Arbetsbok for DigiFlisp

KOMPLEMENT TILL
"ARBETSBOK FOR DIGIFLISP" (BLA BOK)
FOR ANVANDNING MED NY PROGRAMVARA DIGIFLISP 9.

Arbetsbok for DigiFlisp

I detta forsta kapitel behandlar vi transistorn som en grundldggande
byggsten. Vi kommer inte att berora transistorns fysikaliska
egenskaper dvs. dmnet halvledarteknik, utan enbart transistorns
formaga att upptrada som en stromstillare. Genom att studera nagra
enkla transistorkopplingar kommer du samtidigt att bekanta dig med
logikfunktioner som &r centrala inom digitaltekniken.

1.1 Spénningsnivaer och logikvérden

Inom digitaltekniken arbetar man med tva olika vérden, 1 och 0.
Dessa sa kallade logikvirden (sanningsvarden) motsvaras i digitala
elektronikkretsar av tva olika spanningsnivaer: vi kallar dem hér Vpp
respektive GND. Symbolen Vpp anvinds for att indikera en hdg
spanningspotential, och motsvarande logikvirde 4r 1. Symbolen
GND, eller jordpotential, anvéinds for logikvirde 0.

Omkopplarna anger en punkt som kan kopplas antingen direkt till
Vo, eller direkt till GND i signalvdgen. Genom att klicka pa en
omkopplare kan du éndra dess ldge och didrmed logiknivan i en punkt
i signalvagen.

?f'- Uppat, internt kopplad till Vpp, logikniva 1
;‘O' Nedat, internt kopplad till GND, logikniva 0

Signalnivder kan avldsas pa de sma nivaindikatorerna som &r
placerade omedelbart i anslutning till signalvidgen. Pa vissa stillen,
vanligtvis utsignaler, anvinds négot storre indikatorer. I DigiFlisp
anvinder vi gron eller rod farg for att indikera Vpp, logikvirdet 1,
medan vi konsekvent anvinder ljusgra firg for att indikera
logikvirdet 0.

Uppgift 1.1

1 Navigator|Contents, mérk ditt val,
Transistor level | nMOS gates.

genom att hogerklicka, vélj Open.
Anvind simulatorn och analysera foljande kopplingar uppbyggda
med NMOS-teknik. Komplettera funktionstabellerna.

nivaindikator

X

)

L

omkopplare

jordpotential
(GND)

‘x u e X|y|u . x|y
T 1 . T .
= 0 = 2 00 3 3 00
\-oul x-—lE 1ol1 [_.UEXW 0Of1
“_[. ,,_ﬁ S P 1 1]0
1 1
‘ L 1|1 1|1

R

Arbetsbok for DigiFlisp

Navigator

= Contents
[Transistor level
~nMOS gates
ates

- CMOS transmission gate
[+ Combinatorics

Uppgift 1.2

Vi studerar kopplingar i CMOS-teknik, vilj denna géng
Navigator|Contents:
Transistor level | CMOS gates.

Identifiera nu foljande kopplingar 1 simulatorn, analysera
kopplingarna genom att variera logiknivaerna pa ingangarna och
iaktta logiknivaerna pé utgangarna. Komplettera funktionstabellerna
med utsignalernas logiknivéer (1 eller 0) for varje koppling.

Arbetsbok for DigiFlisp

Grindar realiserar logikfunktioner och dr de byggstenar vi anvénder
for att illustrera storre och stérre logikblock som s& sméaningom
resulterar i en komplett dator.
2.1 Enkla grindar
1 simulatorns Navigator|Contents:

Combinatorics | Elementary logic functions
finns grindar som realiserar de grundlaggande logikfunktionerna.
Omkopplarna kan du klicka pa for att &ndra nivaerna hos grindarnas

ingangar. Ingangarnas nivéer kan avldsas pa de sma indikatorerna
omedelbart till vanster om varje grind.

Utgangarnas nivaer ldser du av pa de storre indikatorerna till hoger
om respektive grind.

|
..
i
®
e

¢
T

Uppgift 2.1

Vilj: Navigator|Contents:
Combinatorics | Elementary logic functions

Verifiera, med hjélp av simulatorn, logikfunktionerna som visas i
Symbol-kolumnen i tabellen.

e Fyll i funktionstabellen till hoger.

e Jamfor funktionstabellerna med dina resultat fran Uppgift 1.2
och identifiera motsvarande CMOS-koppling
(figur 1-5 i marginalen)

e Ange slutligen grindens engelska namn (logiknamn).

[0
XP—D u l
x|y|u
u 4 0|0
ye .-4 -ci u01
¥ Chche BP
- 1)1
o)
* x|y|u
g e[[l o, Jelo
; an y__ljl_| I
— || _* o]]
1)1
S r—i[e:ci»—f') }
LG || HMCHCHD cor—C oo
) ol1
L PEnE
3 .L_I: 1)1
-- X|y|u
L AT, [o
T o)
! i 1]0
r:._ 1)1

Symbol CMOSs- Grind Funktionstabell
koppling (logiknamn)
(1-5)
X u
X— 1 p—u ’
1
X y u
0 0
;_ & —u 0 1
T 1|0
1 1
X Yy u
0 0
X
y_1>1(=u o [1
T 110
1 1

Navigator B x>

[Contents
[Transistor level

Switchbox

2. Piatamath

<

Arbetsbok for DigiFlisp Arbetsbok for DigiFlisp

3

[

2.2 Grindar med sammansatta [ogikfunkﬁoner "EXKLUSIVT ELLER" (XOR) é&r ett annat viktigt exempel pa en
grundlidggande sammansatt logikfunktion.
Grindar som kombinerar olika logikfunktioner ir vanliga. Speciellt

viktiga dr de grindar som realiserar "NOT-AND” (NAND) respektive

"NOT-OR” (NOR). Uppgift 2.3 =) Contents
Funktionen NAND bildas genom att en INVERTERARE ansluts Vilj (Navigator|Contents): 5 Jansstorlevel
direkt till utgangen pa AND-grinden. Denna sammansatta funktion))) . i~ Elementary logic functions
indikeras i symbolen for NAND genom att utgéngen forsetts med en Combinatorics | XOR-function HAYmNBCD
. . - conve
liten ring: Analysera symbolerna och anvind simulatorn for att ge de svar som Ful adder
1 . krivs for att komplettera foljande tabell.
&] & = 1 1] & Symbol Grind Boolesk Funktionstabell
— logiknamn | Funktion
X y u
Logiskt NOT-AND - "NAND” X—] 0 0
Pa motsvarande sitt bildas funktionen NOR: y_ =1 u S é
1 1
>1 _ — Ty =
Logiskt NOT-OR - "NOR” :1 O— u 0 1
y_ 1 0
i . . X 1 1
Forutom kombinerade grindar kan vi ocksa skapa grindar med flera
ingangar som exempelvis en 3-ingdngars NAND-grind.
(Uppgift 2.2 XOR-funktionen kan realiseras pa olika sétt, med hjélp av enkla
11 P® Verifiera, med hjilp av simulatorn, (Combinatorics | Elementary logic grindfunktioner. Simulatorn végleder dig i foljande uppgifter.
) functions) de sammansatta logikfunktionerna NAND och NOR.
—
o | | &[0 Fyll i funktionstabellen till hoger, i kolumnen Grind logiknamn anger du Uppgift 2.4
3 :'J symbolens engelska logiknamn och i kolumnen Boolesk funktion ger du »)
| it “121 o detbooleska uttrycket for utsignalen u. Analysera foljande koppling.
Symbol Grind Boolesk Funktionstabell
o &k logiknamn funktion X 1
——or{ @ X y u :] [_
o X_ & 0 0 & ©
o]z pe y— o—u 0 1 y 1 F
’ 1 0 @ 21 p—u
== 1 1
- & @ x y u & @
™ X— 0 0
>1 o—u o 1 4 ,
y—] 0 Uttryck nu funktionerna A, B, C, D och u som booleska funktioner av
insignalerna X och y.
1 1
R R A=fy)= 7 B=f(x)= % | c=fluy)=
X— 0lo1 D=f(x,y)= u=f(x,y) =
0|10
y— & p—u 011
| Anvind simulatorn och studera nitets signaler (AB,C,D och u) for
z 11010 L . .
1101 olika insignaler x och y. Komplettera tabellen i marginalen och
T 1110 jamfor med dina funktioner ovan.
1 1 1

Arbetsbok for DigiFlisp

I detta kapitel ges en introduktion till kopplingsboxen, och efter att ha
arbetat igenom kapitlet kommer du att sjalvstindigt kunna koppla och
analysera grindnédt med varierande komplexitet.

Vilj Switchbox|New switchbox.

Kopplingsboxen bestar av en arbetsyta som inledningsvis ar tom.
Genom att placera markdren i det vita arbetsféltet och hogerklicka,
kan du vilja nagon av kopplingsboxens komponenter och dérefter
placera ut denna nagonstans pa arbetsytan.

Toolbax "X

Switch (16 of 16)
Losd drpming from e Gates

Detders
Figtops
Mecrbrran

Navigator

[=- Contents
- Transistor level
Combinatorics

- Switchbox

-- Datapath

0 el

3.1 Inledande demonstration

Uppgift 3.1

Du ska borja med att verifiera de viktiga kommutativa lagarna inom
boolesk algebra med hjélp av kopplingsboxen, se punkt 1 i figuren i
marginalen.

Det forsta sambandet siger att:
XXy = yxx
dvs. att:

X AND y = y AND x

Det krévs alltsa nu tva AND-
grindar, en for varje led. Vilj

Add component | Gates | 2-input AND

Flytta nu ut markéren i kopplingsboxens arbetsyta; du ska se
komponentens siluett.

Placera komponenten pa arbetsytan genom att
klicka pa vinster knapp.

Satser fran boolesk algebra

1. Kommutativa lagar
KXY=yXX
X+y=y+x

2. Distributiva lagar
XX (yt+z)=xxXy+xxz
xt (yxz) = (x+y) x (x+2)

3. x+0
xx1
4. x+x=

XXR=
5. x+1
xx0 =
6. x+x
XXX =

X
X

okl

|
X X O

7. Associativa lagar
x+ (y+z) = (x+y)+z
xx (yxz)=(xxy)xz

8. De Morgans lagar

(xFy) = (Xx7)
(XXY) = (X+Y)
9. a:x

Multiplikationstecknet (x) uteldmnas

oftast dir det inte kan missforstas och vi

skriver exempelvis enklare:

xy i stillet for xxy

10

Arbetsbok for DigiFlisp

B Y

[0 -on

e 00

Load drawing from fie Gates ’
Clear drawing Decoders ’
Save drawing to fle Flipflops ’

T Miscelaneous ¢

Analyze

[%]
]

-

{»
o]

1

Add compaonent »

Load drawing from file
Clear drawing
Sawve drawing to file

ET—

Clock

Design

Komponenten ritas nu om och far dessutom sma indikatorer som visar
signalnivaer (0 eller 1) pa ingangar och utgéng. Varje ingang har ett
litet "fonster" dir du kan skriva in savil konstanta vérden, 0 eller 1,
som nagot godtyckligt variabelnamn. For nya komponenter dr detta
virde alltid 0. Komponentens utgdng har ett namn som bestdms av
kopplingsboxen, i detta fall "u0". Du kan anvinda denna utsignal om
du vill koppla utgangen till en annan komponents ingang.

Placera ut ytterligare en AND-grind.

Du kan skapa oberoende variabler med hjilp av stromstdillare
(switch). Placera ut tvé stromstillare.

;D
ID
jo -&&_DDID -O-&
ul
50 0 = |U'O'

—

Definiera nu tva variabelnamn x och y genom att ange dessa i
stromstillarnas kontrollfonster (se marginalen).

Variabelnamn som du har deklarerat pa detta sétt kan nu anvindas
som insignaler till komponenter i kopplingsboxen.

Ge nu insignaler till de bada AND-grindarna genom att placera
markoren i det fonster som hor till ingangen och skriva in namnet pa
den variabel som ska kopplas till ingdngen.

|x = ly =0
o & pow o &

" ul

Notera att den forsta grinden realiserar x AND vy, medan den andra
grinden realiserar y AND x.

Det 4r nu dags att simulera kopplingen.

Hogerklicka nédgonstans i kopplingsboxens arbetsyta och vilj Analyze
(se marginalen).

Nu hénder flera saker: Fonster som tidigare kunde redigeras, blir gra
och kan inte lingre &ndras. Du kan inte heller placera ut nya
komponenter i detta lige.

50

g

(ERBSY
I-.—-_-o-&

P ud I 1 & = ul
¥ =

[
[}

1

Menyvalet Analyze byter namn till Design. Du gor detta val for att
aterga till det ldge ddr du kan redigera din koppling. Dessutom har du
menyvalet Clock, som vi strax aterkommer till (se marginalen).

11

Arbetsbok for DigiFlisp

Du kan nu dndra de oberoende variablernas véirden genom att klicka
pa strombrytarena. For att verifiera den forsta kommutativa lagen
(xy=yx) maste du undersoka de bada utsignalerna u0 och ul for
varje insignalskombination. Gor detta och fyll i foljande tabell.

Den andra satsen av de kommutativa lagarna séger att x+y = y+x,
vilket innebdr att tvd OR-grindar ska anvdndas. Du ska nu ocksa

verifiera sambandet @=x genom att koppla samman tva
inverterare.

Uppgift 3.2

For att dndra eller bygga vidare pa din koppling klickar du pé Design.
Du far da tillbaka de vita dndringsbara filten.

Placera ut tvd OR-grindar pa foljande sitt:

ERC =S 51 ly =0

e U4
PR, i T o

>1 pous

Om du har kvar dina AND-grindar och stromstéllare kommer OR-
grindarnas utgangar har att tilldelats signalnamnen u4 och u5 av
kopplingsboxen.

For varje kombination av insignaler, fyll i utsignalerna u4 och u5 i
foljande tabell:

Verifiera nu sambandet (X)=x genom att koppla samman tvd
inverterare enligt foljande figur. Dvs. du kopplar samman utgangen
fran den forsta inverteraren med ingangen till den andra genom att
skriva utsignalens namn i den andra inverterarens insignalfonster.
Komplettera avslutningsvis foljande tabell:

Arbetsbok for DigiFlisp

uX, namn pa utgangssignaler
som tilldelas av kopplings-
boxen i den ordning kom-
ponenter sitts ut. De kallas
ocksa beroende variabler.

Oberoende variabler dr de
(godtyckliga) variabelnamn du
sjalv infor med hjalp av
stromstéllare.

12

21 =
—1p
&
—1&
=1
=1 =
=1
o o
1 1
. N] i
s [4
0 3 5
Lo °
7
El
o e}l T%
—
—
Add compaonent 3

Load drawing from file
Clear drawing
Save drawing to file

Analyze

Delete

D Q s a
[4>c1 ap= =411
J_|_-/C1

=s . L

o 9~ d=r ©

_J-ERmG:)-—ﬂ Q

4:c1 @

3.2 En dversikt av kopplingsboxen

Med kopplingsboxen kan du simulera enkla uppkopplingar av digitala
nét. Du har 26 olika komponenter att vilja mellan (se nagra exempel
pa symboler i marginalen). Du kan ocksd anvinda upp till 16
oberoende invariabler i form av stromstillare.

Kopplingsboxen har tva olika ldgen, for redigering eller simulering.

Redigering — Hir kan du placera ut komponenter pa arbetsytan. En
komponent kan ha en eller flera insignaler som maste definieras,
insignalerna ska vara nagon av:

e Konstanten 1
e Konstanten 0

e uX (eller gx) utsignalen fran ndgon komponent (X) i nitet

e nagon oberoende variabel, som du sjilv definierar
genom att placera ut en stromstillare och skrivain | IEI
variabelns symboliska namn i ett inmatnings- [
fonster. Namnet far bestd av hogst 4 ASCII-tecken E—
som far vara A-Z och/eller 0-9. Forsta tecknet i
variabelnamnet maste vara en bokstav.

I redigeringsldget har alla inmatningsfonster vit bakgrund och
innehallet kan #ndras. Andring av komponenters insignaler
reflekteras dock forst da kopplingsboxen forsitts i simuleringslige.

Redigeringsléget tillater ocksa att du

e Sparar kopplingen (Save drawing to file)
e Laddar en tidigare sparad koppling (Load drawing from file)
e Rensar arbetsytan (Clear drawing)

Simulering — D& du &r firdig med nitet, dvs. har placerat ut dina
komponenter, redigerat insignalerna till varje komponent och
dessutom definierat de oberoende variablerna du anvinder, viljer du
du pé Analyze. Kopplingen kontrolleras dé och alla utsignaler bestdms.
Du kan nu #@ndra oberoende variablers virden, genom att klicka pa
stromstillare, och studera hur nitets tillstand paverkas av dessa.

Du kan inte dndra innehéllet i ett inmatningsfonster (dessa dr gra). I
simuleringsldget kan du inte heller ligga till eller ta bort
komponenter, du maste aterga till redigeringsléiget for att gora detta.

Vill du flytta eller ta bort en komponent, hogerklickar du med
markoren &ver komponenten. Detta giller bade redigerings- och
simuleringslige.

Klocksignal — Nagra komponenter har en

klockingang C. 1 simuleringsldge kan du generera en
(gemensam) klocksignal for dessa komponenter —
genom att klicka pa Clock. Klocksignalen har ingen =
inverkan pa komponenter utan klockingang.

13

Arbetsbok for DigiFlisp

Arbetsbok for DigiFlisp

Uppgift 7.3

Starta kopplingsboxen, placera ut 4 st. 8-ingangars viljare sé att deras
respektive utgangar far namnen, u0, ul u2 och u3. Definiera
funktionssignalerna £2, £1 och £0, samt for in dessa hos respektive
viljare:

[0 P

Spara kopplingen under filnamnet alu4.tb. Spara kopplingen
fortséttningsvis allt eftersom du bygger vidare pa ALU:n.

“lie

“lie

T&

Vi borjar implementera ALU:ns funktioner, dvs. bilda insignaler for
viljarnas ingéngar. For dessa funktioner véntar vi tills vidare med att
bilda flaggorna N,Z,V och C.

