultatet blir noll 
V: Ettställs om 2-komplementoverflow uppstår 
C: Påverkas ej 

Beskrivning Subtraherar 1 från operanden 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
DEC           
Variant metod OP # ~ N Z V C
DECA Inherent 08 1 3 A–1A ∆ ∆ ∆ - 
DEC  Adr Absolute 38 2 4 M(Adr) –1  M(Adr) 
DEC  n,SP Indexed 48 2 4 M(n+SP) –1  M(n+SP) 
DEC  n,X Indexed 58 2 4 M(n+X) –1  M(n+X) 
DEC  A,X Indexed 68 1 4 M(A+X) –1  M(A+X) 
DEC  n,Y Indexed 78 2 4 M(n+Y) –1  M(n+Y) 
DEC  A,Y Indexed 88 1 4 M(A+Y) –1  M(A+Y) 

Instruktionen är av typ "Read/Modify/Write", dvs. operanden måste 
först läsas, för att bli tillgänglig i ALU:n, därefter utförs själva 
operationen och slutligen ska resultatet skrivas tillbaks till samma 
plats som där det hämtades. 

I de nästföljande uppgifterna ska styrsignalsekvenser för DEC-
instruktionen implementeras. Vi börjar med varianten DECA, speciellt 
för att belysa själva operationen och dess flaggsättning. Vi fortsätter 
därefter med tre ytterligare adresseringssätt Adr, n,SP och A,X, som 
väsentligt utökar användbarheten av instruktionen. 

 

Uppgift 14.10 

Implementera styrsignalsekvens för instruktionen 
 DECA. 

Börja med att skapa ytterligare en konfigurationsfil test_dec.fmem, 
för test av den nya instruktionen. Fortsätt komplettera 
flisp_ins.fcs så att de nya instruktionerna läggs till 
instruktionsuppsättningen. 

Instruktionen beskrivs av följande RTN: 

 A-1→R;  ALU(N,Z,V)→CC  

 R→A 
 

För operationen kan lämpligen följande ALU-operation användas: 

 
Flaggorna, utom C, ska sättas av ALU-operationen. 
  

test_dec.fmem 
#ClearAllMemory 
#ClearAllRegisters 
 
Operationskod och operandinformation 
läggs i minnet: 
#SetMemory  20=08 
 
Register A ges initialvärde 
#SetRegister A=FF 
 
RESET-vektor 
#SetMemory FF=20 
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DECA 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   )   Operationens resultat till R 
    Flaggsättning 

Q5 (Q5●   )   Resultatet återförs till A 

Skapa också en konfigurationsfil för test av instruktionen.  

 

Adress  Maskin- 
kod  Assemblerkod  RTN 

      
20 08  DECA  A←A–1 
21      

 
 

 

 

 

Uppgift 14.11 

Implementera styrsignalsekvenser för instruktionsvarianterna: 
 DEC Adr 
 DEC n,SP 
 DEC A,X 
 

Gemensamt för varianterna är att instruktionen måste delas upp i tre 
delar: 

 Adressberäkning, dvs. läsning från minnet 
 Operand läses från minnet, operation utförs 
 Skrivcykel, återför resultat till minnet. 

 

DEC Adr 
Adressberäkningarna utförs under första cykeln samtidigt ökas PC för 
att peka på nästa instruktion. Under andra cykeln utförs själva 
operationen så att resultatet kan återföras till minnet under den sista 
cykeln. 

 Adr→TA; PC+1→PC 
R→M(TA) 

Operandens adress hålls här i TA-registret under instruktionen. 
Komplettera följande tabell: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) Adr→TA;PC+1→PC  Adressberäkning 
Q5 (Q5●   )   Operandhämtning, 

    Operation, resultat till R 
    Flaggsättning 

Q6 (Q6●   ) R→M(TA)  Resultatet återförs till minnet 
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DEC n,SP 
Denna variant skiljer sig under adressberäkningen genom att vi nu i 
stället läser den konstanta förskjutningen given av n, till register T. 
Därefter bildar vi styrsignaler för att adressera minnet med n,SP. 

  n→T; PC+1→PC 
Operandens adress utgörs nu av n+SP, operanden betecknas M(n+SP), 
komplettera tabellen: 

 
Till-

stånd 
 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) n→T;PC+1→PC  Adressberäkning 
Q5 (Q5●   )   Operandhämtning, 

    Operation, resultat till R 
    Flaggsättning 

Q6 (Q6●   ) R→M(n+SP)  Resultatet återförs till minnet 

DEC A,X 
I denna sista variant används innehållet i register A som förskjutning. 
Denna variant skiljer sig därför under adressberäkningen från n,SP 
genom att vi nu i stället läser den innehållet i A till register T. Därefter 
bildar vi styrsignaler för att adressera minnet med A,X. 

  A→T  
Operandens adress utgörs nu av A+X, operanden betecknas M(A+X), 
komplettera tabellen: 

 
Till-

stånd 
 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) A→T  Adressberäkning 
Q5 (Q5●   )   Operandhämtning, 

    Operation, resultat till R 
    Flaggsättning 

Q6 (Q6●   ) R→M(A+X)  Resultatet återförs till minnet 

Då du konstruerat styrsignalsekvenserna fortsätter du med att föra in 
dem i flisp_ins.fcs. 

Modifiera nu också konfigurationsfilen för test av DEC (se exemplet i 
marginalen) så att den innehåller följande testprogram: 

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 08  DECA  A←A+1 
21 38  DEC B16 M(B16)←M(B16)+1 
22 0B     
23 48  DEC 3,SP M(3+SP)←M(3+SP)-1 
24 03     
25 68  DEC A,X M(A+X)←M(A+X)-1 
26      
      

test_dec.fmem 
#ClearAllMemory 
#ClearAllRegisters 
 
Operationskoder och operandinformation 
läggs i minnet: 
#SetMemory  20=08 
#SetMemory  21=38 
#SetMemory  22=0B 
#SetMemory  23=48 
#SetMemory  24=03 
#SetMemory  25=68 
 
Initialvärden för minne och register: 
#SetMemory  0B=45 
#SetMemory  09=55 
#SetMemory  08=65 
 
#SetRegister A=06 
#SetRegister SP=06 
#SetRegister X=03 
 
RESET-vektor: 
#SetMemory  FF=20 
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I konfigurationsfilen används också direktiv för att placera följande 
värden i minne och register för att utföra test: 

M(0B16)=4516 
M(0916)=5516 
M(0816)=6516 
A=6 
SP=6 
X=3 

Utför nu programsekvensen i simulatorn, rätta eventuella fel i 
styrsignalsekvenserna så att alla instruktioner fungerar som de ska. 
Då sekvensen har utförts ska du kunna avläsa följande 
minnesinnehåll: 

M(0B16)=4416 
M(0916)=5416 
M(0816)=6416 

 

 

14.2.5 Ovillkorlig programflödeskontroll 
Vi har hittills enbart sett exempel på instruktioner som uppdaterar PC 
på ett sätt som gör att den lämnas pekande på nästa sekventiella 
instruktion i programflödet. För att avbryta ett sådant sekventiellt 
flöde används någon instruktion för "programflödeskontroll". 
Instruktionen kan vara villkorlig, och är då kopplad till någon test av 
flaggorna i CC-registret. Den kan annars vara ovillkorlig vilket 
betyder att en programflödesändring sker, oavsett flaggornas tillstånd. 
För ovillkorlig programflödeskontroll har vi bland andra 
instruktionerna JMP (”jump”) och BRA (”branch”).  

JMP  Jump 
RTN EA  PC  
Flaggor Påverkas ej 
Beskrivning Ovillkorlig programflödesändring; nästa instruktion hämtas från 

effektiva adressen EA. 

 Detaljer: 

Instruktion Adressering Operation Flaggor 
JMP   
variant metod OP # ~  N Z V C
JMP  Adr Absolute 33 2 2 Adr  PC - - - - 

 

BRA  Branch always 
RTN PC+Offset  PC 
Flaggor Påverkas ej 
Beskrivning Ett hopp utförs till adressen ADRESS = PC+Offset. Offset räknas från 

adressen efter branchinstruktionen, dvs. vid uträkningen av hoppadressen 
pekar PC på operationskoden som (eventuellt) finns direkt efter 
branchinstruktionen i minnet 

 Detaljer: 

Instruktion Adressering Operation Flaggor
BRA          
 metod OP # ~  N Z V C
BRA  Adr Relativ 21 2 4 PC+Offset  PC - - - - 
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De visade instruktionsformerna åstadkommer samma sak, dvs. 
placerar en ny adress i PC. Skillnaden är hur denna adressinformation 
kodas in i instruktionen. I det första fallet, JMP, anges den absoluta 
adressen, medan den andra varianten BRA, kodar adressen som en 
offset till aktuell PC, dvs. instruktionens förhållande till 
destinationsadressen är positionsoberoende. 

Ytterligare en skillnad mellan instruktionerna är att BRA endast finns 
med PC-relativ adressering, medan JMP kan användas med flera 
adresseringssätt. 

I detta och de kommande avsnitten ska vi gå igenom exempel på 
styrsignalsekvenser för instruktioner för programflödeskontroll. 
 

 

Uppgift 14.12 

Då du konstruerat styrsignalsekvenserna fortsätter du med att föra in 
dem i flisp_ins.fcs. 