Uppgift 7.4
Implementera funktionerna 0 t.o.m 3, dvs f6ljande:
funktion operation utsignaler

fz f1 fo RTN Us Uz U4 Ug
0/0]0 U=0—-U 0 0 0 0
0 1 U=sD—U ds | dp | di | do
0[1]0 U=Dy—U d, | dy | di | do
011 1 U=DAE dsnes | dones |diner |doneo

Fortsitt nu med att dven definiera insignalerna d3, d2, d1 och do,
respektive e3, e2, el och e0 och slutligen cin.

42

Vi infor hir tva nya logiknivaer (hdgimpedanstillstand och
odefinierat tillstand) som kan upptrada i ndt dér vi vill koppla
samman utgangar fran tva eller flera olika kretsar.

De olika logiknivaerna illustreras i simulatorn enligt foljande:

R&d, kopplad till Vpp, logikniva 'l"

Gra, kopplad till GND, logikniva '0'

Vit, hégimpedanstillstand, inte kopplad till vare sig Vpp
eller GND, logikniva 'Z'

Svart, odefinierat tillstand. Punkten utgor en
kortslutning mellan Vpp och GND, logikniva 'X'.

¢ 0L

Uppgift 9.1
Vilj Transistor level | CMOS transmission gate.

Figuren till hoger visar hur en signal A kopplas via en transmissions-
grind, styrd av signalen EN, till punkten U. Undersok logiknivan i
punkten U och fyll i foljande funktionstabell:

m
=

u

—lo|=|o|>
alalo|lo

I figuren till hoger visas hur tva oberoende signaler A och B kopplas
samman i punkten O, via var sin transmissionsgrind. Undersok
kopplingen och fyll i féljande tabell med de resulterande
logiknivaerna.

A B OEa | OEs 0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Navigator

Bx

[Contents

) Transistor level
- AMOS gates

50

Arbetsbok for DigiFlisp

Vi har tidigare sett hur en ALU fungerar, hur data kan lagras i
minneselement som vi med ett gemensamt ord kan kalla register, hur
vi kan skriva nya data till ett sddant register och hur vi kan ldsa fran
registret. Vi ska nu ocksa se hur flera register kan kopplas samman
via bussar och dirmed paborja konstruktion av en datavdig.

Med hjilp av datavigen och ALU:n ska registerinnehall kunna
bearbetas pa olika sdtt. Data maste darfor kunna Gverforas #ill och
fran ALU:n dér den egentliga bearbetningen utf6rs. Darfor studerar
vi forst hur data kan flyttas runt i datavigen fran ett register till ett
annat register via en databuss. For #@ndamalet krdvs ett antal
styrsignaler; vi kallar detta registeréverforing.

Styrsignalerna talar om varifran data hiamtas och vart data ska
placeras. Négot oegentligt kallas detta ofta att “flytta” data. Det &r
inte det som hinder, utan egentligen kopierar vi data fran ett stille
(kllan) till ett annat stdlle (destinationen). Styrsignaler kan genereras
pé olika sitt, och vi aterkommer till detta ldngre fram. Tills vidare
anger vi styrsignaler i tabellform med penna och papper eller klickar
pé olika symboler i simulatorn.

En koppling for éverforing av data mellan olika register visas i Figur
10.1 nedan. Observera hur ingéngar och utgangar forbinds med en
enda buss for att vi ska kunna flytta data fran ett register till ett annat.

Source
1 Display|
OEs \V/
CP- Al cp Bl cp T epp> R
1 LDs4] LDr— | LDr-

OEx-| \ OEe-| \V/ OEr-| \Vi OEr— \V/

Figur 10.1 Datadverforing mellan register via en buss

Vi ska nu studera hur kopiering av data fran ett register till ett annat
gar till. Ndar man vill flytta (kopiera) data fran ett register maste
registrets OE-signal aktiveras. For registret, vars innehall ska
modifieras, maste LD-signalen aktiveras. Om vi, som exempel, vill
kopiera data som finns i register R till register A maste foljande
styrsignaler ges:

Arbetsbok for DigiFlisp

e OEgR=1 Innehallet i register R kopplas till bussen via three-state-
bufferten. Darmed finns det pa ingangarna till samtliga register.

e LDp=1 Vid nista positiva klockpulsflank laddas register A med
det som finns pa bussen och far samma innehéll som register R.

RTN f6r operationen ar:
R—A (=innehalletiregister R kopieras till register A)

Dé signalerna OER och LD, &r aktiva, verkstills datadverforingen vid
nista positiva klockpulsflank. Ligg mirke till att alla enheter i
systemet &r anslutna till samma klocksignal CP; alla register klockas
foljaktligen samtidigt. Operationen beskrivs ocksa i form av
styrsignaler for datavigen i foljande tabell. Samtliga styrsignaler med
vérdet 1 i raden aktiveras under en klockcykel. En rad i tabellen avser
alltsa en klockcykel.

OEs | OEA | OEg | OEr | OEr | LDa | LDg | LDt | LDr |RTN-beskrivning

0 0 0 0 1 1 0 0 0 R—A

Exempel pa RTN-symboler, fullstandig
tabell finns i appendix

N

Konstanten N uttryckt i
talbasen r.

M(N

Minnesinnehall pa adressen N

—

Kopiering

Féliande symboler &r beteckningar som

reserverats for register
A Register A
T Register T
R Register R

Uppgift 10.1
Styrsignaler for enkel datavig

Fyll i styrsignalvirdena for 6verforingen A — R i foljande tabell.

OEs | OEA | OEg | OEr | OER | LDa | LDg | LDt | LDr |RTN-beskrivning

R—>A

Uppgift 10.2

Styrsignaler for enkel datavig

Fyll i styrsignalvirdena for 6verforingarna:
A—>T,B—>A, T—>B (AB)

i f6ljande tabell.

oEs OEA OEB OET OER LDA LDB LDT LDR RTN-beskrivning

A>T

B—>A

T->B

51

Uppgift 10.3

Vilj alternativet Datapath | Register transfer.

52

Arbetsbok for DigiFlisp

Register transfer X |

Source Source

192
1 Display

OEs— Qv E
U A

m /Modul for att kunna ge bussen olika varden

Klockpuls
Display Ger klocksignal i hela kretsen

Visar bussens varde

cp->a cpi-a B
LD 100" | | p,Jo 00

\LJ/ ‘ Manual control ¥ Resat \3 Clock ‘

cpoa” T| g R
0o 00 Source Output Enable Load Enable
LDT 10 LDR 1

Qo000 QOO0 Frevius
|| H 00 s ABTR ABTR

OEa®y |CEa @y

1 1
OET_OV OER_OV Pooee eeve

Display

=

AN

Source

27

Source Outp
o0
|2? 5 A
¢,
L

Transmissionsgrindar
"Three-state"-buffertar, for att placera ett
registerinnehall pa bussen

Figur 10.2 Datadverforing mellan register

Simulatorns Register transfer, Figur 10.2 visar en datavig, ett antal
register (A, B, T och R), en Data source modul (Source) och en Bus
display modul (Display). Respektive moduls styrsignaler (LD, OE) kan
sittas till O eller 1 med stromstéllarna i den manuella styrenheten.

Genom att klicka pé brytaren Clock ger du en signal pa samtliga
klockingangar (CP) vilket da forsitter kretsen i ett "nésta tillstand".

Raden Previous visar indikatorer for att hjdlpa dig minnas hur du
stillde styrsignalerna innan du klickade pé Clock. En klickning pé
klockpuls innebér att nitets aktiverade register klockar in det som for
tillfillet finns pa bussen.

1. Observera att bussens virde FFs visas i Display-modulen. Detta
kan tolkas som att bussen &r i hogimpedanstillstand och att ingen
enhet for tillfillet ligger ut ndgot virde pa bussen.

2. Skriv in 27,5 i Source-modulen. Enklast &r att mirka upp
siffrorna i fonstret med musen och sedan skriva in ett nytt vérde.

3. Aktivera nu styrsignalen OEs (klicka p& symbolen for
stromstillaren) och....

4. ..notera hur transmissionsgrinden fér Source-modulen aktiveras
och att bussens virde 27,6 nu ocksa visas pa Display-modulen.

Arbetsbok for DigiFlisp

5. Klicka pa Clock ¢ Clock

. notera hur OEs-signalens indikator “foregaende” styrsignal nu
tands. Detta har ingen annan praktisk betydelse &n att hjilpa dig
komma ihdg vilka signaler som var aktiva vid den senaste
klockpulsen.

6. Aktivera nu dven LDa och observera hur de aktiva styrsignalerna
marks ut.

3 Toagin]
1 J - L 1) Manual control ¥ R ¥ Clock

olfo A S — ~ R
L‘E)P Lo 08 |L(I:JP fo 50 L(I:JP—'.(‘ w0 LEI;P o [BA| | Bene Ovpafaih - Losd ki
a1 o 112 P LDs = BOOOE OO0 Mo
X | | 27 sABTR ABTR
r 1 - 1 1 - 1 o v
ooy DEE~|\) v |0Eroy [oEadoy ?ssss Yass

7 n

7. Ge slutligen ytterligare en klockpuls: Vad innehaller register A?

For att flytta runt data mellan de olika registren krivs alltsa att man
forst stiller in lampliga styrsignaler, och dérefter verkstiller
dataflyttningen med en klockpuls. Anvénd nu simulatorns Register
transfer och 16s foljande uppgifter.

Uppgift 10.4

e Sitt signalen OEs till 1
e Andra innehallet i Source-modulen
e Observera vad som hinder pa bussen via Display-modulen.

Still nu in vérdet 38;5 i Source-modulen, aktivera signalen LDg.
Hénder det nagot med innehéllet i register R?

Ge en klockpuls: Hande det nu nagot med innehallet i register R?

Ge en RTN-beskrivning av operationen.

53

54

Arbetsbok for DigiFlisp

5316—A, 2115—T
OEA) OET

Arbetsbok for DigiFlisp

Uppgift 10.5

Virdet 7116 kan placeras i samtliga register A, T och R under en
klockeykel. Ge en RTN-beskrivning av operationen

Ange det nya virdet i Source-modulen samt de styrsignaler som maste
aktiveras for operationen.

|Source| OEs I OEa | OEg | OEr IOER | LDa | LDg I LDy | LDr |

Kontrollera din 16sning med hjélp avsimulatorn.

Uppgift 10.6

Du ska nu undersoka vad som hinder om du aktiverar tvé (eller flera)
OE-signaler samtidigt.

Placera virdet 5C;¢ i register A och virdet 214 i register T. Ligg ut
béada dessa registerinnehall till bussen genom att aktivera signalerna
OEa och OEr, och studera bussens virde i displaymodulen.

Vilket resultat far du? |

Vad kan dra for slutsatser om bussens virde da flera moduler
samtidigt driver bussen (skriver ut pa bussen)?

55

T detta kapitel kompletteras den enkla dataviigen vi hittills anvint oss "‘:i‘"’m = ==
av med en ALU. Med var modifierade arkitektur, se Figur 11.1, och o Tt eve
den enkla manuella styrenheten i Figur 11.2, ska vi nu utfra enklare Coneinetis
databearbetningar som en sekvens operationer kontrollerade av £ Datapath
H . . . - Register transfer
styrsignaler fran styrenheten. I detta kapitel studerar vi alltsa speciellt Datapath with ALU
ALU:ns anvéndning i datavagen. Dot wih L, s o e
i+l Control
funktion operation
vz E|E|R|& RTN
cP Al cp B ofofofo U=0
LDA2 [oo LD [68] nfofolt U=FD1s
0010 U=FE:s
olof11 U=FF:s
of1]0o]o U=E
KK U=Dw+Cin
U ERERLY U=DvE
KRR U=DAE
T{OT070 U=DsE
ILE U=0+Can
T{O0TT]0 U=D +FFs
MMEE U=D+E+Can
]] T{A[0[0] UD+EurCa
OE\{0y |0 Oy ENE U=D<<1 (Cn)
TIT[1[0] U=C)J0>>1
HEEE U=(d-) D >>1

Figur 11.1 Datavéig med ALU och dess funktionstabell

Manual control

& Clear Preset P Clock _|L—"|'Fjadrande” strombrytare for nollstlining,
aterstallning och klockpuls

Output Enable Load

m
=
B
-8
@

ALUf

—+— |11 uppséttningar tvavags omkopplare for
styrsignaler.

Varje uppséttning (steg) motsvarar en
klockpuls.

Den manuella styrenheten kan darfor
utféra "program” om maximalt 11
klockpulser.

Léngst ut till vanster finns en indikator
som &r aktiv (rod) for det steg som star i
tur att utforas.

Fér varje steg finns ocksa en Source-
modul som kan anvéndas for att ge
indata i steget.

State Source 5 ABR ABTR 3210 Cin
® 00555538888 88884
O Todlg 888 8888 88884
O ol g 3359888 88886
O o0 g 588 68859968 &
O [0 5555 6606 80853
® 99 5380 8888 98888 |
O [0 5558 6886 90858
O [0 5558 6888 90858
O 005558 6686 90868
O [o0 g 558 8688 88888
O 00 5558 8888 888584

Figur 11.2 Manuell styrenhet for dataviig med ALU

56

Arbetsbok for DigiFlisp

Exempel pa RTN-symboler, fullsténdig
tabell finns i appendix

Nr Konstanten N uttryckt i talbasen
r.

M(Nr) Minnesinnehall pa adressen Nr

Ett program for den enkla datavigen dr helt enkelt en beskrivning av
hur styrsignalerna ska aktiveras i nagon bestdimd sekvens.
Styrsignalsekvensen maste foljaktligen utformas speciellt for varje
enskild operation man vill att processorn ska kunna utfora. Foljande
generella ”blankett” kan anvindas for att “programmera” den
manuella styrenheten i en f6ljd av steg, dvs. en sekvens, for en

N Kopiering operation.
Féliande symboler &r beteckningar som
reserverats for register RTN steg| Source |OEs|OEa|OEs|OER|LDa(LDs|LDr|LDRr| Cin |f3f2|f1|fo
A Register A
B Register B 1
T Register T 2
R Register R 3
Operatorer 4
+ Addition 5
- Subtraktion 6
A Logiskt "OCH" (AND) 7
v Logiskt "ELLER” (OR) 8
€} Logiskt "EXKLUSIVT ELLER” 9
(XOR) 10
Opr<<d | "Opr” skiftas vanster. Biten d 11

skiftas in i den minst signifikanta
positionen.

d>>Opr | "Opr” skiftas hoger. Biten d
skiftas in i den mest signifikanta
positionen.

Opr’ Bitvis komplementering av
operanden "Opr”

Filt ddr vi uteldmnar
styrsignal 0 eller 1, ska
betraktas som signalen 0.
For att vara sa tydliga som
mojligt kan vi alltsé vilja
om vi vill skriva ut nollan
eller ej.

xx betyder ”don’t care”.

For varje steg anges styrsignaler for registergverforingar (OE och LD),
det finns mojlighet att ange konstanter i operationer och koppla in
dessa 1 datavdgen via Source-filtet. Det har ocksa tillkommit
styrsignaler samt en “carry in”-signal fér ALU:n.

Vi illustrerar hur blanketten fylls i med att konstruera tva olika
styrsignalsekvenser for operationen:

0—A
dvs. nollstill innehallet i register A.

Metod 1: anvind Source-filtet, vars register initieras till 0:

RTN steg | Source |OEs|OEa|OEs|OER|LDa|LDs (LD1|LDr| Cin |fs|f2f1|fo

0—A 71 00 |1[0][0]J0|1][0]0]|0]O0]0j0joj0
Metod 2: anvind ALU’ns funktion for bitvis nollstillning:

RTN steg | Source |OEs|OEa|OEs|OER|LDa|LDg (LDt |LDR| Cin |fa|f2{f1|fo
0—R 1 XX 1 0/0]0]0
R—A 2| xx 111

Av skil som vi ska aterkomma till bor vi alltid vilja 16sningar som
utnyttjar ALU:n snarare &n Source-filtet ddr sadana l8sningar &r
majliga.

Under resten av detta kapitel kan du nu sjilvstindigt konstruera
styrsignalsekvenser for en rad olika operationer som kan utféras pa
datavdg/ALU med denna enkla manuella styrenhet. Vilj Datapath |
Datapath with ALU.

Du kan spara en styrsignalsekvens genom

. k O |FE
att hogerklicka, vilj Save control, och ange ' I

ett filnamn.

% Load control
Save control

Aterstill en tidigare sparad
styrsignalsekvens genom att hogerklicka,
viilja Load control, och ange dess filnamn.

57

Arbetsbok for DigiFlisp

Vi har hittills bara kunnat utféra operationer pa ett fatal variabler
lagrade i datavigens arbetsregister A eller B. Nu utokar vi datavigen
med en minnesmodul som utokar kapaciteten till operationer med en
mingd olika variabler som da dr lagrade i minnet, det dr nu
tillrdckligt med ett arbetsregister och vi tar dérfor bort register B.

Datagath with ALU, flags and memory X

2
‘|
[

Q90
OBon© i

For att kunna adressera minnet har vi infort det speciella registret TA
(temporary address). Vi har ocksa lagt till logik for att kunna vilja
Ci-funktionen till ALU:n med hjélp av styrenheten. Styrsignalerna go
och g1 tillkommer for detta dndamél. Ett nytt register CC (condition
codes) tillsammans med en viljare och ytterligare styrsignaler gz
t.0.m. go anvinds for att samla ihop ALU:ns flaggor.

Manual contral ¥ Clear Praa Pina

Output Enable Load Enable AU Motaiees g Memory
Gigte Bowree 5 ARCC ATTARCE 3 210 9076543210 RW
® 005355550500 00000005008005388
O 100535333355 3333 3355333533 33
O 00535333355 5533 3355333533 33
O 005553 33355 3333 3355333333 33
O I505355555555555555553555533
© 90333555555 5555 5055553355433
O I50535555555355555555553553533
O 005355550583 0083 805500805588
O 005355550580 00538055088005 83
O 005355555550 0550 805508833588
© 905355 25000 2050 9000505005 84

Den manuella styrenheten har kompletterats med stromstéllare for de
nya styrsignalerna. Vi anvidnder ocksa en utdkad blankett”, med
foljande kolumner, vid programmering av den nya styrenheten.

Harvigntor Bx
Contents
i+ Transistor kevel
¥ Combinatorics
¥ Swibchbay
= Datspath
Reguter transter
Diatapath with ALL
Datapath with ALU and memary

Exempel pa RTN-symboler; fullstandig
tabell finns i appendix

Nr Konstanten N uttryckt i
talbasen r.

M(Nr) Minnesinnehall pa adress Nr
MN7] Indirektion: = M(M(N:))

— Kopiering

Féliande symboler &r beteckningar som

reserverats for register

A Register A

T Register T

R Register R

TA Register TA

cc Register CC

Operatorer

+ Addition

- Subtraktion

A Logiskt "OCH" (AND)

v Logiskt "ELLER” (OR)

® Logiskt "EXKLUSIVT ELLER"
(XOR)

Opn<<d| "Opn” skiftas vanster. Biten d
skiftas in i den minst
signifikanta positionen.
d>>Opn | "Opn” skiftas hoger. Biten d
skiftas in i den mest
signifikanta positionen.
Opn’ Bitvis komplementering av
"Opn’

Tabellen med RTN-koder har
kompletterats med symboler
for registren TA och CC.

RTN steg | Source | OEs | OEa | OEr |OEcc| LDa | LDt |LDra| LDg |LDcc|fs |f2|f1|fo|gs

9s/97(9 MR [MW

64

Arbetsbok for DigiFlisp

AV

CP1=

M].fl.l' -
MR+

o
O

Adress
I oo
Minne

[00

Data

=

[

12.1 Simulatorns minnesmodul

Simulatorns minnesmodul har plats for 256 st. 8-bitars dataord.
Styrsignalerna MW (Memory Write) och MR (Memory Read) anvinds
for att skriva till, respektive ldsa fran minnet. MW-signalen &r
synkron, dvs. skrivning till minnet sker vid klockpuls om MW &r
aktiv. MR-signalen &r asynkron, dvs. da MR aktiveras kopplas en
minnescell omedelbart direkt till bussen. Detta kan jamforas med
registrens OE-signaler.

For att underldtta anvéndningen av simulatorns minnesmodul kan
man skriva in data i minnet pa ett forenklat sitt. Minnet har tva sma
”fonster”. ”Adress”-fonstret anger adressen till den minnescell som
for tillfillet adresseras, minnescellens innehall visas i ”Data”-fonstret.

Uppgift 12.1

Placera virdet 15,5 1 minnescell pa adress 10;6. Med RTN skriver vi
denna operation som:

1516 — M(1015) v
‘Adress =l
Anvind "rullningslisten” hos minnesmodulen I 10
for att bladdra fram adressen. P> Minne

MW & 00
MRA & Data x|

AV

Adrass

”Dubbelklicka” i “Data”-fonstret. J I 10
cP{> :
Minne

MW < I-m
MRA O Dﬁia% =~

N

Skr i d d Adress ;I
1v in det nya vérdet.
y o> |:Lo
Minne

Mv4o g

MR A O Data ;I

Metoden dr lamplig att anvdnda da man snabbt vill modifiera
minnesinnehallet for att kunna testa nagon programmerad
minnesoperation.

Arbetsbok for DigiFlisp

13.6 Konstruktion av sekvensierare fér FLISP

I detta avsnitt ska en rdknare med tva styrsignaler konstrueras.
Maskinen konstrueras med D-vippor och enkla grindar. Vi kommer
att anvinda maskinen som sekvensierare i styrenheten i nista kapitel.

Uppgift 13.7

I denna uppgift ska du konstruera en négot mer komplex
tillstdndsmaskin. Maskinen har 16 olika tillstand.

e Riknesekvensen ir 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0...

e Den asynkrona signalen RESET = 1 sitter maskinen i tillstind 0
oavsett vilket tillstand maskinen befinner sig i.

e Den synkrona signalen NF=1 sitter maskinen i tillstind 3 om
maskinen befinner sig i nagot av tillstanden Q4 t.o.m Q5.

Foljande tillstandsgraf beskriver dd maskinen:

12.2 Lascykeln

Minnet kan adresseras via datavigens TA-register.

En lascykel gér till pa foljande sitt:
1. Minnesadress placeras i TA
2. MR-signalen aktiveras.

Om den aktuella adressen inte inte redan finns i TA-registret sa kriver
lascykeln alltsa ett extra steg @n om vi laser data fran ett register i
datavigen.

Eftersom vi hir har fem oberoende variabler men vara
Karnaughdiagram bara later oss hantera fyra variabler &t gangen delar
vi upp konstruktionen i tva steg.

Under det forsta steget bestimmer vi konstruktionen for NF=0, dvs en
en autonom riknare med den angivna rdknesekvensen. Detta ger oss
fyra Karnaughdiagram for att bilda vippornas insignaler.

I niista steg bestdmmer vi konstruktionen for NF=1, vilket ger oss fyra
nya Karnaughdiagram med ytterligare insignaler som ska adderas till
de tidigare.

Dérmed har vi bestdmt maskinens synkrona beteende.

Borja med att bestimma d-funktionerna i f6ljande f6ljande tabell.

65

91

Arbetsbok for DigiFlisp

a1 Qo

01

:0)

da (NF

g1 Qo

:0)

ds (NF

10

11

00

01 11 10

00

00

01

g3 Q2

11

10

00

01

g3 g2

11

10

g1 Qo

:0)

do (NF

Q1 qo

:0)

ds (NF

01 11 10

00

01 11 10

00

00

01

g3 Q2

11

10

00

01

g3 g2

11

10

10

11

g1 Qo
a1 Qo

01

00

=1)
00
01
11
10
=1)

da (NF
g3 Q2
do (NF

10

11

Q1 qo
g1 Qo

01

00

=1)
00
01
11
10
=1)

ds (NF
g3 g2
d1 (NF

01 11 10

00

01 11 10

00

93

00

01

g3 Q2

11
10

00

01

g3 g2

11
10

Qo

ar*

Q2

Nasta tillstand

Qs*

do

d

da

ds

Arbetsbok for DigiFlisp

Jo

g1

02

Nuvarande tillstand

NF oK}

Fyll dérefter i Karnaughdiagrammen pa nista sida.

92

Arbetsbok for DigiFlisp Arbetsbok for DigiFlisp
Ange de minimerade funktionerna pa boolesk form och, observera:

NF=0 NF=1 [kA0 Qfessio[_jeqn o w0 D Qpeq1:0 kD Qe q0:0
dy = N [t ap-eqsn IlPpct apeqz NPect apeqr:1 T4rct ap-eqo:1
do= +
[- Lk Lk
th : I e i L S L
do= +
1pe 1 pe
forenkla tills endast AND- och XOR-grindar anvénds i uttrycken
-nf
—1:F Ed«}F =i S
NF=0 NF=1
d; = +
o= : —FF ==t =
di= +
do= . L g [P S
0= [&} [T 1p
[o

Koppla upp riknaren i kopplingsboxen.

e Anvind komponenten Hex-sifferindikator for att kontrollera
riknesekvensen.
e Spara kopplingen, den ska strax utokas.

Vi tar nu hand om den asynkrona signalen RESET genom att "skjuta da Dy o
in" ett kombinatoriskt nét dér savil vara d-funktioner som RESET- d D, a
signalen ingér. Utsignalerna D, D2, D1 och Do frén detta nit kopplas nu : o Pra
till vippornas ingéngar i stillet for ds, do, di och do fran det forsta RESET

konstruktionssteget.
dy n D, d o, & n O, g Dy
RESET
|—| 1 Ir'.

Foljande skiss visar en koppling for hela tillstindsmaskinen.
Observera att uttrycken for d-signalerna hédr har férenklats for
anvindning av XOR-grindar.

Jamfor med dina egna uttryck fran den inledande uppgiften.

Fardigstdll skissen genom att skriv in- och utsignalsnamn i anslutning

till de komponenter som saknar dessa. Koppla slutligen upp maskinen i kopplingsboxen och kontrollera

funktionen med avseende pa riknesekvens och insignalerna.

Spara filen under namnet FlispStateMachine.tb.

94 95

Arbetsbok for DigiFlisp

I detta kapitel arbetar vi med FLIS-processorn och dess automatiska
styrenhet. Simulatorn omfattar tva fonster, FLISP:s datavdg och ett
fonster for att skapa instruktioner for FLISP.

Vilj: Control | FLISP datapath.

T 1115 Datagath
Fie Contlsieen

0000000 g o # ¢ ¥ 4 o
COOOO000 e v & v o -

o i W e
) Cantre e

Stromstdllarnas funktioner:

Control:

e reset — asynkron, aterstill sekvensieraren till Qg

e NF — utfor upprepade klocksignaler tills nista tillstand dr Qs,
uttryckt pa ett annat sitt, utfor en hel instruktion

e clk— ge en klocksignal till datavigen.

Memory data:

o display/modify — i ldge display, visas innehallet pa den adress som
anges av indikator Address, paé indikator Data.
1 ldge modify kan innehallet pa adressen dndras med hjilp av
vippstrémstillarna D7-D4 och D3-D0

e D7-D4, D3-D0 anvinds for att stilla in Data i modify-lige

e set — innehallet som visas pa Data skrivs till adressen som anges
av Address.

Memory address:

e auto/manual, i lige auto visar Address den adress som bildats fran
multiplexer med styrsignal g, i ldge manual kan adressen éndras
med hjilp av vippstromstillarna A7-A4 och A3-A0

o A7-A4, A3-A0 anvinds for att stilla in Address i manual-lige.

Menyer:

e File | Load, anvinds for att ladda innehall till primdrminnet

e Control store | FLISP control enabled, aktivera styrenhetens FLISP-
instruktioner.

Navigator Bx

[l Contents
+- Transistar level
- Combinatorics

- FLISP instruction builder
- Computer and peripherals

96

Arbetsbok for DigiFlisp

Datavcigens menyval:

File | Load — ladda en fil med fmem (flisp memory) format till
datavigen. Formatet ar textbaserat och en fil kan enkelt skapas med
en textredigerare. Formatet utgors av direktiv till datavigen. Varje
direktiv inleds pa ny rad med tecknet ’#’, rader som inleds med annat
tecken tolkas som kommentarer. F6ljande direktiv kan anvéndas:

#ClearAllMemory Nollstall primarminne
#ClearAllRegisters Nollstall alla register
#SetMemory ADR=VARDE Initiera minnescell, ADR och VARDE anges pa

hexadecimal form
#SetRegister REG=VARDE REG kan vara nagot av: A,T X,Y,PC,SP,TAR,CC
eller I. VARDE anges pa hexadecimal form

| | _
U bl Control store | FLISP control enabled — Datavigen kan konfigureras att
_ anvinda en komplett styrenhet f6r FLISP, nya instruktioner maste da
ha nagon av de odefinierade operationskoderna 03,04,DF eller EF. 1
normalfallet 4r denna funktion deaktiverad och vi maste da
tillhandahélla alla styrsignalsekvenser.
Instruction builder anvinds for att skapa styrsignalsekvenser for
instruktioner som kan utforas av FLIS-processorns styrenhet.
Vilj: Control | FLISP instruction builder.
=100
File
& Edit Opcode QSESE 1 2 3 4 5 6 7 8 9 10 i 12 13 14 15 Expression
© rest c Ll r [e
Reset Fetch Execute

I view execute states

LOAD ENABLE OUTPUTEMABLE CIR INC DEC ALU MULTIPLEXERS
AT X YPCSPTARC I A X YPCSPRGCC T PCSP 5P f3f2fl fo MRMW gl4g13gl2911g1009 g8 g7 g6 g5 g4 g3 g2 gl g0 NF
LI i i i i I A i i i S i i iy il i S i Y S i A
Comments {optional) Apply condition (double dick) Remove condition {double dick)
B Condition
(Bt fal} oz oz
N N ov cw
fal [alld [l 2t e+
= by 1) T2 O N)+2)

Instruction builders menyval

) Clear — all styrsignalinformation raderas
Filer for datavagen har

dndelsen fmem (FLISP Load — styrsignalinformation laddas fran fil med fcs-format.

memory). Save — styrsignalinformation sparas som fcs-format.

Filer for Instruction

builder har filnamns-
dndelsen fcs (FLISP Export — spara styrsignalsinformation i form av C-kod.
control state).

Save as — spara styrsignalinformation till en fil som fcs-format.

Exit — sting Instruction Builder.

97

Arbetsbok for DigiFlisp

14.1 Styrenheten i FLISP

Instruction builder anvinds for att redigera och testa instruktioner.
For instruktionsexekvering bildas styrsignalerna som en kombination
av tillstand (betecknas Q) och operationskod (betecknas Opcode). For
att implementera villkorliga instruktioner krdvs ocksa att
statusflaggorna fran CC (N,Z,V,C) finns tillgdngliga i styrenheten.

I styrenheten har de Booleska funktioner som krévs for de villkorliga
instruktionerna implementerats med kombinatoriska nit. Utsignaler
frén dessa nét finns tillgdngliga i sektionen Condition.

Vi kédnner igen styrsignalerna som nu ska genereras automatiskt. Det
har dock tillkommit ytterligare en signal, NF (New Fetch) som anger
att en ny instruktion ska himtas i minnet.

LI

Kombinatoriskt

nit "R
c QA
cp—f Semenm
RESET —peser !

NewFelch i Gig4, g}
1 L rd

= i

Figur 14.1 Oversikt av automatisk styrenhet

Det kombinatoriska nétet utformas for att generera de summatermer
som anvinds for att aktivera de olika styrsignalerna for olika
kombinationer av tillstand och operationskod. En summaterm ér alltsa
en produkt av en operationskod hiamtad fran instruktionsregistret och
ett specifikt tillstand hdmtad fran rdknaren.

A o
!

v 2 o1 ={a 1
i anfa}
 S—

g
o t=faH
o u—[?
& . 0.I.

} ,} ole={&}

Figur 14.2 Illustration av styrenhetens kombinatoriska ncit

Observera

Forvixla inte
styrsignalen NF med
datavigens funktion for
att utfora en hel
instruktion.

98

Arbetsbok for DigiFlisp

spdnningstillslag
eller dterstart

Styrenhetens funktioner kan indelas i tre olika faser:

Aterstdllningsfas (RESET): FLISP aterstilles genom att en startadress
lases fran RESET-vektorn (adress FFi6) i minnet och placeras i
programriknaren PC.

Hdimtfas (FETCH): Innehéllet pa adress PC ldses och placeras i

sterstaiini / S ¢
deersta ?,;Z%ng St;r;;tiss instruktionsregistret |, PC kas med 1.
Exekveringsfas (EXECUTE): varje instruktion har en unik
styrsignalsekvens som ska genereras under respektive exekveringsfas.
hamtfas instruktion Da exekveringsfasen utforts ska PC ha uppdaterats sa att den
(FETCH) hémtas innehéaller adressen till ndsta instruktion i minnet.
exekveringsfas instruktion i 5 4
(EXECUTE) o oy Observera att styrglgnalsekvensema for RESET och FETCH ir
oberoende av operationskoden.
Observera ocksé att exekveringsfasen alltid maste avslutas med att
generera NF for att starta nésta instruktionshdmtning. Om
tillstindsmaskinen klockas ur tillstindet Qs utan att NF-signalen
genererats kommer FLISP att aterstartas (RESET).
RESET [T 17777
NF NF NF
AL — — TNE NN NN
/ N |'/ A g N 7 7 N /
(Qo j—»{ Qu _,—»{\Qz Qs 2 Qa2 Qs F=---{ Qus)
R e — S S’ e ps A
A —
NF
Figur 14.3 Tillstandsgraf for styrenheten
14.1.1 Styrsignalsekvens fér RESET-fasen
Aterstillningsfasen utfors under tre steg och representeras av de tre
tillstanden Qo, Q1 och Qa.
Tillstand | Summa- RTN- Styrsignaler Kommentarer
term beskrivning
Qo (Qoe1) [(FF)1s—>R fi=1; fo=1; ALU-funktionen valjs sa att talet FF1s finns pa ALU:ns utgang, dvs. funktionskod 3,
ALU-funktion = (0011)2.
LDr=1 Laddingangen pa R-registret ettstalls sa att utvardet fran ALU:n FF1sladdas i R-
registret vid nasta klockpuls.
Qi (Qre1) [R-TA OEg=1; Talet FF1s i R-registret kopplas ut pa bussen.
LDma=1; Talet FF1s pa bussen laddas i temporéradressregistret vid nésta klockpuls.
Q2 (Qze1) (M—PC MR=1; Minnesinnehallet pa adress FF1s ldses genom att minnet aktiveras for lasning.
g1s=1; Temporaradressregistret adresserar minnet
LDpc=1; Det dataord som lases placeras i PC vid nasta klockpuls.

Vi kan nu bérja skapa summatermer for styrsignalerna genom att forst
identifiera de signaler som ska aktiveras vid tillstandssignal Qo. Av
tabellen ovan framgar att dessa ir fi, fo och LDg.

Dessa signaler ska aktiveras oavsett vad som finns i
instruktionsregistret. AND-villkoret blir dérfor hér:

Q |£}—

99

Arbetsbok for DigiFlisp

Denna summaterm skrivs alltsd Qoe1, vilket dr samma sak som Qq. Vi
pafor darfor Qo-signalen pa ELLER-grindarna for de tre
styrsignalerna:

Qs Qo Qs
e E L B | P B 1
|- RS |-

Figur 14.4 Bidrag till f1, fo och LD fiin RESET-fasen

P& samma siitt ska styrsignalerna OEg och LDra aktiveras i tillstand Q1:

Figur 14.5 Bidrag till OEr och LD fian RESET-fasen

och slutligen styrsignalerna MR, g14 och LDpc for tillstdnd Qa.

Q. Q Q.
:--21 . I"21 o :"21 Lon

Figur 14.6 Bidrag till MR, g14 och LDec fian RESET-fasen

Vi gvergér nu till simulatorn.
Uppgift 14.1

Skapa styrsignaler for RESET-fasen i den automatiska styrenheten.

1. Aktivera styrsignalerna LDg fo och
fy for tillstandsterm Qo

Arbetsbok for DigiFlisp

Det dr nu dags att prova
aterstillningssekvensen. Vixla
Instruction builder till Test-funktion.

UTRDWAr . GR BE fEC . AL WETSRT
'y Yrem e AALEEAG T oRD B OGNS M gy En g e
dedeFEFaFt ACANERT & R R REGG 90 WhRbEEEGECREREREE =
e pmrs) g Finas cvaton (octe 03 e
@ 20 LE
ec e ec
7| oy cpmn O

EECPEPEREEEERELE &

AREEEREEFL ARXFREFE FEF REBS
e
A fr
IFo
|

2. Aktivera styrsignalerna OEg och
LDra for tillstdndsterm Q

AEEEFEBEFL AALEERE BE

5

PREFEELREERERE £

Sophy condon (3o 59

3 o
o=

E &add 28 ¢

3. Aktivera styrsignalerna MR, g1 och
LDpc for tillstandsterm Q2

Laloix|
Ems
R e B
o T a e mew R R S P g
& BE & BB P EEEEEEXEEEEEEE o
g

100

Légg in virdet 20,5 i RESET-vektorn (adress FF).