 

JMP Adr 
Instruktionen placerar effektiva adressen i PC, observera att detta är 
det värde som följer direkt efter operationskoden i minnet och det 
räcker alltså med en läscykel. PC ska nu inte, som tidigare 
inkrementeras för att peka på nästa instruktion. Ingen flaggsättning 
ska heller utföras, varför implementeringen blir enkel: 

M(PC)→PC 
Komplettera följande tabell med de nödvändiga styrsignalerna: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●   ) M(PC)→PC  Data från minne till PC;  Nästa... 

 

BRA Adr 
Den PC-relativa adressberäkningen för BRA-instruktionen är något 
mer komplicerad. Instruktionen består av operationskod och "offset", 
relativ PC, som beräknats då PC innehåller adressen till nästa 
instruktion. Sambandet mellan BRA-instruktionens adress, 
destinationens adress och offseten skrivs därför: 

Instruktionsadress + 2 + OFFSET = Destinationsadress 
 

Då exekveringsfasen inleds innehåller PC adressen till OFFSET, RTN 
för hela instruktionen kan därför skrivas: 

PC+1+(PC)→PC 
Vi delar upp detta i en styrsignalsekvens genom att först placera PC i 
T-registret för den kommande beräkningen och samtidigt placera PC i 
register TA för inläsning av OFFSET från minnet. Observera att 
värdet för PC i register T nu är 1 mindre än det värde som ska 
användas vid beräkningen av destinationsadressen: 

PC→T; PC→TA 

OP-kod BRA
07

OFFSET

MINNE

OP-kod Destination

PC

O
FF

S
ET

Destinations-
adress

Instruktions-
adress
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Därefter utförs själva adressberäkningen. Vi kompenserar nu värdet 
för PC med att addera även konstanten 1 till den resulterande 
destinationsadressen och resultatet placeras i register R: 

M(TA)+T+1→R 
Slutligen återförs resultatet till PC, varefter instruktionen är utförd: 

R→PC 
Komplettera följande tabell med de saknade styrsignalerna: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●I21) PC→T; PC→TA  Operandhämtning 
Q5 (Q5●I21) M(TA)+T+1→R  Adressberäkning 
Q6 (Q6●I21) R→PC  Resultatet återförs till PC 

Efter att ha lagt till styrsignalsekvenser för instruktionerna JMP och 
BRA i kan vi använda följande enkla testprogram för kontroll (se även 
exempel i marginalen):  

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 33  JMP 2416 2416→PC 
21 24     
22      
23      
24 21  BRA 2016 2016→PC 
25 FA     
26      
      

Observera hur offset och destinationsadress för BRA-instruktionen 
bestämts i programexemplet: det ska gälla att:  

 Instruktionsadress + 2 + OFFSET = Destinationsadress 
dvs. 

 (2416 + 2 + FA16) (mod 256) = 2016 
 

 

14.2.6 Villkorlig programflödeskontroll 
Villkorlig programflödesändring använder flaggorna i CC-registret 
för att bestämma om en programflödesändring ska utföras, eller inte. 
Vi kan välja att testa enskilda flaggor, men även olika kombinationer 
av flaggbitar som realiserar önskade testvillkor. 

Följande tabell listar de enkla flaggvillkoren: 

Instruktion (Mnemonic) Funktion  Villkorsindikation 
“Branch if carry set” (BCS)  “Hopp” om carry  C=1  
“Branch if carry clear” (BCC)  “Hopp” om ICKE carry  C=0  
“Branch if equal” (BEQ)  “Hopp” om zero  Z=1  
“Branch if not equal” (BNE)  “Hopp” om ICKE zero  Z=0  
“Branch if minus” (BMI)  “Hopp” om negative  N=1  
“Branch if plus” (BPL)  “Hopp” om ICKE negative  N=0  
“Branch if overflow set” (BVS)  “Hopp” om overflow  V=1  
“Branch if overflow clear” (BVC)  “Hopp” om ICKE overflow  V=0  

test_jmpbra.fmem 
#ClearAllMemory 
#ClearAllRegisters 
 
Operationskoder och operandinformation 
läggs i minnet: 
#SetMemory  20=33 
#SetMemory  21=24 
#SetMemory  24=21 
#SetMemory  25=FA 
 
RESET-vektor: 
#SetMemory  FF=20 
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Betrakta nu som exempel instruktionen BCS (Branch if carry set). 

BCS Adr 
Instruktion Adressering Operation Flaggor 
BCS           
 metod OP # ~  N Z V C
BCS  Adr Relativ 28 2 4 if(C=1) 

 PC+Offset  PC 
- - - - 

Om C-flaggan är 1 ska programflödesändring utföras, annars ska 
instruktionen omedelbart efter den villkorliga instruktionen utföras. 
Detta kan kortare skrivas: 

if( C=1) 
 Destinationsadress→PC 
else 
 PC+2→PC 

Om vi utgår från utförandefasen av BRA i  föregående uppgift ersätts 
nu den ovillkorliga överföringen i tillstånd Q6 (R→PC) av den 
villkorliga överföringen: 

if( C=1) 
 R→PC 
else 
 PC+2→PC 

Styrsignalsekvensen för en villkorlig instruktion ska därför dels 
beräkna destinationsadressen vid uppfyllt villkor och placera denna 
adress i register R, dels ska adressen till nästa instruktion placeras i 
PC, för den händelse villkoret inte är uppfyllt. Avslutningsvis 
aktiveras LDPC endast om villkoret är uppfyllt, RTN cykelvis blir: 

PC→T; PC→TA, 
M(TA)+T+1→R;  PC+1→PC, 
if(C=1) R→PC 

Därefter är instruktionen utförd. Vi sätter samman och får den färdiga 
styrsignalsekvensen enligt följande tabell: 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●I28) PC→T; PC→TA OEPC; LDT; LDTA Operandhämtning 
Q5 (Q5●I28) M(TA)+T+1→R; 

PC+1→PC 
MR;f3; f1; f0;g0;g14; LDR; 
INCPC 

Adressberäkning 

Q6 (Q6●I28) if(C=1) R→PC OER; LDPC =C; NF Om C=1 återförs resultatet 
till PC 

Styrsignalsekvenser för övriga villkorliga instruktioner är likartad; det 
är bara bildandet av villkoret (LDPC=?) som skiljer dem åt. Följande 
tabell ger en översikt av villkorsindikatorer med motsvarande uttryck 
(syntax). 

Instruktion (Mnemonic) Villkors-
indikation 

Syntax 

“Branch if carry set” (BCS)  C=1 C 
“Branch if carry clear” (BCC)  C=0 !C 
“Branch if equal” (BEQ)  Z=1 Z 
“Branch if not equal” (BNE)  Z=0 !Z 
“Branch if minus” (BMI)  N=1 N 
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“Branch if plus” (BPL)  N=0 !N 
“Branch if overflow set” (BVS)  V=1 V 
“Branch if overflow clear” (BVC)  V=0 !V 
”Branch if higher” (BHI)  C+Z = 0 !(C+Z) 
“Branch if lower or same” (BLS)  C+Z = 1 C+Z  
“Branch if greater than” (BGT)  (NV)+Z= 0 !((NXV)+Z) 

“Branch if greater or equal” (BGE)  NV=0 !(NXV) 

“Branch if less than” (BLT)  NV=1 NXV 

“Branch if less or equal” (BLE)  (NV)+Z=1 (NXV)+Z 

Du kan använda Instuction Builder:s villkorsfält för att bilda AND-
villkor mellan enskilda styrsignaler och evaluerade villkor. 

För att som exempel ladda PC under villkoret Z=0, väljer du först detta 
villkor i Condition-fältet.  

 
Därefter flyttar du styrsignalen från fältet Apply condition, till fältet 
Remove Condition, genom att dubbelklicka på signalens namn.  

 
Namnet flyttas nu: 

 
och detta betyder att villkoret läggs till just denna styrsignal. 
Observera att signaler som inte flyttas till detta fält inte heller 
kommer att ingå i villkorsuttrycket. Vill du återställa, dvs. ta bort 
villkoret från styrsignalen dubbelklickar du på dess namn i Remove 
condition-fältet. 

 

 

Uppgift 14.13 

Implementera styrsignalsekvensen för instruktionen BNE.  

Instruktion Adressering Operation Flaggor 
BNE          

metod OP # ~ N Z V C
BNE  Adr Relativ 25 2 4 if(Z=0) 

 PC+Offset  PC 
- - - - 

Komplettera följande tabell: 
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BNE Adr 

Till-
stånd 

 

Summa-
term 

RTN- 
beskrivning  

Aktiva (=1) 
Styrsignaler 

Kommentarer 

Q4 (Q4●    ) PC→T; PC→TA  Operandhämtning 
Q5 (Q5●    ) M(TA)+T+1→R; 

PC+1→PC 
 Adressberäkning 

Q6 (Q6●    ) if(Z=0) R→PC  Om Z=0 återförs resultatet 
till PC 

Lägg till instruktionen i flisp_ins.fcs. 

Kontrollera funktionen med hjälp av följande testprogram, se även 
exemplet i marginalen. 

Adress  Maskin- 
kod  Assemblerkod RTN 

      
20 F0  LDA #3 3→A 
21 03     
22 08  DECA  A-1→A 
23 25  BNE 2216 if(Z=0)2216→PC 
24 FD     
25 21  BRA 2016 2016→PC 
26 F9     
      

 

Lägg slutligen till instruktionerna: 

 BEQ, BCS och BCC  

i  flisp_ins.fcs. 
 

 
14.2.7 Skiftoperationer 
Instruktioner för skiftoperationer, dvs. aritmetiskt skift, logiskt skift 
och rotation skiljer sig åt endast i hur bitar skiftas in och ut i 
ändpositionerna. Vi ger här exempel på logiskt skift.  

LSL  Logical shift left 
RTN A <<1  A eller M(EA) <<1  M(EA) 
Flaggor N: Kopia av bit 7 efter skiftet. 

Z: Ettställs om samtliga åtta bitar i resultatet blir noll. 
V: Ettställs om C och bit 7 är olika efter operationen, dvs. 
overflow vid 2-komplements-representation inträffar. 
C: bit 7 före skiftet blir ny carrybit efter skiftet. 

Beskrivning Skiftar operanden ett steg till vänster, dvs. multiplicerar ett tal med 
eller utan inbyggt tecken med 2 

 

 

 Detaljer: 

Instruktion Adressering Operation Flaggor
LSL           
variant metod OP # ~  N Z V C
LSLA Inherent 0B 1 3 A<<1  A Δ Δ Δ Δ

Konfigurationsfil för test av BNE 
#ClearAllMemory 
#ClearAllRegisters 
 
Operationskoder och operandinformation 
läggs i minnet: 
#SetMemory  20=F0 
#SetMemory  21=03 
#SetMemory  22=08 
#SetMemory  23=25 
#SetMemory  24=FD 
#SetMemory  25=21 
#SetMemory  26=F9 
 
RESET-vektor: 
#SetMemory  FF=20 

1 1 0 1 D<<1 (Cin)→ U 
1 1 1 0 (Cin) D >> 1→ U 
1 1 1 1 (d7) D >> 1→ U 

Skiftoperationer  
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15 Maskinprogrammering 
  

I detta kapitel fortsätter vi att studera hur maskininstruktioner sätts 
samman i ett maskinprogram som vi placerar i minnet och därefter 
låta FLISP utföra. Kapitlet omfattar: 

 en översikt där du får tillfälle att bekanta dig med hur simulatorn 
fungerar, samt 

 maskinprogrammering, dvs. inmatning och test av operations-
koder och operander,  för enklare instruktionssekvenser.  

15.1 Översikt av simulatorn 
Vi skall börja med att använda FLISP-simulatorn för att mata in ett 
maskinprogram (ett antal maskininstruktioner) i minnet. Vi fortsätter 
med att studera utförandet av programmet, dels genom att stega oss 
genom programmet, dels genom att exekvera programmet 
automatiskt.  

Starta FLISP-simulatorn, välj Computer and peripherals|FLISP-computer. 

 
FLISP-simulatorn innehåller en rad olika funktioner men vi 
koncentrerar oss i detta kapitel på en övervakningsfunktion (monitor) 
med vilken vi kan undersöka såväl minnesinnehåll som 
programutförande i FLISP. 

 

Välj nu därför menyalternativet File|Monitor. 
 
  

Visar FLISP:s registerinnehåll 
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Uppgift 15.1 

Placera nu följande programsekvens i minnet genom att mata in 
maskinkoden för sekvensen med start på adress 2016. 

Adress  Maskin- 
kod  Assemblerkod  RTN 

      
20 F0  LDA #$44 4416→ A 
21 44     
22 94  SUBA #1 A-1→ A 
23 01     
24 E1  STA $05 A→ M(5) 
25 05     
26 21  BRA $22  2216→ PC 
27 FA     

Ställ markören på adress 2016 i minnet och märk upp innehållet. Skriv 
in den första operationskoden (F016). Ställ därefter markören på 
adress 2116. Skriv nu in operanden 4416.  

 Du kan använda programsektionen för att kontrollera att du verkligen 
matar in rätt instruktion. Placera programsekvensens startadress 2016 i 
register PC och tryck <Enter>. 

Program 
Visar minnesinnehåll tolkat som 
instruktioner (disassemblering). 

Nollställ hela minnet  

Memory: 
Visar minnesinnehåll, minnets 
innehåll kan ändras genom att 
markören placeras i minnes-
adressens fönster och det nya 
värdet skrivs in, avsluta med 
<Enter>. 

Registers 
Visar registerinnehåll, dessa kan 
ändras genom att markören 
placeras i registrets fönster och 
det nya värdet skrivs in, avsluta 
med <Enter>. 
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Observera hur innehållet i programsektionen nu uppdateras med 
disassembleringen av den inmatade instruktionen. 

 
Fortsätt mata in resten av maskinkoderna t.o.m adress 2716 i minnet, 
observera ändringar i programsektionen allt eftersom 
minnesinnehållen ändras. Då hela sekvensen matats in ska det se ut på 
följande sätt: 

  
 

Programexekvering styrs från FLISP-simulatorn. Med hjälp av 
simulatorn ska du nu titta närmre på instruktionsexekveringen i 
FLISP. Simulatorn har flera funktioner för detta men i detta kapitel 
nöjer vi oss med funktionen step, utför nästa instruktion. Den 
instruktion som står i tur att utföras, utpekad av register PC,  märks 
upp med gul bakgrund i simulatorns programsektion. 

Uppgift 15.2 

 Utför nästa instruktion genom att klicka på omkopplaren step 
("stega").  

PC ökas och pekar nu på nästa instruktion. Programsektionen 
uppdateras och återspeglar detta varefter  registersektionen 
uppdateras med nytt innehåll i register A.  

  
Observera att såväl monitorfönstret som FLISP-simulatorns fönster 
uppdateras. 

 
 Stega SUBA-instruktionen, observera innehållet i register A. 
 Stega STA-instruktionen, observera innehållet i minnesadress 5. 
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16 Assemblerprogrammering 
 

I detta avslutande kapitel behandlar vi assemblerprogrammering, en 
”ett–till–ett”–översättning från maskinspråket. Kapitlet behandlar 
huvudsakligen: 

� Programutveckling för FLISP och ytterligare funktioner hos 
simulatorn. 

� Grundläggande assemblerprogrammering: 
o enkla programstrukturer som flödesval och subrutiner, 

samt 
o reservering av minne för program och data. 

� Beskrivning av yttre enheter anslutna till FLISP-datorn:  
o programstyrd in- och utmatning från/till yttre enheter, 

samt 
o avbrottstyrdstyrd in- och utmatning från/till yttre enheter. 

 

16.1 Programutveckling i assemblerspråk 
DigiFlisp kan användas för programutveckling i assemblerspråk och 
innehåller funktioner för:  
� Textredigering – programmet skrivs i form av källtext, dvs. en 

textfil som innehåller instruktioner och direktiv till assemblatorn.  
� Assemblering – då programmet är färdigt måste det översättas 

till maskinkod innan det kan testas i en måldator eller simulator. 
Översättningen av programmet, assembleringen, utförs auto-
matiskt  av assemblatorn. Vid assembleringen skapas laddfiler 
och en listfil. 

� Test – i en laddfil finns programmet representerat på en form som 
kan överföras till simulatorer och laborationsutrustning där det 
tolkas som instruktioner och data. Då programmet har överförts 
till simulator eller laborationsutrustning kan det utföras 
(exekveras). Man kan då kontrollera programmets funktion. 

 

16.1.1 Skapa ett assemblerprogram 
Källtexten skrivs/redigeras med hjälp av en Editor, filnamnet ska 
sluta med .sflisp (source FLISP) för att kännas igen som en 
källtextfil för FLISP. Färgad syntax används för att hjälpa dig 
upptäcka enklare stavningsfel.  

Börja med att skapa ett lämpligt arbetsbibliotek för dina filer, (här har 
vi valt C:\laborationer men du vill säkert placera dina filer på 
något annat ställe). Använd Navigator, fliken Directory och välj 
arbetsbiblioteket, se även figur i marginalen.  

Du skapar en ny källtextfil genom att välja  File | New från menyn. 
Därefter skriver du in namnet på den fil du vill skapa, skriv nu 
Moment1 och klicka på Save. Om du inte anger något filnamnstillägg 
lägger DigiFlisp automatiskt till .sflisp. Nu skapas ett nytt fönster: 
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DigiFlisp:s skapar ett nytt fönster där du kan redigera din källtext. 

I Navigator, växla till fliken  Files, här har du en översikt av alla filer i 
ditt arbetsbibliotek. Expandera FLISP assembler source 

 

Uppgift 16.1 

Skriv nu in en källtext med följande instruktionssekvens:  

   
 

 

Observera hur texteditorn färglägger din text: 
� Ett giltigt symbolfält färgas grönt
� En giltig instruktion (eller ett assemblerdirektiv) färgas blå
� En giltig operand (eller argument till direktiv) färgas röd 
� Kommentarer färgas grå. 
Notera speciellt hur instruktionen: 
 STAA  $FB 

färgas grön, dvs. tolkas som en symbol. Detta beror på att vi 
(avsiktligt) stavat instruktionen fel: rätt stavning är STA. Låt felet 
vara kvar, vi ska strax rätta till det.  

� Rader som inleds med ’;’ tolkas som kommentarer. 
� Med direktivet ORG (origin) anger du programmets startadress. 
� Dollartecknet anger att påföljande talvärde ska tolkas på 

hexadecimal form ( $FB = FB16). 

För att spara filen använder du nu  File | Save. 