Aterstill FLISP genom att klicka pa dataviigens reset-omkopplare.
Tillstdndsindikatorn (Q-states) indikerar nu tillstindet Qo. Observera
datavigen, speciellt de signaler som ska vara aktiva i tillstand Qq.

Ge styrenheten en klockpuls genom att klicka pa omkopplaren CP.
Kontrollera de aktiva signalerna i datavigen, nu for tillstandet Q1.

Ge ytterligare tvda klockpulser sa att RESET-fasen slutfors och
FETCH-fasen inleds. Tillstandsindikatorn visar da tillstind Q.
Kontrollera att adressen 20,6 nu finns i PC.

14.1.2 Styrsignalsekvens for FETCH-fasen

Instruktionshdmtningen sker i tillstaindet Qs. Hér forutsitts att PC
innehaller adressen till den instruktion som ska himtas fran minnet.

Tillstand

Summa-
term

RTN-
beskrivning

Styrsignaler Kommentarer

Qs

(Qse)

M(PC)—I;

0-T;

MR=1; Adressen for nasta instruktions operationskod, dvs. PC, kopplas till minnets
LD=1; adressbuss. Las operationskoden fran minnet och placera i instruktionsregistret I.
INCpc=1; Adressen som finns i PC dkas med ett.

CLRr=1; Register for index vid adressberakningar nollstalls.

Dessa styrsignalers bidrag till AND/OR-nitet i styrenheten visas i
foljande figur.

Q; Qs Q; Qy
Q. —— - —
’ | =1 MR I 21 LDy I 21 INCpe : 21 CLRr

Figur 14.7 Bidrag till MR, LD, INCpec och CLRy firin FETCH-fasen

En anmirkning kan vara pa sin plats angaende CLRr-signalen.
Eftersom T-registret anvinds for offset vid adressberdkningar for
vissa register (X, Y och SP) dr det tillradligt att nollstilla detta i varje
FETCH-fas. Detta gynnar de instruktioner som gor sadana
adressberdkningar redan i exekveringsfasens forsta tillstand.

101

Arbetsbok for DigiFlisp Arbetsbok for DigiFlisp

Uppgift 14.2 Detaljerna hos varje FLISP-instruktion finns i instruktionslistan.
Instruktionen No Operation specificeras exempelvis pa foljande sitt:

Skapa styrsignaler for FETCH-fasen i den automatiska styrenheten

genom att ldgga in styrsignalerna MR, LD, INCpc och CLRr for NOP No operation
summatermen Qs.

RTN

SE _ :

= Flaggor Paverkas ej

TR TR AR E RN — Beskrivning Instruktionen utfor ingenting

rrefRErars A FRFAE § E2 F AR oreRERREFEREEEELE £ Detaler

i 7 R e atecd) R— : X Instruktion Adressering Operation Flaggor

‘ i s ot : : NOP

- metod OP| # |~ N|zZ|Vv|C

NOP Inherent 00 | 1 | 2 |Nooperation -l-]-] -

Du ska nu prova den sammanhingande RESET/FETCH-sekvensen,

. > : Instruktionen 4r den enklast tdnkbara, "utfor ingenting". Ur kolumnen
dvs. aterstart och den forsta instruktionshdmtningen.

Adressering ldser vi ut att operationskoden (OP) dr 00, att
Ligg in virdet 20,6 i RESET-vektorn (adress FFg). instruktionen upptar 1 byte i minnet (#) och att den tar tva cykler(~)
att utfora. I exekveringstiden ingér hamtfasen, varfor antalet tillstand i
exekveringsfasen alltid 4r ett mindre dn vad som anges hir.

Uppgift 14.3

Implementera instruktionen NOP. Avkodningen av instruktions-
registret ger att signalen loo &r aktiv endast for denna operationskod,
samtidigt som exekveringsfasens tillstind dr Q. Detta ger oss
summatermen for den signal (de signaler) som &r aktiva under
respektive tillstind. De aktiva styrsignalerna anges i sin tur som
styrsignal=1.

Légg in virdet 55,5 pa adress 20y, detta blir “operationskoden” for
den instruktion som ska hidmtas.

Aterstill den automatiska styrenheten (klicka pa RESET) och klocka
fram tillstdnden, d& du nar tillstdnd Q4, dvs. FETCH-fasen har utforts,
ska virdet 55, finnas i instruktionssregistret (register [).

Vilj File | Save as i Instruction Builder och spara styrsignalerna i filen
”flisp reset.fcs”.

Till- | Summa- RTN- Styrsignaler Kommentarer
14.1.3 Exekveringsfasen stand| term | beskrivning
Med overgangen till tillstind Q4 inleds exekveringsfasen. Eftersom - —
varje instruktion (operationskod) har en unik styrsignalsekvens Q| Quolur) NPt Instruktionen utfor ingenting.
kommer nu varje summaterm att utgéras av ett AND-villkor (tillstand 1. Aktivera View execute states, skriv in operationskoden 00 (avsluta med Enter), och kontrollera att rétt
och operationskod). Exekveringsfaserna har ocksa olika ldngd (antal summaterm (100*Q4) visas i fonstret Expression.

tillstand) beroende pa komplexiteten hos instruktionerna. I Figur 14.8 2.
illustreras antalet tillstind hos styrsignalsekvenserna for sévil den
kortaste instruktionen (NOP, operationskod 00) som den lidngsta

Aktivera instruktionens styrsignal (NF) for summaterm.
Skriv eventuellt en kommentar i avsett filt.

oo . R T T — R
mojliga styrsignalsekvensen (ogiltig operationskod, FF). A -
G ok Qs EEENEN
FETCH () PEETFERers ARERRAE E FEE pdbe pr erRRRRFRRRERRER E|)
g T ey T T R
<> o o o
[cur emw cmer ce
(]oo 01
e e ”””” Testa nu instruktionen NOP:
Ligg in vérdet 20,4 i RESET-vektorn (adress FFe).
@ @ : 2. Ligg in virdet 00,4 pa adress 20,4, dvs. operationskoden for instruktionen NOP.
EXECUTE e @ h 3. Aterstill den automatiska styrenheten (klicka pa RESET) och klocka fram tillstinden, d& -]
y du nér tillstind Qs4, dvs. FETCH-fasen har utforts, ska vérdet 00,5, finnas i
instruktionssregistret (register |). q
4. Ge nu ytterligare en klockpuls for att utfora NOP-instruktionens exekveringsfas. o _..I.I
L Kontrollera att FLISP da atergar till FETCH-fasen. Instruktionen &r dérefter
implementerad.
Figur 14.8 Lagrade programmets princip (FETCH/EXECUTE) 5. Vil File | Save as i Instruction Builder och spara styrsignalerna i filen "f1isp nop.fcs”

102 103

Arbetsbok for DigiFlisp

14.2 Implementering av instruktioner

Resten av detta kapitel dgnas at en Oversikt av flertalet av de
instruktioner som definierats for FLISP. Instruktionerna delas in i
grupper med avseende pa operationer. Observera att vi hér nojer oss
med att exemplifiera med nagra utvalda adresseringssétt och
instruktionsbeskrivningarna dr darfér inte fullstindiga. For
detaljerade beskrivningar hinvisas till FLISP-handboken.

14.2.1 Lés fran minne

Data kan ldsas fran minnet med en LD-instruktion ("load").
Alternativt kan andra registerinnehall, ev. med nagon offset, ldsas
med en LEA-instruktion ("load effective address"). LD-instruktionen
finns for samtliga register, dvs.

LDA, LDX, LDY, LDSP
LEA-instruktion finns bara for adressregistren:
LEAX, LEAY, LEASP

Féljande utdrag ur FLISP-handboken ger detaljer om instruktionen
LDA for tre olika adresseringssiitt:

LD Load register

RTN M (EA)—> R

Flaggor N: Ettstélls om resultatets teckenbit (bit 7) far vardet 1.

Z: Ettstalls om samtliga atta bitar i resultatet blir noll.

l«— PC

V: Nollstalls.

C: Paverkas €j.
Beskrivning Laddar dataord fran minnet till angivet register R (A,X,Y eller SP)
Detaljer:
Instruktion Adressering Operation Flaggor
LD

metod OP| # | ~ N|Z C FO
LDA #Data |Immediate FO| 2 | 2 |Data—A A|A|O] - Data
LDA Adr Absolute F1]2 |3 |MAd)—A
LDA n,5P |indexed | F2| 2 | 3 |M(n+SP)— A MINNE
LDA #Data

Av detaljinformationen ser vi att instruktionen, som upptar tva bytes i
minnet (#), tar totalt tva klockcykler (~) att exekveras. Eftersom
denna siffra dven omfattar hamtfasen innebdr detta att
exekveringsfasen ska utforas under en klockcykel.

Dé exekveringsfasen inleds innehéller PC adressen till ordet efter
operationskoden, i detta fall data som ska lésas in till register A. RTN-
beskrivningen for att lisa in data blir da:

M(PC)—A

Vi kopplar dérfor PC till MA, aktiverar MR och LDa. Se figuren i
marginalen: eftersom g3 och gr2 bada ar 0, viljs PC av "l-av—4"—
viljaren. Dérefter passerar PC adderarsteget, dock ufan att innehallet i
T adderas, detta utférs bara om nagon av g3 eller gi2 dr 1, dvs for
register XY och SP. Slutligen viljs PC frén utgingen frén
adderarsteget eftersom @14, som styr "1 av 2"-viljaren, &r 0.

Samtidigt uppdateras PC for att peka pa nésta instruktion:

104

Arbetsbok for DigiFlisp

0
FL
Adr [—PC
Data
MINNE
/!\
MINNE

PC+1—PC

For flaggsittningen observerar vi att data som ska péverka CC ocksa
finns p4 ALU:ns D-ingdng och genom att anvinda operationen:

D+Ci»—U; Cin=0
kan vi utnyttja ALU:ns flaggsittning for flaggorna N och Z. Vi

anvinder sedan styrsignaler (g-) for att nollstélla V och lata C vara
opaverkad. Dirmed &r styrsignalsekvensen for denna variant klar.

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand term | beskrivning Styrsignaler
Qs | (Quelro) (M(PC)—A; |LDa; MR; Data fran minnet till register A
PC+1—PC; |INCec; Uppdatera PC
D+0—U; f3; fo; ALU-funktion 9 for flaggsattning N och Z
0-V; ds; nollstall V
CC(C) —C; 93,92 ingen paverkan C
LDcc; uppdatera CC
NF; ny instruktion
LDA Adr

Av detaljinformationen ser vi att exekveringsfasen av denna variant
av instruktionen, tar tva klockcykler (~) for att exekveras. Den extra
cykeln kommer av att vi hdr maste gora tva ldasningar i minnet. Forst
ska adressen (Adr) ldsas fran instruktionen, dérefter ska data lisas fran
denna adress.

Adressen fran minnet ldses till adressregister TA och PC uppdateras:
M(PC)—TA; PC+1—PC

under nista cykel kopplas TA till MA genom att gq4 sitts till 1, varvid
MR och LDa-signalerna aktiveras.

M(TA) —A

I foljande tabell anges styrsignalerna for att ldsa data fran en adress
till register A. Observera att tabellen inte beskriver den fullstdndiga
instruktionsvarianten, jamfor med LDA #Data.

Till- | Summa- RTN- Aktiva (=1) Kommentarer

stand| term | beskrivning Styrsignaler

Qs | (Quelr1) [M(PC)—>TA; |LD7a; MR; Adress fran minnet till temporar adress
PC+1—PC; |INCec; Uppdatera PC

Qs | (Qselr1) [M(TA) —A; [LDa; g1s; MR; Data fran "Adr" till A
(etc.) (etc.)

1DA n,SP

Aven indexerade adresseringssitt kriver en extra ldsning av
operanden (Data). Hiar maste vi dock forst genomfora en berdkning av
den effektiva adressen, i detta fall n+SP.

Datavdgen i FLISP har forberetts for en sadan adressberikning
genom att innehallet i temporirregister T adderas, som offset, till
innehéllet i ndgot adressregister. Observera att offset adderas endast i
3 av de 8 mojliga sitten att utfora adressberidkningarna. Foljande
tabell beskriver funktionen for viljarsignalerna g4, g13 och g1

105

Arbetsbok for DigiFlisp

g14| 13| 912 | Register till adressbuss: RTN

0| 0 | 0 |Register PC, ingen offset M(PC)

0| 0 | 1 |Register SP ("bas”) och register T ("offset”) M(T+SP)
0| 1|0 |RegisterY ("bas’) och register T ("offset’) M(T+Y)
0| 1|1 |Register X ("bas”) och register T ("offset’) M(T+X)
110 | O |Adressberakningsregister TA, ingen offset M(TA)
110 | 1 |Adressberakningsregister TA, ingen offset M(TA)

1] 1| 0 |Adressberakningsregister TA, ingen offset M(TA)

1] 1| 1 |Adressberakningsregister TA, ingen offset M(TA)

Offseten (n) ldses fran minnet till register T och PC uppdateras:
M(PC)—T; PC+1—PC

under nista cykel kopplas adressen n+SP till MA genom att gs» sétts till
1, MR och LDa-signalerna aktiveras.
M(T+SP) —A

Styrsignaler for inldsning av data fran adress "n+SP" till register A
visas i f6ljande tabell:

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand | term beskrivning Styrsignaler
Qs | (Qeolrz) [M(PC)—T; LDr; MR; Offset fran minnet till T

PC+1—PC; INCrc; Uppdatera PC

Qs | (Qselrz) [M(T+SP) —A; [LDa; g12; MR; |Data fran "n+SP" till A

(etc.) (etc.)

Vi ser hir att styrsignalsekvenser for instruktioner med de indexerade
adresseringssitten nR (R=X)Y eller SP) skiljs at endast genom
anvindningen av g3 och gr2.

Uppgift 14.4

Implementering och test av LDA-instruktioner.

1. Radera forst all styrsignalinformation (File|Clear) och utgé fran din
sparade fil flisp nop.fcs, dvs. ladda filen (File|Load) till
Instruction Builder. Nu finns enbart styrsignaler for RESET och
FETCH faserna och instruktionen NOP i styrenheten.

2. Implementera nu instruktionerna LDA #Data, LDA Adr och
LDA n,SP enligt tidigare anvisningar. Spara styrsignal-
informationen (File|Save as) med namnet £1isp ins.fcs.

3. Skapa en fil test load.fmem, for test av de implementerade
instruktionerna (se marginalen). Vi har placerat en instruktions-
sekvens med start pa adress 20 i minnet; detaljerna framgar av
foljande:

Adress MiSkm' Assemblerkod RTN
od

20 LDA #7 T—A

21

22 LDA 104 M(1016) —A
23

24 LDA 1,SP M(1+SP)—A
25

26

Efterhand som du implementerar
och testar nya FLISP-
instruktioner ldgger du till dessa i
filen:

flisp ins.fecs.

Det ér ddremot lampligt att skapa
separata testfiler:
test_XXX.fmem

for de olika instruktionerna.

test_load.fmem
#ClearAllMemory
#ClearAllRegisters
Operationskoder och
operandinformation ldggs i
minnet:

#SetMemory 20=F0
#SetMemory 21=07
#SetMemory 22=F1
#SetMemory 23=10
#SetMemory 24=F2
#SetMemory 25=01

Data laggs pa plats och register
SP ges initialvirde

#SetMemory 10=00
#SetRegister SP=0F
#SetMemory 10=81

RESET-vektor
#SetMemory FF=20

106

janjo
Rectangle

Arbetshok for DigiFlisp

Testa implementeringen av instruktionerna genom att ldsa in testfilen,
g6r RESET och ge klockpulser tills instruktionssekvensen utforts.
Kontrollera mellan varje instruktion att denna utfors korrekt och ange
testresultaten i foljande tabell; kontrollera dven flaggsittningen.

AIN|Z|V]|C

initialt

LDA #Data
LDA Adr
LDA n,SP

Dé vi jamfor LD-instruktioner med samma adresseringssitt ser vi att
de dr mycket lika: jamfor exempelvis LDA, LDSP och LDX.

Instruktion Adressering Operation Flaggor
LD

metod OP| # | ~ N|Z[V|C
LDA #Data |Immediate FO| 2 | 2 |Data—A A[A]O] -
LDSP #Data |Immediate 92| 2| 2 |Data— SP
LDX #Data |Immediate 90| 2 | 2 |Data— X

For styrsignalsekvensen innebdr detta att det &r enbart
operationskoden och en enstaka styrsignal som skiljer dem at:

LDSP #Data

Arbetshok for DigiFlisp

LEA-instruktionerna &r i forsta hand avsedda for adressberédkningar.
De tillater att adresser kopieras mellan adressregistren X,Y och SP, ev.
med addition/subtraktion av ndgon offset.

LEA Load effective address

RTN EA — R; Rkan vara X,Y eller SP

Flaggor Paverkas ej

Beskrivning Laddar effektiva adressen i R. Anvands for att addera/subtrahera
registerinnehall.

Detaljer:

Instruktion Adressering Operation Flaggor

LEA
metod OP| # | ~ NlZ|V|C

LEAX n,X |Indexed CC|l2 |4 X+n>X ===

LEAX n,SP |Indexed DC| 2 |4 |SP+n—>X

LEAY n,Y |indexed CD| 2[4 |Y+n>Y

LEAY n, SP |Indexed DD| 2 |4 [SP+n—>Y

LEASP n, SP |Indexed BE| 2 |4 |SP+n—SP

LEASP n,X |Indexed CE| 2 |4 X+n—>SP

LEASP n,Y |Indexed DE| 2|4 |Y+n—>SP

Till- [Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler
Qs | (Qeols2) |M(PC)—SP; |LDsp; MR; Data fran minnet till register SP
PC+1—PC; |INCec; Uppdatera PC
D+0—U; fs; fo; ALU-funktion 9 fér flaggsattning N och Z
0V, gs; nollstall vV
CC(C) —-C; |90 ingen paverkan C
LDcc; uppdatera CC
NF; ny instruktion
Uppgift 14.5
Implementera forst instruktionen:
LDSP #Data

Légg till instruktionen i filen flisp_ins.fcs.