Om du snabbt vill göra en kopia av denna källtext gör du File | Save As 
och väljer ett nytt namn.  
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16.1.2 Assemblering 
Vid assembleringen översätts källtexten till en laddfil som innehåller 
maskinkoden, med tillägget .s19 av den inbyggda assemblatorn. 
Dessutom skapas ytterligare en laddfil, med annorlunda format och 
med tillägget .fmem,  som även kan användas med den fasta styr-
enheten i DigiFlisp.  Slutligen skapas också en listfil (med tillägget .lst) 
som kortfattat kan sägas innehålla information från såväl källtexten 
som laddfilen. 

Du kan välja på två olika sätt att assemblera källtexten. 

1. Välj från menyn File|Assemble från menyn, då öppnas en 
dialogruta där du får ange namnet på den fil du vill 
assemblera.  

2. I Navigator|Files, välj den fil du vill assemblera, högerklicka 
och välj Assemble FLISP source. 

Uppgift 16.2 

� Assemblera filen  Moment1.sflisp 

Assemblatorn kommer att klaga på den felstavade instruktionen: 

 
Felutskrift från assemblator 

Efter filnamnet, med fullständig sökväg (som kan se annorlunda ut i 
ditt exempel) skrivs radnummer inom parentes, därefter typ av fel. 

’Illegal mnemonic’ betyder att det inte finns någon sådan 
instruktion (STAA). 

� Dubbelklicka nu (vänster knapp) på felutskriften. Markören i 
marginalen pekar ut raden i källtextfilen som genererat felet. 

  
� Det är meningslöst att försöka testa ett program som gett 

felutskrift vid assembleringen. Rätta därför felet och assemblera 
på nytt. 

 

Tänk på att korrekt ”färgad syntax” inte nödvändigtvis innebär att ditt 
assemblerprogram är korrekt: det är snarare till för att göra dig 
uppmärksam på enklare stavfel, syntaxfel etc. Därför kan det i bland 
hända att du får felmeddelanden även om du stavat såväl instruktioner 
som operander riktigt. 
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16.1.3 Laddfil, konfigurationsfil och listfil 
Laddfilen används för att överföra programmet (som maskinkod) till 
en måldator eller en simulator. Det är knappast nödvändigt att känna 
till laddfilsformatet i detalj men vi visar ändå hur laddfilen 
(Moment1.s19) för vårt programexempel Moment1.sflisp ser ut.  

Exempel på en laddfil.  

Vid assembleringen skapas också konfigurationsfilen  
Moment1.fmem, med det format vi använde i kapitel 14. Detta ger 
dig möjlighet generera testprogram för FLISP:s fasta styrenhet.  

Listfilen (Moment1.lst) kan ofta vara användbar då man testar sitt 
program. Listfilen innehåller dels det ursprungliga assembler-
programmet, men dessutom information om den maskinkod som 
skapats vid assembleringen och på vilka adresser maskinkoden 
hamnat. En del av listfilen för vårt programexempel ser ut på följande 
sätt: 

Listfilen innehåller förutom källtexten information om absoluta 
adresser och den maskinkod som genereras vid assembleringen. 

Listfilen används vanligtvis för att identifiera absoluta adresser som 
man angett med hjälp av symboler. Exempelvis vill man kunna 
kontrollera vissa variablers värden (minnesinnehåll på någon adress) 
eller sätta så kallade brytpunkter för programexekvering.  

I nästa avsnitt ska vi studera ytterligare funktioner hos FLISP-
simulatorn. Vi använder då en enkel programsekvens som du nu 
skapar i följande uppgift. 

 

Uppgift 16.3 

Instruktionen COMA används för att invertera  (bitkomplementera) 
bitmönstret i register A. Utgå ifrån Moment1.sflisp, skapa en ny 
källtext Complement.sflisp och skriv ett assemblerprogram som 
utför operationer enligt flödesplanen i marginalen. 

Spara programmet: du ska få tillfälle att undersöka det alldeles strax. 
 

  Flödesplan 
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16.2 Simulatorns grundläggande funktioner 
Med FLISP-simulatorns hjälp kan du få en god förståelse för hur 
assemblerinstruktioner fungerar. Du kan utföra ett assemblerprogram 
instruktionsvis och i lugn och ro studera effekterna.  

16.2.1 In- och utmatning 
Vi ska nu fortsätta arbeta med programmet i Complement.sflisp 
från föregående avsnitt. Eftersom programmet läser från och skriver 
till portar (utför in- och utmatning) ska vi göra vissa förberedelser 
innan vi provar programmet i simulatorn.  

Öppna dialogfönstret för simulatorns anslutningar  

Till simulatorn finns också en fristående del som kallas "IO-
simulator" (Input/Output-simulator). Dess uppgift är att simulera 
olika omgivningar till FLISP-datorn, dvs. de enheter som inmatning 
sker från och utmatning sker till. Eftersom IO-simulatorn innehåller 
olika typer av kringenheter och dessa kan kopplas på olika sätt till 
FLISP:s portar måste vi göra vissa inställningar. 

Välj Connect peripherals: 

 
Dialogfönster för IO-simulatorns möjliga anslutningar till in- och 
utportar hos FLISP 

De två minnesadresserna som upplåts för in- och utmatning möjliggör 
totalt 4 portar eftersom vi använder MR och MW signalerna för att 
avkoda riktningen.  

 
Figur 16.1  FLISP avkodningslogik för IO 

De två adresserna FB16 och FC16 är alltså var för sig försedda med en 
inport och en utport, vilket gör att vi kan ansluta maximalt 4 
kringenheter samtidigt. Genom att välja mellan de olika alternativen i 
dialogfönstret kan du kombinera flera olika anslutningar.  

� Välj nu först IO-porten Paralell inport at FC och därefter IO-
enheten 8 bit dipswitch. Klicka på Connect. 

� Välj nu Paralell outport at FB och därefter 8 segment Bargraph, 
klicka på Connect. 

� Klicka slutligen på på OK för att återgå. 
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Två nya fönster skapas nu: DIPSWITCH i IO-simulatorn används för 
att simulera en 8-bitars omkopplare. Omkopplaren används för att ge 
indata till vårt program. 

Dessutom skapas den simulerade utenheten BARGRAPH, en 
ljusdiodramp, som används som indikator för utdata från vårt 
program. 

 

 

 
 

De olika brytarnas lägen på omkopplaren kan nu läsas som ett 8-
bitars dataord från adress FC16: 
 LDA $FC 

Du kan ändra omkopplarnas lägen genom att klicka i de grå/svarta 
fälten.  

 
Ställ in värdet  1  på omkopplaren genom att klicka på fältet för bit 0. 

 
Utdata som skrivs till adress FB16 kan avläsas på ljusdiodrampen: 
 STA $FB 

Värdet i ackumulator A skrivs till ljusdiodrampen. 

  
 

Uppgift 16.4 

1. Öppna filen Complement.sflisp 

Assemblerdirektiv är EQU (equate) kan användas för att definiera 
konstanter och fasta adresser. Om exempelvis en DIPSWITCH  är 
ansluten  till adressen FC16 i måldatorns minne kan vi definiera: 
DIPSWITCH  EQU  $FC 

På motsvarande sätt kan en ljusdiodramp på adress FB16 definieras: 
LED    EQU  $FB 

1. Ändra i källtexten Complement.sflisp så att symbolerna 
DIPSWITCH och LED används som portadresser.  

2. Assemblera filen, rätta eventuella fel.  
3. Du kan starta FLISP-simulatorn via Navigator|Files, expandera 

Loadfile och välj filen Complement.s19, högerklicka: 
4. För att kunna sätta programräknaren PC till programmets 

startadress, 2016, kan vi använda simulatorns monitorfunktion på 
samma sätt som i förra kapitlet. Välj File | Monitor  i FLISP-
simulatorn.  

Röda indikatorer tolkar du som ’1’, medan 
de gula tolkas som ’0’. 

De 8 omkopplarna representeras med fält av grå/svarta 
ytor. Genom att klicka i ett sådant fält ändrar du 
omkopplarens utsignal mellan 0 (off) och 1 (on). 

Din ’klickning’ motsvarar en omställning av denna 
knapp. Du kan ändra varje knapp på samma sätt. 

Flödesplan 
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5. Sätt programmets startadress 2016 i PC och tryck <Enter>. 

 
6. Ställ in följande olika värden på omkopplaren – utför programmet 

med run, dvs. klicka på strömställaren halt/run, du kan ändra 
hastigheten genom att nu klicka på step, prova detta, upprepade 
gånger. Under simulatorns programexekvering ändrar du 
inställningarna på omkopplaren och observerar ändringarna hos 
ljusdiodrampen. Fyll i följande tabell: 

Inställt värde (binärt) Avläst värde (binärt) 

1111 0000  
1010 1010  
1100 0011  

 

 

 Uppgift 16.5   

I denna uppgift används två omkopplare och en visningsindikator för 
hexadecimala siffror (HEXDISPLAY). 

 

 

 

 

Skapa en källtextfil AddAndDisplay.sflisp. Skriv en program-
sekvens som läser av och adderar värden från två omkopplare 
anslutna till adress FB16 (DIPSWITCH_1) och FC16 (DIPSWITCH_2) och 
därefter skriver ut summan på visningsindikatorn ansluten till adress 
FC16, vi bortser här ifrån spill. Skriv färdigt programsekvensen: 
; Symbolfält Mnemonic/

direktiv Operand

DIPSWITCH_1:

DIPSWITCH_2:

HEXDISPLAY:

 ORG $20 

AddAndDisplay:

   

   

Assemblera och testa programsekvensen, rätta eventuella fel. 
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16.2.2 Sju-sifferindikator 
Med en sju-sifferindikator kan man på ett enkelt sätt presentera 
tecken som kan hänföras till de välbekanta siffrorna 0-9. Namnet 
kommer av att det faktiskt går att representera dessa siffror, om än 
något kantigt, med endast sju olika streck, vilka också kallas segment. 
Det finns också ett åttonde segment vars uppgift är att tända en 
decimalpunkt.  

Under detta moment ska du konstruera ett assemblerprogram som 
utför översättning och utmatning av de binära siffrorna 0 t.o.m. 9 till 
motsvarande representationer på sju-sifferindikatorn.  

Sju-sifferindikatorn 7-SEG DISPLAY fungerar enligt följande: 
� Varje bit, i det dataord (8 bitar) som skrivs till utporten, motsvarar 

ett segment på sju-sifferindikatorn. 
� En etta tänder ett segment, en nolla släcker segmentet. 

Översättningen från en siffra (0-9, A-F) till motsvarande sju-
segmentskod beror naturligtvis helt och hållet på vilken typ av sju-
sifferindikator man använder.  

Se exemplet på översättningen av den decimala siffran ’2’ till dess 
motsvarande sju-sifferkod i marginalen. För att representera siffran 2 
måste vi tända de segment som (tillsammans) ger det mest ”2-lika” 
utseendet, i detta fallet segmenten 0,1,3,4 och 6. Detta motsvarar 
hexadecimala talet 5B16 som därför formar siffran två på 
sifferindikatorn 
 

 

Uppgift 16.6 

Följande tabell illustrerar förhållandet mellan  binära koder och sju-
segmentskod. Studera speciellt föregående exempel och komplettera i 
tabellen med med de saknade sju-segmentskoderna. 

 

Decimal 
siffra

Sju-segmentskod 

 Binär 
kod 

Binär form Hexadecimal 
form 

0 0000 0111 0111 3F 
1 0001   
2 0010 0101 1011 5B 
3 0011   
4 0100   
5 0101   
6 0110   
7 0111   
8 1000   
9 1001   
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16.2.3 Statisk minnesinitiering 
Med ”statisk minnesinitiering” menar man att ett bestämt värde 
placerats på en given adress innan programmet startas.  

Detta görs med assemblerdirektivet  FCB (Form Constant Byte) som 
instruerar assemblatorn att placera ett värde i måldatorns 
primärminne.  
 FCB värde

Flera argument (värden) kan ges med direktivet. Dessa måste då 
skiljas åt med kommatecken.  

 FCB värde1,värde2,värde3 etc.

Observera att inga blanka tecken får finnas mellan värden och 
kommatecken. 

Uppgift 16.7 

Följande exempel illustrerar en tabell, med start på adress  7016.  
Tabellen innehåller de decimala värdena 0–9. 
 ORG  $70 
 FCB  0,1,2,3,4,5,6,7,8,9 

Om tabellen är stor kan man dela upp den i flera rader, 
assemblerdirektivet ska då upprepas. Följande konstruktion är 
exempelvis ekvivslent med ovanstående: 
 FCB  0,1,2,3,4 

 FCB  5,6,7,8,9 

 
Skapa en ny källtextfil DisplaySeg.sflisp och lägg här in en 
liknande tabell som i stället för de decimala värdena innehåller de 
segmentkoder du bestämde i föregående uppgift. 
; Symbolfält Mnemonic/

direktiv
Operand

 ORG $70 

Segmentkod: FCB 

   
 

 

 

I ett flödesdiagram kan vi symboliskt skriva:  

 A�M(X+A) 
Dvs.  
� Bestäm en minnesadress genom att addera X och A. 
� Placera innehållet på denna adress i A. 

Motsvarande operation utförs av assemblerinstruktionen: 
  LDA A,X  
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Uppgift 16.8 

I denna uppgift skapas en programsekvens där vi läser ett värde från 
omkopplaren ansluten till adress FC16, använder detta värde för att 
indexera i en tabell med start på adress 7016 och slutligen skriver ut 
det indexerade tabellvärdet till sjusifferindikatorn som är ansluten till 
adress FB16.  
� Fortsätt nu med DisplaySeg.sflisp, dvs. tabellen med start 

på adress 7016 som innehåller segmentskoder för siffrorna 0..9 i 
tur och ordning. Skapa programtexten enligt flödesplanen i 
marginalen och färdigställ följande:  

 
; Symbolfält 

Mnemonic/
direktiv Operand

DIPSWITCH:

SEGMENT7:

   

 ORG $20 

DisplaySeg:

DisplaySeg_1:

 ORG $70 

Segmentkod:

   
� Assemblera och rätta eventuella fel, koppla 7-SEG DISPLAY till 

adress FB16  och DIPSWITCH till adress FC16. 
� Använd simulatorn och övertyga dig om att programmet fungerar 

som det ska, dvs. ställ in värdena 0 t.o.m. 9 ( 00002 –10012 ) på 
omkopplaren och läs av sifferindikatorn. 

� Om du gjort allting rätt ska programmet kunna visa siffrorna 0–9 
på sifferindikatorn.  Om inte, felsök och rätta i programmet och 
tabellen. 

� Prova slutligen med att ställa in värden som är större än 9 på 
omkopplaren. 

 

Eftersom segmentkodtabellen bara innehåller segmentkoder för de 10 
första fallen kommer värdena 10–15 att resultera i "odefinierade" 
segmentkoder utanför tabellen. Det finns olika sätt att lösa det 
uppkomna problemet.  

� Komplettera tabellen med någon speciell segmentkod för "fel", 
exempelvis 'E' för alla otillåtna värden hos indata. 

� Gör en kontroll (jämförelse) av indata och skriv direkt ut 
felkoden om det är ett otillåtet värde.  

 

 Flödesplan 
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16.2.4 Villkorlig  programflödesändring 
Instruktionstypen BCC (”Branch on condition”) används också för att 
ange så kallade ”villkorliga programflödesändringar”, dvs. beroende 
på hur någon test har utfallit så utförs antingen den ena ”grenen” eller 
den andra. Vi ska nu titta närmare på hur detta är tänkt att användas. 

 

Evaluering av villkor 

Villkorsevaluering kan göras explicit med speciella test- eller 
jämförelse-instruktioner. För jämförelse av två operander kan någon 
av följande instruktioner (compare) användas: 

Mnemonic Funktion Operation

CMPA Jämför A med minne (A)–(M) 

CMPSP Jämför SP med minne (SP)–(M) 

CMPX Jämför X med minne (X)–(M) 

CMPY Jämför Y med minne (Y)–(M) 

Observera att även andra instruktioner sätter flaggor på samma sätt 
som dessa. Det kan exempelvis vara överflödigt att använda en jäm-
förelseinstruktion direkt efter en aritmetikinstruktion.  

För test av en operand kan någon av följande instruktioner användas: 

Mnemonic Funktion Operation

TST Testa minnesinnehåll (M)–$00 

TSTA Testa register A (A)–$00 

 

Testinstruktionerna påverkar endast Z- och N-flaggorna. Även dessa 
kan i vissa fall utelämnas, då många andra instruktioner påverkar 
flaggorna på samma sätt.  
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Villkorstest

14 olika villkor (condition codes)  kan anges, 

Assemblersyntaxen är: 
 Bcc <symbol> 

Där cc står för något flaggvillkor givet i tabellen nedan och 
<symbol>  är någon lägesangivelse i programmet. Flaggorna N,Z,V 
och C som används för att bilda de olika villkoren finns samlade i CC-
registret i simulatorns registersektion. 

Mnemonic Funktion Flaggvillkor 
Enkla test 

BEQ “Hopp” om zero  Z=1 
BNE “Hopp” om ICKE zero  Z=0 
BMI “Hopp” om negative  N=1 
BPL “Hopp” om ICKE negative  N=0 
BVS “Hopp” om overflow  V=1 
BVC “Hopp” om ICKE overflow  V=0 

Jämförelse av tal utan tecken 
BHI Villkor: R>M C + Z = 0 
BCC Villkor: R	M C=0 
BCS Villkor: R<M C=1 
BLS Villkor: R
M C + Z = 1 

Jämförelse av tal med tecken 
BGT Villkor: R>M Z + ( N � V ) = 0 
BGE Villkor: R	M N � V = 0 
BLT Villkor: R<M N � V = 1 
BLE Villkor: R
M Z + ( N � V ) = 1 

 

 

Ett exempel på flödesplan och kodning är följande: 
 CMPA #10 
 BCS SANT 
FALSKT: ..  
 BRA SLUT 
SANT: ..  
   
SLUT:

dvs. ”SANT”-grenen utförs om värdet i register A är i intervallet 0..9. 
 
Man kan också koda genom att välja komplementärvillkoret.  I vårt 
fall är exempelvis följande instruktionssekvenser likvärdiga: 
 CMPA #10  CMPA #10 
 BCC FALSKT  BCS SANT 
SANT: ..  FALSKT: ..  
 BRA SLUT  BRA SLUT 
FALSKT: ..  SANT: ..  
      
SLUT:   SLUT:   
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Uppgift 16.9 

I denna uppgift förbättrar vi funktionen hos programsekvensen vi 
skapade under föregående uppgift. 

� Felkoden ’E’ kan visas på sjusifferindikatorn 
enligt figuren till höger. Definiera segmentkoden 
som en konstant enligt:  
SEG_ERROR: EQU 

� Skapa en ny källtext DisplaySegE.sflisp, som en kopia av 
källtexten från föregående uppgift. 