Jamfor styrsignaltabellen for LDSP #Data, med foljande styrsignal-
tabell for LDX #Data, komplettera tabellen med operationskod
och aktiva styrsignaler.

Lat K beteckna det register (X,Y eller SP) som ingdr i operanden,
kéllregistret, och 14t D beteckna det register som &r en del av
instruktionsnamnet, destinationsregistret. Det &r den effektiva
adressen n+K som ska placeras i register D och vi kan darfor inte,
som forut, anvénda metoden (T+K), vilket ger en adress som alltid
adresserar minnet. Vi méste darfor gora sjdlva adressberakningen n+K
med hjélp av ALU:n. Utforandefasen kriver tre cykler:

Offseten (n) fran minnet ldses till register T och PC uppdateras:
M(PC)—T; PC+1—PC

under nidsta cykel kopplas register K till bussen och ALU:n utfor
addition:

T+K—R
Resultatet dterfors till destinationsregistret:
R—D

Styrsignaler for instruktionen med de generella beteckningarna visas i
foljande tabell:

LDX #Data:
Till- | Summaterm RTN- Aktiva (=1)
stand beskrivning Styrsignaler
Qs (Que) |M(PC)—X;
PC+1—PC;
Flags—CC; fs; fo; gs; 93; g2; LDcc;
NF;

Lagg dven till instruktionen LDX #Data filen flisp_ins.fcs.
Skapa en ldmplig fil for test av instruktionerna och kontrollera att de
fungerar som de ska.

107

Till- | Summa- RTN- Aktiva (=1) Kommentarer

stand| term beskrivning Styrsignaler

Qs | (ue) [M(PC)-T; |LD1;MR; Offset fran minnet till T
PC+1—PC [INCec; Uppdatera PC

Q | (Qse) [T+HK—R fs; fifo; OEKLDR [Bestém effektiv adress "n+K"

Qs | (se) [R—D OEr; LDp; NF Aterfor resultat

108

Arbetshok for DigiFlisp

Uppgift 14.6
Implementera instruktionerna:

LEASP n,SP
LEAX n,X
LEAX n,Y

Borja med att fora in styrsignalerna i foljande tabeller:

LEASP n,SP

Arbetshok for DigiFlisp

Till- | Summaterm RTN- Aktiva (=1) Kommentarer
stand beskrivning Styrsignaler

Qi | (Que) [M(PC)-T; Offset fran minnet till T
PC+1—PC Uppdatera PC

14.2.2 Skriv till minne

Data kan skrivas till minnet med ST-instruktionen ("store").
Instruktionen finns for samtliga register, dvs.:

STA, STX, STY, STSP
Foljande utdrag ur FLISP-handboken ger detaljer om instruktionen
STA for tva olika adresseringssatt:

ST Store register

RTN R — M (EA)

Flaggor Paverkas ej

Beskrivning Lagrar angivet registerinnehall (A,X,Y,SP) i minnet pa den
effektiva adressen

Qs | (Qse) [T+SP—R Bestam effektiv adress "n+SP"

Qs | (Qee) [R—SP Aterfor resultat till SP
LEAX n,X

Till- | Summaterm RTN- Aktiva (=1) Kommentarer
stand beskrivning Styrsignaler

Detaljer:

Instruktion Adressering Operation Flaggor
ST
Variant metod OP| # | ~ N|Z|V|C

STA Adr Absolute E1| 2 A — M(Adr) L I A
STA n,SP |Iindexed E2| 2 A — M(n+SP)

w

w

Qi | (Que) [M(PC)—T; Offset fran minnet till T
PC+1—PC Uppdatera PC

Q| (Qse) [THX—R Bestam effektiv adress "n+X"

Qs | (Qse) |[R—X Aterfor resultat till X
LEAX n,SP

Till- | Summaterm RTN- Aktiva (=1) Kommentarer
stand beskrivning Styrsignaler

Qi | (Que) [M(PC)-T; Offset fran minnet till T
PC+1—PC Uppdatera PC

Qs | (Qse) [T+SP—R Bestam effektiv adress "n+SP"

Uppgift 14.7

Implementera instruktionerna
STA Adr
STA n,SP

STA Adr

Exekveringsfasen delas upp i tva steg:
1: Adr—TA
2: A-M(TA)

1 foljande tabell har vi detaljerat RTN-beskrivningen ytterligare.
Komplettera tabellen med operationskod och aktiva styrsignaler:

Q| (Qe) [R—X Aterfor resultat till X

test_lea.fmem

#ClearAl IMemory

#ClearAl IRegisters
Operationskoder och
operandinformation liggs i minnet:

#SetMemory 20=BE
#SetMemory 21=05
#SetMemory 22=BE
#SetMemory 23=FF
#SetMemory 24=CC
#SetMemory 25=02
#SetMemory 26=DC
#SetMemory 27=02

Registren ges initialvarden

#SetRegister X=05
#SetRegister SP=0F
RESET-vektor

#SetMemory FF=20

Légg till instruktionerna i filen Flisp_ins.fcs och anvind foljande
testsekvens for att kontrollera styrsignalsekvensernas funktion.

Adress Maskin- Assemblerkod RTN
kod
20 BE LEASP 5,SP SP+5—SP
21 05
22 BE LEASP -1,SP SP+1)-SP
23 FF
24 CcC LEAX 2,X X+2—X
25 02
26 DC LEAX 2,SP SP+2—X
27 02

Kontrollera slutligen styrsignalsekvensernas funktion och ritta
eventuella fel.

109

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler

Qi | (Que) |M(PC)—TA; Effektiv adress fran minnet till TA

PC+1—PC; Uppdatera PC
Qs | (Qse) [A—M(TA); Data fran A till minne
Ny hamtfas

STAn,SP

Aven i detta fall delas exekveringsfasen upp i tva steg:
1:n>T
2: A>M(T+SP)

Komplettera dven foljande tabell med operationskod och aktiva
styrsignaler:

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler
Qi | (Que) |M(PC)—T; Offset fran minnet till T
PC+1—-PC; Uppdatera PC
Qs | (Qse) [A— M(T+SP); Data fran A till minne
Ny hamtfas
110

Arbetshok for DigiFlisp

test_store.fmem

#ClearAl IMemory
#ClearAllIRegisters
Operationskoder och
operandinformation ldggs i minnet:

#SetMemory 20=E1
#SetMemory 21=10
#SetMemory 22=E2
#SetMemory 23=05

Registren ges initialvirden
#SetRegister A=33
#SetRegister SP=0C
RESET-vektor
#SetMemory FF=20

Légg till dessa instruktioner till instruktionsuppsittningen
flisp_ins.fcs och anvind sedan foljande instruktionssekvens for
att testa instruktionerna (se dven marginalen).

Adress Maskin- Assemblerkod RTN
kod
20 El STA 104 A—M(101)
21 10
22 E2 STA 5,5P A—M(5+SP)
23 05

Kontrollera minnesadress 10,5 och 11,5 som bada ska innehalla vérdet
33 efter instruktionssekvensen.

14.2.3 Registerdverforingar

Instruktionerna TFR (“transfer”) och EXG (“exchange”) utgdr en
liten grupp instruktioner for datadverforing mellan olika register.

TFR Transfer register to register

RTN R1— R2

Flaggor Paverkas ej, savida man inte kopierar ett registerinnehall till CC-
registret

Beskrivning Data kopieras mellan angivna register

Detaljer:

Instruktion Adressering Operation Flaggor

TFR

Variant metod OP| # | ~

TFR A,CC [Inherent 18]1|2|A>CC A[A|A|A

TFR X,Y Inherent Al 1]2X>Y

Instruktioner som kopierar data mellan register &r speciellt enkla. De
kridver bara att killans OE-signal och destinationens LD-signal
aktiveras. Om CC dr destinationsregister maste man dock ocksa
aktivera rétt styrsignaler for véljaren pa CC-registrets ingdng.

Uppgift 14.8

I denna uppgift ska du implementera styrsignalsekvenserna for
TFR X,Y
TFR A,CC

I bada fallen racker det med en klockcykel for exekveringsfasen. Fyll
i operationskoder, RTN-beskrivningar och aktiva styrsignaler i
forjande tabeller:

Arbetshok for DigiFlisp

TFR A,CC
Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning | Styrsignaler

Data fran A till bussen
buss kopplas till CC
data fran buss till CC

Q| (Que) [A—CC

Liagg till dessa instruktioner till instruktionsuppsittningen
flisp_ins.fcs. Skapa ocksé en fil for test av de implementerade
instruktionerna. Placera instruktionssekvensen med start pa adress
20,6 i minnet. Detaljerna framgar av foljande:

Maskin-

Adress Assemblerkod RTN
kod
20 18 TFR A,CC A—CC
21 1A TFR X,Y X—Y

22

Utfor instruktionerna och kontrollera funktionen.

test_tfr.fmem

#ClearAl IMemory

#ClearAl IRegisters
Operationskoder och
operandinformation liggs i minnet:
#SetMemory 20=18
#SetMemory 21=1A
Registren A och X ges initialvirden
#SetRegister A=FF
#SetRegister X=FF
RESET-vektor

#SetMemory FF=20

EXG-instruktionen utbyter tvd registerinnehall. For att temporart
lagra det ena registret overfor vi dess innehall opaverkat via ALU:n
till register R. Betrakta exempelvis K <> D. Den generella RTN-
sekvensen for instruktionen kan da skrivas:

K—R, D—K,R—D

EXG Exchange register contents

RTN R1<R2

Flaggor Paverkas endast om CC-registret ar det ena registret som
anvénds

Beskrivning Data véxlas mellan angivna register

Detaljer:

Instruktion Adressering Operation Flaggor

EXG

Variant metod OP| # | ~ NfZ|V|C

EXG A,CC |Inherent 9F| 1 |4 |AeCC AlA|A|A

EXG X,Y Inherent AF| 1|4 XY Sl

TFR X,Y
Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning | Styrsignaler
Qs | (Que) |X=Y Data fran X till Y
Nésta...

111

112

Arbetshok for DigiFlisp

[

=

Uppgift 14.9

Implementera instruktionerna:
EXG X,Y
EXG A,CC

Registerutbytet kriver tre cykler, komplettera tabellerna.

EXG X,Y

Till- | Summa- RTN- Aktiva (=1) Kommentarer

stand| term beskrivning Styrsignaler

Qs | (Que) Data fran X till R

Qs | (Qse) Data fran Y till X

Qs | (Qeo) Data fran R till X; Nasta...

EXG A,CC

Till- | Summa- RTN- Aktiva (=1) Kommentarer

stand| term beskrivning Styrsignaler

Qs | (Que) Data fran A till R

Qs | (Qse) Data fran CC till A

Qs | (Qeo) Data fran R till CC;
Nasta...

Lagg till de nya instruktionerna till filen misc.hwFlisp.

Skapa nu en konfigurationsfil for test av de implementerade instruk-
tionerna. Placera instruktionssekvensen med start pa adress 206 1
minnet. Detaljerna framgar av foljande:

Adress Maskin- Assemblerkod RTN
kod
20 9F EXG A,CC A—CC
21 AF EXG X,Y XY

Placera initialvdrden i A och X;kontrollera funktionen.

14.2.4 Unéra aritmetiska operationer

Vanligt forekommande operationer kan ges separata instruktioner av
prestandaskal, trots att de kan utforas pa andra sitt. I FLISP har vi
exempelvis CLR ("clear"), NEG ("negate"), DEC ("decrement") och
INC ("increment"). I detta avsnitt arbetar vi speciellt med decrement-
instruktionen. Implementering av styrsignalsekvenser for de dvriga ar
likartad. Vi borjar med att titta ndrmre pa instruktionens beskrivning:

113

Arbetshok for DigiFlisp

DEC Decrement register or memory

RTN A-1—A eller M(EA)-1—M(EA)

Flaggor N: Ettstalls om resultatets teckenbit (bit 7) far vardet 1
Z: Ettstalls om samtliga atta bitar i resultatet blir noll
V: Ettstalls om 2-komplementoverflow uppstar
C: Paverkas ej

Beskrivning Subtraherar 1 fran operanden

Detaljer:

Instruktion Adressering Operation Flaggor
DEC

Variant metod OP| # | ~ N|Z|V|C
DECA Inherent 08| 1]3|A1-A A|A[A| -
DEC Adr Absolute 38| 2| 4 [MAd)-1— M(Adr)

DEC n,SP |indexed 48| 2 | 4 |M(n+SP)-1 — M(n+SP)

DEC n,X Indexed 58 | 2 | 4 [M(n+X) -1 — M(n+X)

DEC A.,X Indexed 68| 1 | 4 |[MA+X)-1 — M(A+X)

DEC n,Y Indexed 78 2 | 4 [M(n+Y)-1— M(n+Y)

DEC A,Y Indexed 88| 1 | 4 [MA+Y)-1 —> M(A+Y)

Instruktionen &r av typ "Read/Modify/Write", dvs. operanden maste
forst lasas, for att bli tillgénglig i ALU:n, dédrefter utfors sjilva
operationen och slutligen ska resultatet skrivas tillbaks till samma
plats som dédr det hamtades.

I de nistfoljande uppgifterna ska styrsignalsekvenser for DEC-
instruktionen implementeras. Vi borjar med varianten DECA, speciellt
for att belysa sjélva operationen och dess flaggséttning. Vi fortsétter
darefter med tre ytterligare adresseringssitt Adr, n,SP och AX, som
vasentligt utokar anvindbarheten av instruktionen.

Uppgift 14.10

Implementera styrsignalsekvens for instruktionen
DECA.

Borja med att skapa ytterligare en konfigurationsfil test_dec . fmem,
for test av den nya instruktionen. Fortsdtt komplettera
flisp_ins.fcs sa att de nya instruktionerna ldggs till
instruktionsuppséttningen.

Instruktionen beskrivs av foljande RTN:
A-1-R; ALU(N,Z,V)—CC
R—A

For operationen kan lampligen foljande ALU-operation anvindas:

| u|lwv | U—L + Uip Up |V v e
11o0]1]0 U=D + FFys A
4 n 4 4 I—-n . C. M " (1 L L

Flaggorna, utom C, ska sittas av ALU-operationen.

test_dec.fmem
#ClearAl IMemory
#ClearAllRegisters

Operationskod och operandinformation
ldggs i minnet:
#SetMemory 20=08

Register A ges initialvirde
#SetRegister A=FF

RESET-vektor
#SetMemory FF=20

114

Arbetshok for DigiFlisp

Arbetshok for DigiFlisp

DECA
Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler
Qs | (Que) Operationens resultat till R
Flaggséttning
Qs | (Qse) Resultatet aterfors till A

Skapa ocksa en konfigurationsfil for test av instruktionen.

Adress Maskin- Assemblerkod RTN
kod
20 08 DECA A—A-1

Uppgift 14.11

Implementera styrsignalsekvenser for instruktionsvarianterna:
DEC Adr
DEC n,SP
DEC A,X

Gemensamt for varianterna ér att instruktionen maste delas upp i tre
delar:

e Adressberdkning, dvs. ldsning frdn minnet

e Operand ldses fran minnet, operation utfors

e Skriveykel, aterfor resultat till minnet.

DEC Adr

Adressberdkningarna utfors under forsta cykeln samtidigt okas PC for
att peka pa nidsta instruktion. Under andra cykeln utfors sjdlva
operationen sa att resultatet kan dterforas till minnet under den sista
cykeln.

Adr—TA; PC+1—PC
R—M(TA)

Operandens adress hélls hér i TA-registret under instruktionen.
Komplettera foljande tabell:

DEC n,SP

Denna variant skiljer sig under adressberdkningen genom att vi nu i
stéllet ldser den konstanta forskjutningen given av n, till register T.
Direfter bildar vi styrsignaler for att adressera minnet med n, SP.

n—T; PC+1—PC

Operandens adress utgors nu av n+SP, operanden betecknas M(n+SP),
komplettera tabellen:

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand term beskrivning Styrsignaler

Qs | (Que) [n—T,PC+1—PC Adressberakning

Qs | (Qse) Operandhamtning,

Operation, resultat till R
Flaggsattning

Resultatet aterfors till minnet

Qs | (Qee) [R-M(n+SP)

DEC A,X

I denna sista variant anvinds innehallet i register A som forskjutning.
Denna variant skiljer sig dérfor under adressberdkningen fran n, SP
genom att vi nu i stéllet laser den innehéllet i A till register T. Dérefter
bildar vi styrsignaler for att adressera minnet med A, X.

A—-T

Operandens adress utgdrs nu av A+X, operanden betecknas M(A+X),
komplettera tabellen:

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand term beskrivning Styrsignaler

Qi | (Que) |AT Adressberakning

Qs | (Qse) Operandhamtning,

Operation, resultat till R
Flaggsattning

Qs | (Qee) |R—M(A+X) Resultatet aterfors till minnet

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler

Qs | (Que) |Adr—TAPC+1—-PC Adressberékning

Qs | (Qse) Operandhamtning,

Operation, resultat till R
Flaggséttning

Qs | (Qee) |R—M(TA) Resultatet aterfors till minnet

115

Dé du konstruerat styrsignalsekvenserna fortsétter du med att fora in

test_dec.fmem
#ClearAl IMemory
#ClearAllRegisters

Operationskoder och operandinformation

ldggs i minnet:

#SetMemory 20=08
demi flisp_ins.fcs. #SetMemory 21=38
#SetMemory 22=0B
Modifiera nu ocksa konfigurationsfilen for test av DEC (se exempleti ~ #SetMemory 23=48
. o . o e #SetMemory 24=03
marginalen) sé att den innehaller f6ljande testprogram: #SetMemory 25-68
in- Initialvdrden for minne och register:
Adress Mislém Assemblerkod RTN #SetMemory 0B=45
Of #SetMemory 09=55
#SetMemory 08=65
20 08 DECA A—A+1
#SetRegister A=06
21 38 DEC Bis M(B16)<—M(B16)+1 #SetRegister SP=06
22 OB #SetRegister X=03
23 48 DEC 3,SP M(3+SP)«—M(3+SP)-1 RESET-vektor:
24 03 #SetMemory FF=20
25 68 DEC A,X M(A+X)—M(A+X)-1
26
116

Arbetshok for DigiFlisp

I konfigurationsfilen anvinds ocksa direktiv for att placera foljande
vérden i minne och register for att utfora test:

M(0B16)=4515
M(0916)=5516
M(081e)=6516
A=6

SP=6

X=3

Utfor nu programsekvensen i simulatorn, ritta eventuella fel i
styrsignalsekvenserna sa att alla instruktioner fungerar som de ska.
D& sekvensen har utforts ska du kunna avldsa foljande
minnesinnehall:

M(OBwe):441s

M(0916)25416

M(0816)=6416

14.2.5 Qvillkorlig programflédeskontroll

Vi har hittills enbart sett exempel pa instruktioner som uppdaterar PC
pa ett sitt som gor att den lamnas pekande pa ndsta sekventiella
instruktion i programflodet. For att avbryta ett sddant sekventiellt
flode anvinds nagon instruktion for "programflodeskontroll".
Instruktionen kan vara villkorlig, och dr da kopplad till nagon test av
flaggorna i CC-registret. Den kan annars vara ovillkorlig vilket
betyder att en programflodesandring sker, oavsett flaggornas tillstand.
For ovillkorlig programflddeskontroll har vi bland andra
instruktionerna JMP (jump”’) och BRA (’branch”).