� Modifiera  programsekvensen så att hänsyn tas till icke-befintliga 
segmentkoder, se flödesplanen i marginalen. Färdigställ följande 
assemblerprogram. 

 
; Symbolfält 

Mnemonic/
direktiv Operand

DIPSWITCH: EQU $FC 

SEGMENT7: EQU $FB 

SEG_ERROR EQU 

   

 ORG $20 

DisplaySegE:

DisplaySegE_1:

DisplaySegE_2:

DisplaySegE_3:

 JMP DisplaySegE_1 

   

Segmentkod: FCB 

 FCB 

   

 
� Assemblera, testa och verifiera att programsekvensen fungerar 

korrekt. 
 

 

 
  

Flödesplan 
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16.2.5 Rinnande ljus, fördröjning 
I detta avsnitt ska vi skapa ett  ”rinnande ljus”, och samtidigt se 
exempel på hur exekveringshastigheten påverkar funktion av en 
programsekvens.  
 

Uppgift 16.10 

Flödesdiagrammet i marginalen visar en programsekvens som 
åstadkommer ett "rinnande ljus" på en ljusdisdiodramp. 

� Komplettera följande ofullständiga programsekvens som en 
direkt implementering av flödesdiagrammet i marginalen. Spara 
programsekvensen i filen RunDiode.sflisp. 

; Symbolfält 
Mnemonic/
direktiv Operand

LED: EQU $FB 

   

 ORG $20 

RunDiode:

RunDiode_1:

 JMP RunDiode_1 

   

   
 

� Assemblera filen, rätta eventuell fel. 
� Anslut ljusdiodrampen till adress FB16. 
� Kontrollera programsekvensen med simulatorns funktion run, 

ljusdioderna ska nu tändas en efter en från höger till vänster och 
ge illusionen av ett "rinnande ljus". Kontrollera programmets 
funktion och rätta eventuella fel. 

� Prova nu även programexekvering i högre hastighet (klicka på 
step för att ändra hastigheten). Det "rinnande ljuset" ersätts då av 
ett flimmer på ljusdioderna. 

 
 

 

Eftersom snabb exekvering ger intrycket av att samtliga dioder 
flimrar, beroende på att dioderna tänds och släcks i allt för högt 
tempo, behöver vi fördröja programexekveringen mellan det att en 
diod tänds  och släcks. En sådan fördröjning är lämplig att utföra i 
form av en subrutin. 
 

Flödesplan 
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16.2.7 Subrutiner 
Det är vanligt att man försöker organisera ett program i olika 
funktioner (procedurer) eller som vi vanligtvis, då det gäller 
assemblerspråk, kallar det subrutiner. FLIS-processorn tillhandahåller 
instruktionerna JSR, BSR och RTS för att underlätta modularisering 
av program genom användande av subrutiner. 

En subrutin karakteriseras av att den har ett inträde och ett utträde. 
Inträdet anges oftast genom att man placerar en symbol i 
symbolfältet. Utträdet, dvs. ”åter från subrutin” specificeras av en 
speciell maskininstruktion, RTS.  

Operanden för JSR är en subrutins inträde. Denna kan anges med 
flera olika adresseringssätt, men det vanligaste är en symbolisk 
adress. 

JSR-instruktionen utför två väsentliga operationer: 
� adressen till nästa instruktion sparas på stacken 
� programräknaren initieras med adressen till subrutinen. 

RTS-instruktionen utför operationen: 
� adressen till nästa instruktion återställs från stacken. 

Stackpekaren, register SP, måste alltså ha initierats med en lämplig 
adress innan JSR används. För detta måste man dessuom först ha 
avdelat en lämplig del av minnet för stackanvändningen. 

I följande figur, som delvis beskriver adressrummet i FLISP (en 
fullständig beskrivning finns i appendix E), visar hur 16 bytes har 
reserverats för stackanvändning (adresser 1016–1F16), ytterligare 16 
bytes reserverats för data (adresser 0–F16) och utrymme för 
programkod börjar på adress 2016. 

 
Figur 16.2 Minnesanvändning i FLISP 

För att initiera stackpekaren används då lämpligen instruktionen:  
  LDSP #$20

Vi utformar nu ett nytt huvudprogram RunDiodeDelay för användning 
tillsammans med en subrutin som vi kallar Delay. Flödesplanerna för 
den föregående och den nya lösningen visas i marginalen. 

Då vi utformar subrutinen Delay, måste vi också ta hänsyn till själva 
huvudprogrammet. Av flödesplanen framgår tydligt att såväl register 
A som C-flaggan i register CC används i huvudprogrammet. Deras 
innehåll måste därför bevaras över anropet till subrutinen Delay. 

Följaktligen måste subrutinen Delay spara dessa registerinnehåll innan 
de används, för att avslutningsvis återställs dem.  

Stacken används också för att tillfälligt spara registerinnehåll i sådana 
här fall. Instruktionerna PSH (PuSH register) respektive PUL (PULl 
register) används för detta ändamål. 

Flödesplansymbol för 
subrutin
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Uppgift 16.11 

Flödesdiagrammet i marginalen visar en subrutin Delay.  

Komplettera följande ofullständiga programsekvens av det 
modifierade huvudprogrammet tillsammans med subrutinen. Spara 
programmet i filen RunDiodeDelay.sflisp. 

; Symbolfält Mnemonic/
direktiv

Operand

LED: EQU $FB 

   

 ORG $20 

RunDiodeDelay:

RunDiodeDelay_1:

 JSR Delay 

 JMP RunDiodeDelay_1 

   

Delay: PSHA  

 PSHC  

Delay_1:

 PULC  

 PULA  

 RTS  

   

   
 

� Assemblera filen, rätta eventuella fel. 
� Anslut ljusdiodrampen till adress FB16. 
� Kontrollera programsekvensen med simulatorns största 

exekveringshastighet. Ljusdioderna ska nu tändas en efter en från 
höger till vänster och ge illusionen av ett "rinnande ljus". 
Kontrollera programmets funktion och rätta eventuella fel.  

 

 

16.2.8 Terminal, parametrar och returvärden 
En terminal är en kombinerad in- utmatningsenhet för 
inmatning av ASCII-tecken från ett tangentbord och 
utmatning av ASCII-tecken till en bildskärm. I detta 
avsnitt använder vi FLISP-simulatorns termin al för 
att dels illustrera enkel parameteröverföring till och 
från subrutiner, dels för att visa hur du kan använda 
brytpunkter då du testar ett program. 

Flödesplan för subrutinen 
'Delay'

 
FLISP-simulatorns terminal 
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Terminalen ansluts till två portar samtidigt, en utport och en inport. 
Ett tecken som matas in i terminalens fönster (svart) blir tillgängligt 
på terminalens inport, adress FC16. Tecknet finns kvar tills det 
kvitterats  genom att 0 skrivs till terminalens utport, adress FB16.   

Tecken matas ut till terminalens fönster genom att ett 7-bitars ASCII-
tecken (1-7F16) skrivs till utporten. För en fullständig beskrivning av 
ASCII-koderna, se appendix G. 

Parametrar och returvärden i register 

För att ge en så enkel användning av terminalen som möjligt 
definierar vi två olika subrutiner: 

� TerminalOut, skriver ett tecken till terminalens bildskärm. 
� TerminalIn, läser ett tecken från terminalens tangentbord.  

Register A kan användas för att rymma ett enstaka 7-bitars ASCII-
tecken. En lämplig konvention är då att överföra tecknen till 
TerminalOut respektive från TerminalIn via register A. 
Utmatningsrutinen kan då beskrivas på följande sätt (se även 
flödesplanen i marginalen). 
; subrutin TerminalOut
; Skriver ett ASCII-tecken till terminalens bildskärm 
; Parametrar:  Register A, tecken som ska skrivas 

Uppgift 16.12 

Vi kan använda subrutinen för en programsekvens som matar ut en 
textsträng till terminalen. Ett nytt assemblerdirektiv kommer då till 
användning: 
 FCS "ascii text" ; Form Constant String 

Med direktivets hjälp skapar vi alltså en sträng med ASCII-tecken i 
minnet. För att markera strängens slut är det brukligt att placera 0 
efter ascii-tecknen. Skapa en ny källtextfil HelloWorld.sflisp, 
implementera programsekvensen enligt flödesdiagrammet. 
 
; Symbolfält Mnemonic/

direktiv
Operand

 ORG $20 

HelloWorld: LDSP #$20 

 LDX #Text 

HelloWorld_1:

HelloWorld_2:

   

TerminalOut:

Text: FCS "Hello World" 

 FCB 0 
   

 

 

Flödesplan för enkel 
utmatningsrutin 

 

Flödesplan för 
programsekvens som matar 

ut en textsträng  
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Då terminalfönstret är aktivt skickas tecken från tangentbordet till 
terminalen. Tecknet placeras i en intern buffert och blir tillgängligt 
för ett program.  

Subrutinen TerminalIn, undersöker om det finns något tecken i 
bufferten. Om bufferten är tom innehåller den tecknet 0; om en 
tangent tryckts ned innehåller bufferten ASCII-tecknet för tangenten. 
För att indikera för terminalen att tecknet tagits om hand måste det 
kvitteras genom att 0 skrivs till terminalens utport.  
; subrutin TerminalIn
; Läser ett ASCII-tecken från terminalens tangentbord 
; Returvärde:  Register A, tecken som lästs från
; tangentbordet 
 
Subrutinen TerminalIn "väntar" alltså på att en tangent trycks ned, 
kvitterar ASCII-tecknet och returnerar sedan koden för den 
nedtryckta tangenten. 