Arbetshok for DigiFlisp

De visade instruktionsformerna astadkommer samma sak, dvs.
placerar en ny adress i PC. Skillnaden &r hur denna adressinformation
kodas in i instruktionen. I det forsta fallet, JMP, anges den absoluta
adressen, medan den andra varianten BRA, kodar adressen som en
offset till aktuell PC, dvs. instruktionens forhéllande till
destinationsadressen &r positionsoberoende.

Ytterligare en skillnad mellan instruktionerna &r att BRA endast finns
med PC-relativ adressering, medan JMP kan anvéndas med flera
adresseringssitt.

I detta och de kommande avsnitten ska vi gd igenom exempel pa
styrsignalsekvenser for instruktioner for programflddeskontroll.

Uppgift 14.12

Dé du konstruerat styrsignalsekvenserna fortsétter du med att fora in
demi flisp_ins.fcs.

JMP Adr

Instruktionen placerar effektiva adressen i PC, observera att detta &r
det virde som foljer direkt efter operationskoden i minnet och det
racker alltsi med en ldscykel. PC ska nu inte, som tidigare
inkrementeras for att peka pd nésta instruktion. Ingen flaggsittning
ska heller utforas, varfor implementeringen blir enkel:

M(PC)—PC

Komplettera foljande tabell med de nddvindiga styrsignalerna:

Till- | Summa- RTN-
stand| term beskrivning

Aktiva (=1)
Styrsignaler

Kommentarer

Qs | (Que) [M(PC)—PC Data fran minne till PC; Nasta...

JMP Jump

RTN EA - PC

Flaggor Paverkas ej

Beskrivning Ovillkorlig programflédeséndring; nasta instruktion hémtas fran
effektiva adressen EA.

Detaljer:

Instruktion Adressering Operation Flaggor

JMP

variant metod OP| # | ~ N(zZ|V|C

JVP Adr Absolute 33| 2|2 |Adr—PC Sl

BRA Branch always

RTN PC+Offset — PC
Flaggor Péverkas ej
Beskrivning Ett hopp utfors till adressen ADRESS = PC+Offset. Offset réknas fran

adressen efter branchinstruktionen, dvs. vid utrékningen av hoppadressen
pekar PC pa operationskoden som (eventuellt) finns direkt efter
branchinstruktionen i minnet

Detaljer:
Instruktion Adressering Operation Flaggor
BRA

metod OP| # | ~ N|Z|V|C
BRA Adr Relativ 21| 2 | 4 |PC+Offset — PC Sl-] -] -

BRA Adr

Den PC-relativa adressberdkningen for BRA-instruktionen dr négot
mer komplicerad. Instruktionen bestar av operationskod och "offset",
relativ PC, som beriknats dd PC innehdller adressen till nista
instruktion. Sambandet mellan BRA-instruktionens adress,
destinationens adress och offseten skrivs dérfor:

Instruktionsadress + 2 + OFFSET = Destinationsadress

Da exekveringsfasen inleds innehaller PC adressen till OFFSET, RTN
for hela instruktionen kan dérfor skrivas:

PC+1+(PC)—PC

Vi delar upp detta i en styrsignalsekvens genom att forst placera PC i
T-registret for den kommande berdkningen och samtidigt placera PC i
register TA for inldsning av OFFSET fran minnet. Observera att
virdet for PC i register T nu dr 1 mindre dn det virde som ska
anvindas vid berdkningen av destinationsadressen:

PC—T; PCHTA

OFFSET

i

OP-kod BRA

0
[—

Instruktions-
adress

OFFSET

[«— PC

OP-kod Destination

- Destinations-

MINNE

adress

118

Arbetshok for DigiFlisp

Direfter utfors sjdlva adressberdkningen. Vi kompenserar nu vérdet
for PC med att addera dven konstanten 1 till den resulterande
destinationsadressen och resultatet placeras i register R:

M(TA)+T+1—R
Slutligen aterfors resultatet till PC, varefter instruktionen ér utford:
R—PC

Komplettera foljande tabell med de saknade styrsignalerna:

Arbetshok for DigiFlisp

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler
Qs | (Quelz1) |PC—T, PC—TA Operandhamtning
Qs | (Qselar) |M(TAT+1—R Adressberakning
test_jmpbra.fmem Qs | (Qe®l2r) |R—PC Resultatet aterfors till PC

#ClearAlIMemory
#ClearAl lRegisters

Operationskoder och operandinformation
ldggs i minnet:

#SetMemory 20=33
#SetMemory 21=24
#SetMemory 24=21
#SetMemory 25=FA

RESET-vektor:
#SetMemory FF=20

Efter att ha lagt till styrsignalsekvenser for instruktionerna JMP och
BRA i kan vi anvénda foljande enkla testprogram for kontroll (se dven
exempel i marginalen):

Adress MasK Assemblerkod RTN
od
20 33 WP 244 24155PC
21 24
22
23
24 21 BRA 204 2015PC
25 FA
26

Observera hur offset och destinationsadress for BRA-instruktionen
bestamts i programexemplet: det ska gélla att:

Instruktionsadress + 2 + OFFSET = Destinationsadress
dvs.
(2416 +2+ FA16) (mod 256) =204

14.2.6 Villkorlig programflédeskontroll

Villkorlig programflodesiandring anvénder flaggorna i CC-registret
for att bestimma om en programflodeséndring ska utforas, eller inte.
Vi kan vilja att testa enskilda flaggor, men é&ven olika kombinationer
av flaggbitar som realiserar onskade testvillkor.

Foljande tabell listar de enkla flaggvillkoren:

Betrakta nu som exempel instruktionen BCS (Branch if carry set).

BCS Adr

Instruktion Adressering Operation Flaggor
BCS
metod OP| # | ~ N|zZ|V|C
BCS Adr Relativ 28| 2 | 4 |if(C=1) -l -
PC+Offset — PC

Om C-flaggan dr 1 ska programflodeséndring utforas, annars ska
instruktionen omedelbart efter den villkorliga instruktionen utforas.
Detta kan kortare skrivas:

if(C=1)
Destinationsadress—PC
else
PC+2—PC

Om vi utgar fran utforandefasen av BRA i foregéende uppgift ersétts
nu den ovillkorliga Gverforingen i tillstind Qs (R—PC) av den
villkorliga 6verforingen:
if(C=1)
R—PC
else
PC+2—PC

Styrsignalsekvensen for en villkorlig instruktion ska darfor dels
berdkna destinationsadressen vid uppfyllt villkor och placera denna
adress i register R, dels ska adressen till ndsta instruktion placeras i
PC, for den héndelse villkoret inte ar uppfyllt. Avslutningsvis
aktiveras LDpc endast om villkoret &r uppfyllt, RTN cykelvis blir:

PC—T; PCTA,
M(TA)+T+1—R; PC+1—PC,
if(C=1) R—PC

Direfter ar instruktionen utford. Vi sdtter samman och féar den fardiga
styrsignalsekvensen enligt foljande tabell:

Till- | Summa- RTN- Aktiva (=1) Kommentarer
stand| term beskrivning Styrsignaler
Qs | (Quelzs) [PC—T;PC—TA |OEpc; LDr; LDra Operandhémtning
Qs | (Qselzg) [MTAFTHSR; MR;fs; f1; fo;go;g1a; LDR; |Adressberékning
PC+1—PC INCpc
Qs | (Qselzs) |if(C=1)R—PC OER; LDpc =C; NF Om C=1 aterfors resultatet
till PC

Styrsignalsekvenser for 6vriga villkorliga instruktioner ar likartad; det
ar bara bildandet av villkoret (LDpc=?) som skiljer dem at. Foljande
tabell ger en oversikt av villkorsindikatorer med motsvarande uttryck
(syntax).

Instruktion (Mnemonic) Funktion Villkorsindikation
“Branch if carry set” (BCS) “Hopp” om carry C=1
“Branch if carry clear” (BCC) “Hopp” om ICKE carry C=0
“Branch if equal” (BEQ) “Hopp” om zero Z=1
“Branch if not equal” (BNE) “Hopp” om ICKE zero Z=0
“Branch if minus” (BMI) “Hopp” om negative N=1
“Branch if plus” (BPL) “Hopp” om ICKE negative | N=0
“Branch if overflow set” (BVS) “Hopp” om overflow V=1
“Branch if overflow clear” (BVC) “Hopp” om ICKE overflow | V=0

119

Instruktion (Mnemonic) Villkors- | Syntax
indikation

“Branch if carry set” (BCS) C=1 C

“Branch if carry clear” (BCC) C=0 1C

“Branch if equal’ (BEQ) Z=1 Z

“Branch if not equal” (BNE) Z=0 1Z

“Branch if minus” (BMI) N=1 N

120

Arbetshok for DigiFlisp

Arbetshok for DigiFlisp

“Branch if plus” (BPL) N=0 IN

“Branch if overflow set” (BVS) V=1 \

“Branch if overflow clear” (BVC) V=0 v

"Branch if higher” (BHI) c+z=0 |[1(C+2)
“Branch if lower or same” (BLS) C+Z=1 C+Z

“Branch if greater than” (BGT) (NeV)+z=0 | T((NXV)+Z)
“Branch if greater or equal’ (BGE) Nev=0 ['(NXV)
“Branch if less than” (BLT) NoV=1 NXV

“Branch if less or equal” (BLE) (N®V)+Z=1 | (NXV)+Z

Du kan anvénda Instuction Builder:s villkorsfilt for att bilda AND-
villkor mellan enskilda styrsignaler och evaluerade villkor.

For att som exempel ladda PC under villkoret Z=0, véljer du forst detta
villkor i Condition-faltet.

Condition

1 o Cz «1Z

N N v

- C i " C+Z " (C+2)
" Nxv 1(NxV) O (NxV)+2Z O ((NxV)+2D)

Direfter flyttar du styrsignalen fréan filtet Apply condition, till faltet
Remove Condition, genom att dubbelklicka pa signalens namn.

20Ty condition (double click)

Namnet flyttas nu:

Remove condition {double dick)

DPre—

och detta betyder att villkoret ldggs till just denna styrsignal.
Observera att signaler som inte flyttas till detta falt inte heller
kommer att ingd i villkorsuttrycket. Vill du aterstilla, dvs. ta bort
villkoret fran styrsignalen dubbelklickar du pd dess namn i Remove
condition-faltet.

Uppgift 14.13
Implementera styrsignalsekvensen for instruktionen BNE.
Instruktion Adressering Operation Flaggor
BNE
metod OP| # | ~ N|Z|V|C
BNE Adr Relativ 25| 2 | 4 [if(z=0) R
PC+Offset — PC

Komplettera foljande tabell:

121

BNE Adr

Till- | Summa- RTN- Aktiva (=1) Kommentarer

stand| term beskrivning Styrsignaler

Qs | (Que) |[PC—T;PC—-TA Operandhamtning

Qs | (Qse) |M(TA+T+1—R; Adressberékning
PC+1—PC

Qs | (Qee) [if(Z=0)R—PC Om Z=0 aterfors resultatet

till PC

Légg till instruktionen i Flisp_ins.fcs.

Kontrollera funktionen med hjélp av foljande testprogram, se dven
exemplet i marginalen.

Maskin-

Adress Assemblerkod RTN
kod
20 FO LDA #3 3—A
21 03
22 08 DECA A-1-A
23 25 BNE 2244 if(Z=0)2216—PC
24 FD
25 21 BRA 2016 2016—PC
26 F9

Légg slutligen till instruktionerna:
BEQ, BCS och BCC

i flisp_ins.fcs.

Konfigurationsfil for test av BNE
#ClearAl IMemory
#ClearAl lRegisters

Operationskoder och operandinformation
laggs i minnet:

#SetMemory 20=F0
#SetMemory 21=03
#SetMemory 22=08
#SetMemory 23=25
#SetMemory 24=FD
#SetMemory 25=21
#SetMemory 26=F9

RESET-vektor:
#SetMemory FF=20

14.2.7 Skiftoperationer

Instruktioner for skiftoperationer, dvs. aritmetiskt skift, logiskt skift
och rotation skiljer sig at endast i hur bitar skiftas in och ut i
andpositionerna. Vi ger hir exempel pa logiskt skift.

»
r ASR
or[ee]os]]o]en]]

LSR
LSL Logical shift left [0 o ou] e s o]
RTN A <<1 — Aceller M(EA) <<1 — M(EA) ROR
Flaggor N: Kopia av bit 7 efter skiftet. L_.J
Z: Ettstélls om samtliga atta bitar i resultatet blir noll. EHHE
V: Ettstalls om C och bit 7 ar olika efter operationen, dvs. P
overflow vid 2-komplements-representation intraffar. « ASL. LSL

C: bit 7 fore skiftet blir ny carrybit efter skiftet.

Beskrivning Skiftar operanden ett steg till vanster, dvs. multiplicerar ett tal med
eller utan inbyggt tecken med 2
+—

Ci—|b; by | bs | b | by b | by DGHO

[o]t eoje{ o]
ROL
C b7 bg|bs

1
1€ e oo]

Detaljer:

Instruktion Adressering Operation Flaggor 1]0]1 D<<1(Cin)— U
LSL 111]1]0 (Cn)D>>1>U
variant metod OP| # | ~ N|z|v|c| LIL1[1][1] (@)D>1-U
LSLA Inherent 0B| 1|3 [A<1—>A AlAA]A Skiftoperationer
122

Arbetshok for DigiFlisp

I detta kapitel fortsétter vi att studera hur maskininstruktioner sitts -

samman i ett maskinprogram som vi placerar i minnet och darefter
lata FLISP utfora. Kapitlet omfattar:

[=-Contents
- Transistor level
Combinatarics

e en oversikt dir du fér tillfélle att bekanta dig med hur simulatorn
fungerar, samt

e maskinprogrammering, dvs. inmatning och test av operations-
koder och operander, for enklare instruktionssekvenser.

15.1 Oversikt av simulatorn

Vi skall borja med att anvéinda FLISP-simulatorn for att mata in ett
maskinprogram (ett antal maskininstruktioner) i minnet. Vi fortsitter
med att studera utférandet av programmet, dels genom att stega oss
genom programmet, dels genom att exekvera programmet
automatiskt.

d peripherals
uter
peripherals

Starta FLISP-simulatorn, vélj Computer and peripherals|FLISP-computer.
i

e 0] x]
Righoes e At « /‘ Visar FLISP:s registerinnehall
. X ¥i SP PC ['
0 C2 0O o

00000
cc INVIC

FL;S PROCESSOR m

InputiOutput

ool o] ool frofo] e
E_BE B H_BE BE __H

FLISP-simulatorn innehéller en rad olika funktioner men vi
koncentrerar oss i detta kapitel pa en 6vervakningsfunktion (monitor)
med vilken vi kan wundersoka sdvdl minnesinnehdll som
programutforande i FLISP. [File
Load
Reload

10 setup %

Exit

Vilj nu darfor menyalternativet File|Monitor.

Arbetshok for DigiFlisp

Program
Visar minnesinnehall tolkat som

instruktioner (disassemblering).

HOF
HOP
HOP Registers
HOP Visar registerinnehall, dessa kan
HOP &ndras genom att markdren
HOF placeras i registrets fonster och
HOP det nya vérdet skrivs in, avsluta
NopP Control/Options med <Enter>.
HOP I
d | .)
NOP ml Nollstall hela minnet
NOP Interruy |
pt request
HOP LI
—Memary <—
s0) 3152 53]31 3859 sa|sB|sc| sp|sE| sF|
00|00 |00 00 00 00 00 00 00 00|00 a0 oo oo
|10{00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 H Memory:
20|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00 Visar rr?/i'nnesinnehéll minnets
30|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00 innehéllkanéndraséenomatt
40|00 |00 00 00 00 00 0O 00 00|00 00 00 00 00 00 00 markdren placeras i minnes-
50|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00 adressens fonster och det nya
60|00 00 00 00 00 00 00 00 00|00 00 00 00 00 00 00 vérdet skrivs in, avsluta med
|70/00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 <Enter>.
80|00 00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
90|00 00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|&0|00 00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|BO|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|CO|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|\DO|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|E0|00 |00 00 00 00 00 00 00 00|00 00 00 00 00 00 00
|FO|00 00 00 /00 00 00 00 00 00|00 00 0001 00 00 00
Uppgift 15.1
Placera nu foljande programsekvens i minnet genom att mata in
maskinkoden for sekvensen med start pa adress 20,¢.
Adress Mizl:’ln- Assemblerkod RTN
20 FO LDA #3944 44— A
Memary 21 44
$0 . §2 22 94 SUBA #1 A1—A
00 00 00 00 23 01
10 0o |00 |00 24 E1l STA $05 A— M(5)
S0 (00 o0 25 05
— an Tan Tan 26 21 BRA $22 2216— PC
27 FA
Stéll markoren pé adress 20,4 i minnet och mérk upp innehallet. Skriv
in den forsta operationskoden (FO;). Still dérefter markdren pa
adress 21. Skriv nu in operanden 44¢.
Registers Du kan anvénda programsektionen for att kontrollera att du verkligen
[PC| el —I matar in rétt instruktion. Placera programsekvensens startadress 206 i

register PC och tryck <Enter>.