Uppgift 16.13 

För att kontrollera funktionen skapar vi ett enkelt testprogram, Echo, 
som kontinuerligt läser ett tecken från terminalens tangentbord för att 
därefter skriva samma tecken till terminalens bildskärm. Färdigställ 
följande programsekvens och implementera den i filen 
Echo.sflisp, vi testar den i nästa uppgift. 

; Symbolfält Mnemonic/
direktiv

Operand

 ORG $20 

Echo:

Echo_1:

   

TerminalIn:

TerminalOut:

   

   
 

Brytpunkter 

En brytpunkt kan sättas på på en adress i programmet som innehåller 
en operationskod. Då simulatorn ska utföra instruktionen och 
upptäcker att dess adress överensstämmer med någon brytpunkt 
stoppas i stället exekveringen. Detta ger dig ett bekvämt sätt att 
exekvera programmet tills något villkor är uppfyllt eller helt enkelt 
till någon speciell subrutin, där du sedan kan undersöka 
programexekveringen i detalj. 

Flödesplan för enkel 
inmatningsrutin 

 

 Flödesplan för test av 
inmatningsrutin
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Brytpunkter kan sättas på någon adress med användning av 
brytpunktstabellen. För att bestämma vilken adress brytpunkten ska 
placeras på är det lämpligt att använda den listfil som skapas vid 
assembleringen. 

Lägg till en brytpunkt genom att högerklicka på en rad i 
programfönstret. 

 
Två alternativ ges nu, antingen en tillfällig brytpunkt, Go to..., eller en 
permanent brytpunkt (Set breakpoint). Den tillfälliga brytpunkten 
använder du då du vill stoppa programmet en gång vid denna punkt. 
Permanent brytpunkt används då programmet ska stoppas varje gång 
programmet når denna adress.  

En brytpunkt illustreras genom att raden får en röd bakgrund, för en 
tillfllig brytpunkt är texten svart, för en permanent brytpunkt är texten 
vit. 

För att ta bort en permanent brytpunkt högerklickar du på den 
uppmärkta raden och väljer Remove breakpoint. 
 

Bekanta dig snabbt med brytpunktsfunktionerna innan du utför nästa 
uppgift. 
 

Uppgift 16.14 

� Assemblera filen Echo.sflisp. 
� Ladda programmet till simulatorn. 
� Anslut terminalen till portarna. 
� Öppna listfilen Echo.lst och lokalisera subrutinen TerminalOut, 

använd monitorns programsektion och sätt en brytpunkt på 
adressen till subrutinens första instruktion. 

� Starta programmet, aktivera (klicka i) terminalfönstret och skriv 
in tecknet ’b’. Programmet ska nu stanna på den första 
instruktionen i TerminalOut. Fortsätt med att stega instruktionsvis 
och kontrollera att tecknet ’b’ nu också skrivs till terminalens 
bildskärm. 

� Ta bort brytpunkten och starta programmet igen, skriv några 
godtyckliga tecken och kontrollera att de skrivs ut korrekt. 

� Prova också med att sätta ut en tillfällig brytpunkt, dvs. Go to....  
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16.2.10 Tangentbord 
KEYPAD är ett enkelt tangentbord med 16 tangenter och lämpar sig för 
inmatning av numeriska värden till ett program. Tangentbordet måste 
avkodas programvarumässigt, till skillnad från terminalens 
tangentbord som genererar ASCII-tecken.  

      
Tangentbordet kan också konfigureras för att generera avbrott, men 
detta återkommer vi till i nästa avsnitt. 

Tangentbordet är organiserat i rader och kolumner. Raderna har 
anslutits till bit 4 t.o.m bit 7 i utporten på adress FC16. Kolumnerna är 
anslutna till bit 0 t.o.m bit 3 hos inporten på adress FB16. 

 
För att känna av en tangentnedtryckning måste någon rad i utporten 
aktiveras. Genom att sätta någon bit till '1' aktiveras motsvarande rad. 

Efter att en rad aktiverats kan kolumnerna läsas av från inporten. En 
tangents omkopplarfunktion är sluten då tangenten trycks ned och 
öppen då tangenten släpps upp. Om någon rad aktiverats och någon 
av kolumnerna har logikvärdet '1' betyder detta därför att tangenten i 
motsvarande kolumn är nedtryckt (det kan vara fler än en tangent). 
Om ingen tangent är nedtryckt så läses endast ettor från kolumnerna. 

Med vetskap om vilken rad som aktiverats och vilken kolumn som 
ger indikation ('0') vet vi den nedtryckta tangentens position och kan 
därför också bestämma dess tangentkod.  

Uppgift 16.15 

Undersök tangentbordets funktion. 

1. Anslut enheten KEYPAD. 
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2. Ställ in adressen FB16 och värdet 1016 hos FLISP-simulatorn. 

 
3. ”Tryck ned” (klicka en gång) på tangentbordets första tangent och 

observera hur värdet på inporten ändras. Klicka ytterligare en gång 
för att ”släppa upp” tangenten. 

 
4. Upprepa förfarandet, aktivera andra rader och tryck ned tangenter i 
andra kolumner. 

 

För att avgöra om en tangent är nedtryckt avsöks tangentbordet rad 
för rad, dvs. en rad aktiveras och kolumnerna läses av. Om en 
nedtryckt tangent upptäcks, ska den avkodas och dess tangentkod 
bestämmas. Om ingen tangent är nedtryckt ska en felkod, i detta fall 
FF16, ange just detta. Följande algoritm kan användas för en sådan 
funktion: 
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Uppgift 16.16 

Skapa en ny källtext, CheckKey.sflisp och implementera 
CheckKey enligt flödesplanen. Testa med ett enkelt program enligt 
följande: 

; Symbolfält 
Mnemonic/
direktiv Operand

 ORG $20  

TestCheckKey: LDSP #$20  

TestCheckKey_1: JSR CheckKey  

 JMP TestCheckKey_1  

CheckKey: LDA #$10 ;bitmönster rad 1 

CheckKey_1: STA $FB ;aktivera (nästa) rad 

 LDY $FC ;läs kolumner 

;om nedtryckt,avkoda 

;nästa rad 

;om fler, nästa rad 

;alla genomsökta 

;ingen nedtryckt 

CheckKey_2: LSRA ;tangent nedtryckt... 

 LSRA ;skifta radmönster till

 LSRA ;låg nybble 

 LSRA   

 LSRA  ;.. omvandla radmönster.. 

 CMPA #4 ;.. till radoffset... 

 BNE CheckKey_3 ;.. 0,1,2,3 

 SUBA #1  

CheckKey_3:  ; multiplicera radoffset.. 

 ; med 4 och spara ..  

 PSHA  ; .. på stacken 

 ; kopiera Y till A 

 ; via stacken 

; översätt kolumnmönster 

; till kolumnoffset 

CheckKey_4: ; bestäm tangentoffset 

; som (radoffset*4)+ 

; kolumnoffset 

; balansera stacken 

 RTS   

    

KeyCode: FCB 1,2,3,$A,4,5,6,$B,7,8,9,$C,$F,0,$E,$D 
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Flödesdiagrammet i marginalen visar funktionen GetKey som 
utformats så att den väntar tills en tangent tryckts ned, därefter väntar 
till tangenten släpps upp och slutligen returnerar den nedtryckta 
tangentens värde. 

Lokala variabler 

Register A måste här användas både för att undersöka nedtryckt och 
uppsläppt tangent eftersom registret används för returvärdet fån 
CheckKey. Själva tangentkoden, som ju läses samtidigt som 
programsekvensen detekterar en nedtryckt tangent måste därför 
sparas på något annat sätt. En möjlighet är att först reservera utrymme 
på stacken och sedan använda denna plats för tillfällig lagring av den 
nedtryckta tangentens kod. Då tangenten släppts upp igen kan 
tangentkoden återställas från stacken och returneras i register A. 

Instruktionen LEASP -1,SP kan användas för att minska 
stackpekaren med 1, dvs. reservera 1 byte minnesutrymme. Adressen 
till detta minnesutrymme, dvs. 0,SP, kallar vi symboliskt för keycode. 

 
Flödesplanen i marginalen beskriver en tangentbordsrutinen GetKey 
där följande instruktioner är lämpliga för hantering av den lokala 
variabeln keycode: 

"Reservera keycode” 
 LEASP -1,SP   

”keycode�A” 
 STA  0,SP 

”RETUR(keycode)” 
 LDA  0,SP ; återställ ’keycode’ från stack till register A 
 LEASP 1,SP ; återställ stackpekare
 RTS    ; återgå från subrutin

Vi konstruerar nu subrutinen GetKey. 

 

Uppgift 16.17 

Skapa en ny källtext, TestGetKey.sflisp och implementera 
GetKey enligt flödesplanen. Testa med ett enkelt program på samma 
sätt som tidigare.: 

 

 

 
  

Flödesplan för 
tangentbordsrutin 'GetKey' 
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Uppgift 16.18 

I denna uppgift ska du konstruera ett program DisplayKbd som visar 
den sist nedtryckta tangenten som en hexadecimal siffra på en 
sjusegmentsindikator. 

 

Programmet ska delas upp i  

� huvudprogram DisplayKbd. 
� subrutin för tangentbordsinmatning, GetKey enligt föregående 

uppgift. 
� subrutin för utmatning av hexadecimal siffra (0..F16) på en 

sjusegmentsindikator DispSeg7; jämför med Uppgift 16.9. 

För DispSeg7 gäller att rutinen anropas med det hexadecimala värdet 
(tangentkoden) i register A. Alla möjliga tangentkoder ska kunna 
visas och det behövs därför ingen felkontroll. 

� Skapa en ny källtextfil DisplayKbd.sflisp. Återanvänd kod 
från tidigare uppgifter. Börja sedan med att komplettera 
segmentskodtabellen med giltiga sjusegmentskoder för de 
hexadecimala värdena A16 till och med F16. 

� Utforma huvudprogrammet enligt flödesdiagrammet i marginalen 
och färdigställ enligt följande. 

 
; Symbolfält 

Mnemonic/
direktiv Operand

SEGMENT7: EQU $FC 

   

 ORG $20 

DisplayKbd:

DisplayKbd_1:

 JMP DisplayKbd_1 

   

GetKey: ... enligt tidigare... 

   

DispSeg7:

 RTS  

Segmentkod: FCB 

 FCB 

 FCB 

   

� Kontrollera att programmet fungerar som avsett. 
 

  

Flödesplan för 'DisplayKbd' 

Decimal 
siffra

Sju-segmentskod 

 Binär 
kod 

Binär form Hex 
form

0 0000 0111 0111 3F
1 0001   
2 0010 0101 1011 5B
3 0011   
4 0100   
5 0101   
6 0110   
7 0111   
8 1000   
9 1001   
A 1010   
B 1011   
C 1100   
D 1101   
E 1110   
F 1111   
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16.2.11 Avbrott 
FLISP initieras för avbrott genom att: 

� Stackpekare initieras. 
� En avbrottsrutin, speciellt konstruerad för den 

avbrottsgenererande enheten, konstrueras. 
� Avbrottsvektorn, dvs. adress FD16, initieras med adressen till 

denna avbrottsrutinen. 
� Processorns avbrottsmask, dvs. I-flaggan i CC-registret, nollställs 

så att processorn accepterar ett avbrott då detta aktiveras.  

Uppgift 16.19 

I denna uppgift ska du konstruera en enkel applikation för användning 
av avbrott. 

� En DIPSWITCH ska anslutas till adress FC16 och två indikatorer 
ska anslutas, HEXDISPLAY_1 till adress FB16 och HEXDISPLAY_2 
till adress FC16. 

� Huvudprogrammet ska konstrueras som en ”räknare” som hela 
tiden räknar upp värdet hos HEXDISPLAY_2.  

� En avbrottsrutin ska läsa data från omkopplaren och skriva värdet 
till HEXDISPLAY_1. 

 
 

� Skapa en källtextfil FlispIRQ.sflisp, implementera 
applikationen. 

; Symbolfält 
Mnemonic/
direktiv Operand

DIPSWITCH: EQU $FC 

HEXDISPLAY_1:  EQU  $FB 

HEXDISPLAY_2: EQU $FC 

 ORG $20 

FlispIRQ:

FlispIRQ_1:

   

AtIrq:

 RTI  

 
Flödesplan för avbrottsrutinen 

 
Flödesplan för 

huvudprogrammet 
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För att testa funktionen använder vi en inbyggd simulatorfunktion för 
att generera avbrottsignalen IRQ. 

Avbrottet aktiveras genom att du klickar på 
Interrupt request i monitorfönstret. 

 

 

Då FLISP detekterar avbrottet lyser dioden 
Request. 
 

 

Då FLISP startar avbrottshanteringen tänds 
dioden Acknowledge, samtidigt släcks dioden 
Request. 
 

 

Avbrottet deaktiveras då simulatorn utför 
instruktionen RTI. 

 

 

 

Testa programmet på följande sätt: 

� Stega ett antal instruktioner så att initieringar i huvudprogrammet 
har utförts några värden skrivits till HEXDISPLAY_2. 

� Generera ett avbrott genom att klicka på interrupt request. 
Observera att dioden interrupt pending ännu inte påverkas; det sker 
först då nästa instruktion ska utföras (flanktriggad IRQ). 

� Stega nästa instruktion, observera hur avbrottshantering inleds 
och indikatordioden tänds. Stega igenom avbrottsrutinen och 
notera hur indikatordioden släcks då RTI utförs. 

 

 

Det är vanligt att yttre enheter kan generera avbrott. Exempelvis kan 
tangentbordet fås att generera avbrott (IRQ) genom att menyvalet 
Interrupts aktiveras.  

 
Aktivering av tangentbordets avbrottsmekanism 

Då avbrottsmekanismen hos tangentbordet är aktiverad kommer en 
godtycklig tangentnedtryckning att signaleras till FLIS-processorns 
avbrottssystem. Om även processorns avbrottsmekanism är aktiverad, 
dvs. I-flaggan i CC-registret är 0, kommer avbrottet att betjänas. 
Observera att avbrottssignalen är aktiv så länge någon tangent är 
nedtryckt (nivåtriggad IRQ). 
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Globala variabler 

Överföring av data mellan avbrottsrutin och huvudprogram måste ske 
via ett delat (”globalt”) minnesutrymme. Utrymme för globala 
variabler skapas med assemblerdirektivet  
  RMB  <antal>  ; Reserve memory bytes 

där <antal> anger hur många bytes som ska reserveras. 

För att exempelvis definiera och reservera utrymme för en global 
variabel kbdBuffer som upptar 1 byte, skriver vi: 
kbdBuffer: RMB  1 

Vi kan sedan använda denna för att kommunicera data mellan den 
avbrottsdrivna tangenbordsrutinen och huvudprogrammet. 

 

Uppgift 16.20 

I denna uppgift ska du konvertera programmet från  
  

 
Flödesplan för huvudprogrammet 

Flödesplan för den avbrottsdrivna 
subrutinen
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Uppgift 16.18 för användning med avbrott. Båda subrutinerna GetKey 
och DispSeg7 ska återanvändas i oförändrat skick.  

� Skapa en ny källtextfil DisplayKbdIrq.sflisp. 
� Kopiera subrutinerna GetKey och DispSeg7. 
� Implementera det nya huvudprogrammet DisplayKbdIrq och 

avbrottsrutinen GetKeyIrq enligt flödesdiagrammen i marginalen. 
; Symbolfält 

Mnemonic/
direktiv

Operand

 ORG $20 

DisplayKbdIrq:

   

   

GetKeyIrq:

   

GetKey: ... som tidigare... 

DispSeg7: ... som tidigare... 

   

 ORG 0 

kbdBuffer RMB 1 

   

Glöm inte att aktivera tangentbordets avbrottsmekanism då du testar 
programmet. Kontrollera funktionen och rätta eventuella fel 
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16.2.12  Otillåten operationskod 
Instruktionslistan innehåller ett fåtal otillåtna operationskoder. Då 
FLISP försöker avkoda en sådan vidtar i stället undantagshantering 
och i följande uppgift ser vi exempel på hur sådan kan utföras. 

Uppgift 16.21 

I denna uppgift ska du konstruera en hanteringsrutin för ”otillåten 
operationskod”, som bestämmer och skriver ut den otillåtna 
operationskoden till en HEXDISPLAY och därefter återupptar 
exekveringen efter den otillåtna operationskoden. 

� Skapa en källtext IllegalOp.sflisp.  
� Färdigställ följande följande program där hanteringsrutinen 

IllOpService är ofullständig. I rutinen har stacken följande 
utseende: 

 

Vid detta undantag pekar PC 
på instruktionen omedelbart 
efter den otillåtna 
operationskoden. 

 

 

 

 
; Symbolfält Mnemonic/

direktiv
Operand

HEXDISPLAY: EQU $FB 
   
 ORG $20 
IllegalOp: LDSP #$20 
 LDX #IllOpService 
 STX $FE 
 NOP  
 FCB $DF 
 NOP  
 FCB $EF 
 NOP  
 FCB $FF 
 NOP  
 JMP IllegalOp 

   

IllOpService: LDX 

 LDA 

 STA HEXDISPLAY 

 RTI  

   

   

� Assemblera, rätta eventuella fel och ladda därefter till simulatorn. 
Koppla en HEXDISPLAY till adress FB16. 

� Testa programmet genom att stega instruktionsvis. Utskrifterna 
ska i tur och ordning vara DF, EF och FF. 
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16.2.13  RESET 
Som sista övningsmoment ska du undersöka FLIS-processorns 
återstartsförlopp. 

 

Uppgift 16.22 

Fortsätt arbeta med IllegalOp.sflisp. Placera startadressen till 
programmet (symbolisk adress IllegalOp) på RESET-vektorns plats, 
adress FF16 med hjälp av assemblerdirektiv enligt följande exempel. 

 
; Symbolfält Mnemonic/

direktiv
Operand

HEXDISPLAY: EQU $FB 
   
 ORG $20 
IllegalOp: ... som tidigare 
   

   

IllOpService: ... som tidigare 

   

ORG $FF 

FCB IllegalOp 

   

� Assemblera programmet och rätta eventuella fel. 
� Nollställ simulatorns minnesinnehåll (Clear memory).  

 
� Ladda programmet till simulatorn. 

 
 

� Återställ FLISP (”RESET”) 

 
� Kontrollera att programräknaren PC nu innehåller programmets 

startadress. 

 
 

 

 