140

141

Arbetshok for DigiFlisp

Observera hur innehéllet i programsektionen nu uppdateras med
disassembleringen av den inmatade instruktionen.
HOF

Registers
:l o -0
oo
WD

nn
Fortsétt mata in resten av maskinkoderna t.o.m adress 275 i minnet,
observera dndringar i programsektionen allt eftersom
minnesinnehéllen dndras. Da hela sekvensen matats in ska det se ut pa
foljande sitt:

Program

LD& #544

Program
IDA #3544 i’
SUBA #s01
STA 305
ERA $22
HOP

Programexekvering styrs fran FLISP-simulatorn. Med hjdlp av
simulatorn ska du nu titta nidrmre pa instruktionsexekveringen i
FLISP. Simulatorn har flera funktioner for detta men i detta kapitel
ndjer vi oss med funktionen step, utfor nédsta instruktion. Den
instruktion som stér i tur att utforas, utpekad av register PC, mérks
upp med gul bakgrund i simulatorns programsektion.

Uppgift 15.2

e Utfor ndsta instruktion genom att klicka pa omkopplaren step
("stega").

PC okas och pekar nu pa nédsta instruktion. Programsektionen

uppdateras och aterspeglar detta varefter registersektionen
uppdateras med nytt innehall i register A.
Program Registers
IDA #3544 jl T 22
SUBA #3501 a0
STA S05
an
ERA $22 :

Observera att savdl monitorfonstret som FLISP-simulatorns fonster
uppdateras.

~

T

tfs

e Stega SUBA-instruktionen, observera innehallet i register A.
e Stega STA-instruktionen, observera innehallet i minnesadress 5.

' 2

reset

Execute

142

Arbetsbok for DigiFlisp

Contents Directory | Files

I detta avslutande kapitel behandlar vi assemblerprogrammering, en
“ett—till-ett”—Gversittning fran maskinspraket. Kapitlet behandlar
huvudsakligen:

e Programutveckling for FLISP och ytterligare funktioner hos
simulatorn.
e Grundliggande assemblerprogrammering:
o enkla programstrukturer som flddesval och subrutiner,
samt
o reservering av minne for program och data.
e Beskrivning av yttre enheter anslutna till FLISP-datorn:
o programstyrd in- och utmatning fran/till yttre enheter,
samt
o avbrottstyrdstyrd in- och utmatning fran/till yttre enheter.

16.1 Programutveckling i assemblersprak

DigiFlisp kan anvidndas for programutveckling i assemblersprak och

innehaller funktioner for:

e Textredigering — programmet skrivs i form av killtext, dvs. en
textfil som innehaller instruktioner och direktiv till assemblatorn.

e Assemblering — dé programmet dr firdigt méste det oversittas
till maskinkod innan det kan testas i en maldator eller simulator.
Oversittningen av programmet, assembleringen, utfors auto-
matiskt av assemblatorn. Vid assembleringen skapas laddfiler
och en listfil.

e Test—ien laddfil finns programmet representerat pa en form som
kan overforas till simulatorer och laborationsutrustning dar det
tolkas som instruktioner och data. D& programmet har overforts
till simulator eller laborationsutrustning kan det utforas
(exekveras). Man kan da kontrollera programmets funktion.

16.1.1 Skapa ett assemblerprogram

Killtexten skrivs/redigeras med hjilp av en Editor, filnamnet ska
sluta med .sflisp (source FLISP) for att kdnnas igen som en
kalltextfil for FLISP. Fargad syntax anvinds for att hjdlpa dig
uppticka enklare stavningsfel.

Borja med att skapa ett lampligt arbetsbibliotek for dina filer, (hdr har
vi valt C:\laborationer men du vill sikert placera dina filer pa
nagot annat stille). Anvdnd Navigator, fliken Directory och vilj
arbetsbiblioteket, se dven figur i marginalen.

Du skapar en ny killtextfil genom att vilja File | New fran menyn.
Direfter skriver du in namnet pa den fil du vill skapa, skriv nu
Momentl och klicka pa Save. Om du inte anger nagot filnamnstilligg
lagger DigiFlisp automatiskt till . sf1isp. Nu skapas ett nytt fonster:

151

Arbetsbok for DigiFlisp

" Momentl.sflisp X

DigiFlisp:s skapar ett nytt fonster dér du kan redigera din kélltext.

I Navigator, viixla till fliken Files, hir har du en 6versikt av alla filer i
ditt arbetsbibliotek. Expandera FLISP assembler source

Navigator

[=I-Files
) FLISP assembler source
i L Momentd.sfisp
1. FLISP memory source {, fmem)
i+ FLISP control store source (.fcs)
- Loadfie (.519)
- Listfile (Ist)
Other files

Uppgift 16.1

Skriv nu in en killtext med foljande instruktionssekvens:

" Momentl.sflisp X

CRG $20
starc: LDA EFC

STRZ $FB

JHME startc

Observera hur texteditorn firglagger din text:

o Ett giltigt symbolfilt firgas gront

e En giltig instruktion (eller ett assemblerdirektiv) firgas bla
e En giltig operand (eller argument till direktiv) férgas rod

e Kommentarer firgas gra.

Notera speciellt hur instruktionen:

STAA SFB

firgas gron, dvs. tolkas som en symbol. Detta beror pa att vi

(avsiktligt) stavat instruktionen fel: ritt stavning ar STA. Lat felet

vara kvar, vi ska strax riitta till det.

e Rader som inleds med ’; ’ tolkas som kommentarer.

e Med direktivet ORG (origin) anger du programmets startadress.

e Dollartecknet anger att paféljande talvdrde ska tolkas pa
hexadecimal form ($FB = FBys).

For att spara filen anviinder du nu File | Save.

Om du snabbt vill géra en kopia av denna killtext gor du File | Save As
och viljer ett nytt namn.

Contents | Directory Files

152

Arbetsbok for DigiFlisp

Fie Edt Yew hep
P Crln
Cpen Cul+0

e s [

by Savve Ates

Navigator 8x

[=)-Files
) FLISP assembler source

*- FLISP control store source (.fcs)
*.. Loadfie (.s13)

L. Listfile (Ist)

Other fles

16.1.2 Assemblering

Vid assembleringen Gversitts killtexten till en laddfil som innehaller
maskinkoden, med tilligget .s19 av den inbyggda assemblatorn.
Dessutom skapas ytterligare en laddfil, med annorlunda format och
med tilligget .fmem, som dven kan anvindas med den fasta styr-
enheten i DigiFlisp. Slutligen skapas ocksa en listfil (med tilligget .Ist)
som kortfattat kan sdgas innehalla information fran savil killtexten
som laddfilen.

Du kan vilja pa tva olika sitt att assemblera killtexten.

1. Vilj fran menyn File|Assemble frdn menyn, di Oppnas en
dialogruta dar du far ange namnet pa den fil du vill
assemblera.

2. I Navigator|Files, vilj den fil du vill assemblera, hogerklicka
och vilj Assemble FLISP source.

Uppgift 16.2
e Assemblera filen Momentl.sflisp

Assemblatorn kommer att klaga pa den felstavade instruktionen:

Messages

Assembling: 'Momentl sflisp'
C:-laborationsr-Homentl.sflisp 6 Error: Illegal mnemonic
1 error{s)

Felutskrift fran assemblator

Efter filnamnet, med fullstindig s6kvig (som kan se annorlunda ut i
ditt exempel) skrivs radnummer inom parentes, darefter typ av fel.

’Illegal mnemonic’ betyder att det inte finns ndgon sadan
instruktion (STAR).

e Dubbelklicka nu (vénster knapp) pa felutskriften. Markéren i
marginalen pekar ut raden i kélltextfilen som genererat felet.

" Momentl.sflisp >

CRG £20

start: LDA £FC

» | STRR 53
JHP start

e Det dr meningslost att forsoka testa ett program som gett
felutskrift vid assembleringen. Rétta dirfor felet och assemblera
pé nytt.

Ténk pa att korrekt “fargad syntax” inte nodvandigtvis innebér att ditt
assemblerprogram &r korrekt: det dr snarare till for att gora dig
uppmirksam pa enklare stavfel, syntaxfel etc. Darfor kan det i bland
hinda att du far felmeddelanden dven om du stavat savil instruktioner
som operander riktigt.

153

Arbetsbok for DigiFlisp

16.1.3 Lad(dfil, konfigurationsfil och listfil

Laddfilen anvinds for att overfora programmet (som maskinkod) till
en maldator eller en simulator. Det ar knappast nodvéndigt att kdanna
till laddfilsformatet i detalj men vi visar @ndd hur laddfilen
(Moment1.s19) for vért programexempel Moment1.sflisp ser ut.

Moment1.sflisp /Momentl.sl‘) X]
IS_'LCIQCICIECIFJ.FCEJ.FESSECIEP.
59030020DC

Exempel pa en laddfil.

Vid assembleringen skapas ocksa konfigurationsfilen
Moment1. fmem, med det format vi anvinde i kapitel 14. Detta ger
dig mojlighet generera testprogram for FLISP:s fasta styrenhet.

Listfilen (Moment1.1st) kan ofta vara anvindbar da man testar sitt
program. Listfilen innehaller dels det ursprungliga assembler-
programmet, men dessutom information om den maskinkod som
skapats vid assembleringen och pé vilka adresser maskinkoden
hamnat. En del av listfilen for vart programexempel ser ut pa foljande
sétt:

File: Momentl.lst

1.
2. : Momentl.sflisp
3. ;
20 4. CRG £20
20 F1 FC 5. start: LDA £FC
22 E1 FB g. STR $FB
24 33 20 7. JMP start
28 8.

Listfilen innehaller forutom kiilltexten information om absoluta
adresser och den maskinkod som genereras vid assembleringen.

Listfilen anvinds vanligtvis for att identifiera absoluta adresser som
man angett med hjdlp av symboler. Exempelvis vill man kunna
kontrollera vissa variablers virden (minnesinnehall pa nagon adress)
eller sitta sa kallade brytpunkter f6r programexekvering.

I ndsta avsnitt ska vi studera ytterligare funktioner hos FLISP-
simulatorn. Vi anvédnder da en enkel programsekvens som du nu
skapar i foljande uppgift.

Uppgift 16.3

Instruktionen COMA anvinds for att invertera (bitkomplementera)
bitmonstret i register A. Utgd ifran Moment1.sflisp, skapa en ny
killtext Complement.sflisp och skriv ett assemblerprogram som
utfor operationer enligt flodesplanen i marginalen.

Spara programmet: du ska fa tillfille att undersoka det alldeles strax.

Navi

B

gator

8x

[=- FLISP assembler source
- Moment1.sfiisp
[} FLISP memery source (.fmem)
- Moment1. fmem
- FLISP control store source {.fcs)
- Loadfile (.s13)
Moment1.s19
= Listfile (st)
- MomentL.Ist
Other files

A «— M(FCyg)

Flodesplan

154

Arbetsbok for DigiFlisp

Navigator

B8x

= Contents
Transistor level
[~ Combinatorics
[Switchbox
Datapath
[#- Contral

-~ FLISP-computer

Contents Fies

[=1- Computer and peripherals

L]

16.2 Simulatorns grundldggande funktioner

Med FLISP-simulatorns hjélp kan du fa en god forstaelse for hur
assemblerinstruktioner fungerar. Du kan utfra ett assemblerprogram
instruktionsvis och i lugn och ro studera effekterna.

16.2.1 In- och utmatning

Vi ska nu fortsitta arbeta med programmet i Complement.sflisp
fran foregaende avsnitt. Eftersom programmet ldser fran och skriver
till portar (utfor in- och utmatning) ska vi gora vissa forberedelser
innan vi provar programmet i simulatorn.

Oppna dialogfonstret for simulatorns anslutningar

Till simulatorn finns ocksa en fristaende del som kallas "IO-
simulator”" (Input/Output-simulator). Dess uppgift dr att simulera
olika omgivningar till FLISP-datorn, dvs. de enheter som inmatning
sker fran och utmatning sker till. Eftersom IO-simulatorn innehaller
olika typer av kringenheter och dessa kan kopplas pa olika sitt till
FLISP:s portar maste vi géra vissa instéllningar.

Vilj Connect peripherals:
I =

Mperts 10-deices

Faralell outport at FB
Paralell sutport at FC
Paralell inpart at FB
Paralell inpart at FC
B bt an from FC. ® bit out te FE

& sequent Dargraph
£ bat dipsviteh

Double hewsdecinal display
4 T-seguent display

Eeypad

L IR flip flep

e | x| e

Dialogfonster for 10-simulatorns mdajliga anslutningar till in- och
utportar hos FLISP

De tva minnesadresserna som uppléts for in- och utmatning mojliggér
totalt 4 portar eftersom vi anvinder MR och MW signalerna for att
avkoda riktningen.

FB1s INPORT FC1s INPORT

L
FC1s UTPORT

L
FB15 UTPORT

Figur 16.1 FLISP avkodningslogik for 10

De tva adresserna FBis och FCy; ér alltsd var for sig forsedda med en
inport och en utport, vilket gor att vi kan ansluta maximalt 4
kringenheter samtidigt. Genom att vilja mellan de olika alternativen i
dialogfonstret kan du kombinera flera olika anslutningar.

e Vilj nu forst I0-porten Paralell inport at FC och direfter 10-
enheten 8 bit dipswitch. Klicka pa Connect.

e Vilj nu Paralell outport at FB och direfter 8 segment Bargraph,
klicka pa Connect.

e Klicka slutligen pa pa OK for att aterga.

155

Arbetsbok for DigiFlisp

Tvé nya fonster skapas nu: DIPSWITCH i IO-simulatorn anvénds for
att simulera en 8-bitars omkopplare. Omkopplaren anvinds for att ge
indata till vart program.

Dessutom skapas den simulerade utenheten BARGRAPH, en
ljusdiodramp, som anvinds som indikator for utdata fran véart
program.

i1

DIPSWITCH

BARGRAPH

De olika brytarnas ligen pa omkopplaren kan nu lisas som ett 8-
bitars dataord fran adress FCq:

LDA S$SFC

Du kan @ndra omkopplarnas ligen genom att klicka i de gra/svarta
falten.

on De 8 omkopplarna representeras med filt av gré/svarta
ytor. Genom att klicka i ett sadant filt andrar du
off omkopplarens utsignal mellan 0 (off) och 1 (on).

Stéll in virdet 1 pa omkopplaren genom att klicka pa féltet for bit 0.

o Din ’klickning” motsvarar en omstillning av denna
off knapp. Du kan éndra varje knapp pa samma sitt.

Utdata som skrivs till adress FBys kan avlisas pa ljusdiodrampen:
STA S$FB

Virdet i ackumulator A skrivs till ljusdiodrampen.

IDI]DDII]DI]D

Roda indikatorer tolkar du som *1°, medan
de gula tolkas som *0’.

Uppgift 16.4
1. Oppna filen Complement .sflisp

Assemblerdirektiv dr EQU (equate) kan anvindas for att definiera
konstanter och fasta adresser. Om exempelvis en DIPSWITCH &r
ansluten till adressen FC,4 i méaldatorns minne kan vi definiera:

DIPSWITCH EQU SFC

Pa motsvarande sitt kan en ljusdiodramp pé adress FB,4 definieras:
LED EQU SFB

1. Andra i killtexten Complement . sf11isp s att symbolerna
DIPSWITCH och LED anvinds som portadresser.

2. Assemblera filen, ritta eventuella fel.

3. Du kan starta FLISP-simulatorn via Navigator|Files, expandera
Loadfile och vilj filen Complement . s19, hogerklicka:

4. For att kunna sitta programréknaren PC till programmets
startadress, 20,6, kan vi anvdnda simulatorns monitorfunktion pa
samma sitt som i forra kapitlet. Vilj File | Monitor i FLISP-
simulatorn.

A +— M(DIPSWITCH)

M(LED) — A

Flodesplan

156

Arbetsbok for DigiFlisp

Execute

L4

resed
hatt

o ¥

AddAndDisplay

A

M(DIPSWITCH_1)

!

A— A+
M(DIPSWITCH_2)

v

M(HEXDISPLAY) — A

5. Sitt programmets startadress 204 i PC och tryck <Enter>.

— .
[Disasseembly — - [T 1
= = [[SR

1 PC 70

a0 F1FC LDA SFC S8 00

22 Uk COMA . ¥ 00

Z3mr1 o ST OFD oo

25 330 JHE 220 alon

i 0o Erd e oo

FTR[T] HoF

6. Still in foljande olika vdrden pd omkopplaren — utfér programmet
med run, dvs. klicka pa stromstillaren halt/run, du kan dndra
hastigheten genom att nu klicka pa step, prova detta, upprepade
ganger. Under simulatorns programexekvering dndrar du
instdllningarna p4 omkopplaren och observerar @ndringarna hos
ljusdiodrampen. Fyll i foljande tabell:

Installt vérde (binart) Avlast varde (binart)

1111 0000
1010 1010
1100 0011

L |

Uppgift 16.5

I denna uppgift anvinds tvd omkopplare och en visningsindikator for
hexadecimala siffror (HEXDISPLAY).

DIPSWITCH DIPSWITCH HEXDISPLAY

Skapa en Kkilltextfil AddandDisplay.sflisp. Skriv en program-
sekvens som ldser av och adderar virden fran tvd omkopplare
anslutna till adress FB,4 (DIPSWITCH_1) och FC,4 (DIPSWITCH_2) och
darefter skriver ut summan pa visningsindikatorn ansluten till adress

FC\g, vi bortser hir ifran spill. Skriv firdigt programsekvensen:
Mnemonic/

; Symbolfalt direktiv Operand
DIPSWITCH 1:
DIPSWITCH 2:
HEXDISPLA?:

ORG $20
IAddAndDisplay:

Assemblera och testa programsekvensen, rétta eventuella fel.

157

Arbetsbok for DigiFlisp

16.2.2 Sju-sifferindikator

Med en sju-sifferindikator kan man pa ett enkelt sitt presentera
tecken som kan hanforas till de vilbekanta siffrorna 0-9. Namnet
kommer av att det faktiskt gar att representera dessa siffror, om &n
néagot kantigt, med endast sju olika streck, vilka ocksa kallas segment.
Det finns ocksa ett dttonde segment vars uppgift dr att téinda en
decimalpunkt.

Under detta moment ska du konstruera ett assemblerprogram som
utfor Gversittning och utmatning av de binéra siffrorna 0 t.o.m. 9 till
motsvarande representationer pa sju-sifferindikatorn.

Sju-sifferindikatorn 7-SEG DISPLAY fungerar enligt foljande:
e Varje bit, i det dataord (8 bitar) som skrivs till utporten, motsvarar
ett segment pa sju-sifferindikatorn.

e En etta tinder ett segment, en nolla slicker segmentet.

Oversittningen fran en siffra (0-9, A-F) till motsvarande sju-
segmentskod beror naturligtvis helt och hallet pa vilken typ av sju-
sifferindikator man anvénder.

Se exemplet pa Gversittningen av den decimala siffran 2’ till dess
motsvarande sju-sifferkod i marginalen. For att representera siffran 2
maste vi tinda de segment som (tillsammans) ger det mest ”2-lika”
utseendet, i detta fallet segmenten 0,1,3,4 och 6. Detta motsvarar
hexadecimala talet 5Bjs som dirfor formar siffran tva pa
sifferindikatorn

Uppgift 16.6

Foljande tabell illustrerar forhallandet mellan binéra koder och sju-
segmentskod. Studera speciellt féregaende exempel och komplettera i
tabellen med med de saknade sju-segmentskoderna.

Decimal Sju-segmentskod
siffra

Binar Binar form Hexadecimal
kod form

0000 0111 0111 3F
0001
0010 0101 1011 5B
0011
0100
0101
0110
0111
1000
1001

W[J ||| |W[IN [P |O

7-SEG DISPLAY

by by | bs by by by by by

of1fal1[1l0]1]1

158

Arbetsbok for DigiFlisp

16.2.3 Statisk minnesinitiering

Med 7statisk minnesinitiering” menar man att ett bestimt virde
placerats pa en given adress innan programmet startas.

Detta gors med assemblerdirektivet FCB (Form Constant Byte) som
instruerar assemblatorn att placera ett virde 1 maldatorns
primédrminne.

FCB vdrde

Flera argument (vdrden) kan ges med direktivet. Dessa maste da
skiljas at med kommatecken.

FCB védrdel, vdrde2, viarde3 etc.

Observera att inga blanka tecken far finnas mellan virden och
kommatecken.

Uppgift 16.7

Foljande exempel illustrerar en tabell, med start pa adress 70,4.
Tabellen innehéller de decimala vérdena 0-9.

ORG $70

FCB 0,1,2,3,4,5,6,7,8,9
Om tabellen &r stor kan man dela upp den i flera rader,

assemblerdirektivet ska da upprepas. Foljande konstruktion dr
exempelvis ekvivslent med ovanstéende:

FCB 0,1,2,3,4
FCB 5,6,7,8,9

Skapa en ny killtextfil DisplaySeg.sflisp och ligg hir in en
liknande tabell som i stillet for de decimala virdena innehéller de
segmentkoder du bestdmde i féregaende uppgift.

Arbetsbok for DigiFlisp

i Mnemonic/

; Symbolfdlt direktiv Operand
ORG $70

Segmentkod: FCB

I ett flodesdiagram kan vi symboliskt skriva:
A—M(X+A)

Dvs.
e Bestim en minnesadress genom att addera X och A.
e Placera innehéllet pa denna adress i A.

Motsvarande operation utfors av assemblerinstruktionen:

LDA A, X

159

Uppgift 16.8

I denna uppgift skapas en programsekvens ddr vi ldser ett virde fran

omkopplaren ansluten till adress FCy4, anvinder detta virde for att

indexera i en tabell med start pa adress 70 och slutligen skriver ut

det indexerade tabellvardet till sjusifferindikatorn som &r ansluten till

adress FB .

e Fortsitt numed DisplaySeg.sflisp, dvs. tabellen med start
pa adress 70,5 som innehéller segmentskoder for siffrorna 0..9 i
tur och ordning. Skapa programtexten enligt flodesplanen i
marginalen och fardigstill fljande:

Mnemonic/

e Assemblera och ritta eventuella fel, koppla 7-SEG DISPLAY till
adress FB,s och DIPSWITCH till adress FCg.

e Anvind simulatorn och dvertyga dig om att programmet fungerar
som det ska, dvs. still in vdrdena 0 t.o.m. 9 (0000, —1001,) pa
omkopplaren och lis av sifferindikatorn.

e Om du gjort allting rétt ska programmet kunna visa siffrorna 0-9
pa sifferindikatorn. Om inte, felsok och ritta i programmet och
tabellen.

e Prova slutligen med att stilla in virden som &r storre d4n 9 pa
omkopplaren.

Eftersom segmentkodtabellen bara innehaller segmentkoder for de 10
forsta fallen kommer virdena 10-15 att resultera i "odefinierade"
segmentkoder utanfor tabellen. Det finns olika sdtt att losa det
uppkomna problemet.

e Komplettera tabellen med nagon speciell segmentkod for "fel",
exempelvis 'E' for alla otilldtna vdrden hos indata.

e Gor en kontroll (jamforelse) av indata och skriv direkt ut
felkoden om det ir ett otillatet virde.

; Symbolféalt direktiv Operand
DisplaySeg
DIPSWITCH:
SEGMENTT : X«Segmentkod
ORG 520 DisplaySeg_1
A —M(DIPSWITCH)
DisplaySeg:
DisplaySeg 1: [Acmax]
M(SEGMENT?7) « A
Flodesplan
ORG $70
Segmentkod:

160

Arbetsbok for DigiFlisp

16.2.4 Villkorlig programflédesédndring

Instruktionstypen Bec ("Branch on condition”) anvinds ocksa for att
ange s kallade “villkorliga programflédeséndringar”, dvs. beroende
pé hur ndgon test har utfallit sa utfors antingen den ena “grenen” eller
den andra. Vi ska nu titta ndrmare pa hur detta dr ténkt att anvéndas.

:

Test- eller -
jAmfdrelse- E vak{ermg av
instruktion villkor
Villkorlig
BRANCH- Uﬁffyl!;
instruktion villkor

Villkorlig
programsekvens

Evaluering av villkor

Villkorsevaluering kan goras explicit med speciella test- eller
jamforelse-instruktioner. For jamforelse av tva operander kan nagon
av foljande instruktioner (compare) anvéndas:

Mnemonic Funktion Operation
CMPA Jamfor A med minne (A)-(M)
CMPSP Jamfor SP med minne (SP)—(M)
CMPX Jamfor X med minne (X)-(M)
CMPY Jamfor Y med minne (Y)-(M)

Observera att dven andra instruktioner sétter flaggor pd samma sitt
som dessa. Det kan exempelvis vara verflodigt att anvinda en jam-
forelseinstruktion direkt efter en aritmetikinstruktion.

For test av en operand kan nagon av foljande instruktioner anvindas:

Mnemonic Funktion Operation
TST Testa minnesinnehall (M)-$00
TSTA Testa register A (A)-$00

Testinstruktionerna paverkar endast Z- och N-flaggorna. Aven dessa
kan 1 vissa fall utelimnas, di méanga andra instruktioner paverkar
flaggorna pa samma sitt.

161

Arbetsbok for DigiFlisp

Villkorstest

14 olika villkor (condition codes) kan anges,

CcC

Assemblersyntaxen ar:

Bcc <symbol>
Dir cc star for nagot flaggvillkor givet i tabellen nedan och
<symbol> d&r nigon ldgesangivelse i programmet. Flaggorna N,Z,V

och C som anvinds for att bilda de olika villkoren finns samlade i CC-
registret i simulatorns registersektion.

Mnemonic | Funktion [Flaggvillkor
Enkla test

BEQ “Hopp” om zero Z=1

BNE “Hopp” om ICKE zero Z=0

BMI “Hopp” om negative N=1

BPL “Hopp” om ICKE negative N=0

BVS “Hopp” om overflow V=1

BVC “Hopp” om ICKE overflow V=0
Jamférelse av tal utan tecken

BHI Villkor: R>M C+Z=0

BCC Villkor: R>M C=0

BCS Villkor: R<M c=1

BLS Villkor: R<M C+Z=1
Jamforelse av tal med tecken

BGT Villkor: R>M Z+(N®V)=0

BGE Villkor: R=M N®V=0

BLT Villkor: R<M NeV=1

BLE Villkor: R<M Z+(NeV)=1

Ett exempel pa flodesplan och kodning ér f6ljande:

CMPA 410
|Vil|kurssvaluering | [CC o A-10 BCS SANT
FALSKT: ..
BRA SLUT
@ ¢ SANT: ..
SANT FALSKT SANT FALSKT
SLUT:

dvs. "SANT”-grenen utfors om virdet i register A ér i intervallet 0..9.

Man kan ocksa koda genom att vilja komplementirvillkoret. T vart
fall ar exempelvis foljande instruktionssekvenser likvardiga:

CMPA #10 CMPA #10

BCC FALSKT BCS SANT
SANT: .. FALSKT:

BRA SLUT BRA SLUT
FALSKT: . SANT:
SLUT: SLUT:

o000
INVZIC

162

Arbetsbok for DigiFlisp

DisplaySegE

DisplaySegE_!
A — MIDIFSWITCHy

Uppgift 16.9
I denna uppgift forbattrar vi funktionen hos programsekvensen vi

skapade under foéregaende uppgift.

e Felkoden 'E” kan visas pa sjusifferindikatorn
enligt figuren till hoger. Definiera segmentkoden
som en konstant enligt:

SEG_ERROR: EQU

o Skapa en ny killtext DisplaySegE.sflisp, som en kopia av
killtexten fran foregaende uppgift.

e Modifiera programsekvensen sa att hinsyn tas till icke-befintliga
segmentkoder, se flédesplanen i marginalen. Fardigstill foljande

Arbetsbok for DigiFlisp

16.2.5 Rinnande ljus, férdréjning

I detta avsnitt ska vi skapa ett “rinnande ljus”, och samtidigt se
exempel pa hur exekveringshastigheten paverkar funktion av en
programsekvens.

Uppgift 16.10

Flodesdiagrammet i marginalen visar en programsekvens som
astadkommer ett "rinnande ljus" pa en ljusdisdiodramp.

e Komplettera foljande ofullsténdiga programsekvens som en
direkt implementering av flodesdiagrammet i marginalen. Spara
programsekvensen i filen RunDiode.sflisp.

Mnemonic/

; Symbolfalt direktiv Operand
LED: EQU SFB
ORG $20
RunDiode:
RunDiode 1:
==
JMP RunDiode_1
-

e Assemblera filen, ritta eventuell fel.

e Anslut ljusdiodrampen till adress FB.

e Kontrollera programsekvensen med simulatorns funktion run,
ljusdioderna ska nu tdndas en efter en fran hoger till vénster och
ge illusionen av ett "rinnande ljus". Kontrollera programmets
funktion och ritta eventuella fel.

e Prova nu dven programexekvering i hogre hastighet (klicka pa
step for att &ndra hastigheten). Det "rinnande ljuset" ersitts da av
ett flimmer pa ljusdioderna.

i assemblerprogram.
I)
P ; Symbolfalt hoemonie/ Operand
[a—mxn | [a—e] DIPSWITCH: EQU $FC
DisplaySegE 1 SEGMENT7 : EQU SFB
MISEGMENTT) +— A — v
Flodesplan
ORG 520
DisplaySegE:
DisplaySegE 1:
DisplaySegE_2:
DisplaySegE:3:
" JMP DisplaySegE 1
Segmentkod: FCB
FCB

o Assemblera, testa och verifiera att programsekvensen fungerar
korrekt.

163

Eftersom snabb exekvering ger intrycket av att samtliga dioder
flimrar, beroende pa att dioderna tinds och slicks i allt for hogt
tempo, behdver vi fordroja programexekveringen mellan det att en
diod tdnds och sldcks. En sadan fordrojning dr lamplig att utfora i
form av en subrutin.

PRunDiede_1

Flodesplan

164

Arbetsbok for DigiFlisp

Subruting namn

Flidesplansymbol for
subrutin

RunDiodeDelay

A — A=<1(C)

16.2.7 Subrutiner

Det dr vanligt att man forsoker organisera ett program i olika

Sfunktioner (procedurer) eller som vi vanligtvis, da det giller

assemblersprak, kallar det subrutiner. FLIS-processorn tillhandahaller
instruktionerna JSR, BSR och RTS for att underldtta modularisering
av program genom anvindande av subrutiner.

En subrutin karakteriseras av att den har ett intrdde och ett uttrdde.
Intridet anges oftast genom att man placerar en symbol i
symbolfiltet. Uttrddet, dvs. “ater fran subrutin” specificeras av en
speciell maskininstruktion, RTS.

Operanden fo6r JSR dr en subrutins intrdde. Denna kan anges med
flera olika adresseringssitt, men det vanligaste dr en symbolisk
adress.

JSR-instruktionen utfor tva visentliga operationer:
e adressen till ndsta instruktion sparas pa stacken

e programréknaren initieras med adressen till subrutinen.

RTS-instruktionen utfér operationen:
e adressen till nista instruktion éterstélls fran stacken.

Stackpekaren, register SP, maste alltsa ha initierats med en lamplig
adress innan JSR anvénds. For detta maste man dessuom forst ha
avdelat en ldamplig del av minnet for stackanvindningen.

I foljande figur, som delvis beskriver adressrummet i FLISP (en
fullstdndig beskrivning finns i appendix E), visar hur 16 bytes har
reserverats for stackanvindning (adresser 10,6—1F), ytterligare 16
bytes reserverats for data (adresser 0-Fi;) och utrymme for
programkod borjar pa adress 20;.

- “~__ reserverat for

programkod
20
1F
reserverat for
10 programmets stack
E reserverat for
a0 programmets data

Figur 16.2 Minnesanvindning i FLISP
For att initiera stackpekaren anvinds da lampligen instruktionen:
LDSP #520

Vi utformar nu ett nytt huvudprogram RunDiodeDelay for anvindning
tillsammans med en subrutin som vi kallar Delay. Flodesplanerna for
den foregaende och den nya 19sningen visas i marginalen.

Da vi utformar subrutinen Delay, maste vi ocksa ta hinsyn till sjilva
huvudprogrammet. Av flodesplanen framgér tydligt att savil register
A som C-flaggan i register CC anvénds i huvudprogrammet. Deras
innehall méste dérfor bevaras dver anropet till subrutinen Delay.

Foljaktligen méste subrutinen Delay spara dessa registerinnehall innan
de anvinds, for att avslutningsvis dterstills dem.

Stacken anvinds ocksa for att tillfalligt spara registerinnehall i sadana
hir fall. Instruktionerna PSH (PuSH register) respektive PUL (PULI
register) anvands for detta dndamal.

165

Arbetsbok for DigiFlisp

Uppgift 16.11
Flodesdiagrammet i marginalen visar en subrutin Delay.

Komplettera foljande ofullstindiga programsekvens av det
modifierade huvudprogrammet tillsammans med subrutinen. Spara
programmet i filen RunDiodeDelay.sflisp.

e Assemblera filen, ritta eventuella fel.

e Anslut ljusdiodrampen till adress FBj.

e Kontrollera programsekvensen med simulatorns storsta
exekveringshastighet. Ljusdioderna ska nu téndas en efter en fran
hoger till vanster och ge illusionen av ett "rinnande ljus".
Kontrollera programmets funktion och ritta eventuella fel.

; Symbolf< g?izi:is/ Operand
LED: EQU SFB
ORG $20
[RunDiodeDelay:
Delay
Spara A,CC
RunDiodeDelayﬁl : F.J!’\<7255
JSR Delay
JMP RunDiodeDelay 1
Delay: PSHA
PSHC
Delay 1: ‘ AMerstall CC,A ‘
. !
PULC (REWR)
PULA Flodesplan for subrutinen
'Delay’
RTS

16.2.8 Terminal, parametrar och returvérden

En terminal dr en kombinerad in- utmatningsenhet for
inmatning av ASCII-tecken fran ett tangentbord och
utmatning av ASCII-tecken till en bildskdrm. I detta
avsnitt anvénder vi FLISP-simulatorns termin al for

att dels illustrera enkel parameterdverforing till och — EsEsced ™

frén subrutiner, dels for att visa hur du kan anvinda
brytpunkter da du testar ett program.

FLISP-simulatorns terminal

166

Arbetsbok for DigiFlisp

(" Terminalout)1
M

M{FB1g) — A

(" RETRR)
h

Flédesplan for enkel
utmatningsrutin

(" HeloWord)

v
) P20)
S XeTedt

L

[TerminalOut
; Y
X XH1

Flidesplan for
programsekvens som matar
ut en textstring

Terminalen ansluts till tva portar samtidigt, en utport och en inport.
Ett tecken som matas in i terminalens fonster (svart) blir tillgingligt
pé terminalens inport, adress FCs. Tecknet finns kvar tills det
kvitterats genom att 0 skrivs till terminalens utport, adress FBy4.

Tecken matas ut till terminalens fonster genom att ett 7-bitars ASCII-
tecken (1-7F,4) skrivs till utporten. For en fullstindig beskrivning av
ASCII-koderna, se appendix G.

Parametrar och returviirden i register

For att ge en sd enkel anvindning av terminalen som mojligt
definierar vi tva olika subrutiner:

e TerminalOut, skriver ett tecken till terminalens bildskidrm.
e Terminalln, ldser ett tecken fran terminalens tangentbord.

Register A kan anvindas for att rymma ett enstaka 7-bitars ASCII-
tecken. En lamplig konvention &r da att overfora tecknen till
TerminalOut respektive fran ~ Terminalln via register A.
Utmatningsrutinen kan da beskrivas pa foljande sitt (se &ven
flsdesplanen i marginalen).
; subrutin TerminalOut

; Skriver ett ASCII-tecken till terminalens bildsk&arm
; Parametrar: Register A, tecken som ska skrivas

Uppgift 16.12

Vi kan anvinda subrutinen for en programsekvens som matar ut en
textstréng till terminalen. Ett nytt assemblerdirektiv kommer da till
anvindning:

FCS M"ascii text" ; Form Constant String

Med direktivets hjdlp skapar vi alltsd en string med ASCII-tecken i
minnet. For att markera stringens slut dr det brukligt att placera 0
efter ascii-tecknen. Skapa en ny killtextfil HelloWorld.sflisp,
implementera programsekvensen enligt flodesdiagrammet.

Mnemonic/

Arbetsbok for DigiFlisp

Da terminalfonstret dr aktivt skickas tecken fran tangentbordet till
terminalen. Tecknet placeras i en intern buffert och blir tillgéngligt
for ett program.

Subrutinen Terminalln, undersdker om det finns ndgot tecken i
bufferten. Om bufferten #r tom innehéller den tecknet 0; om en
tangent tryckts ned innehaller bufferten ASCII-tecknet for tangenten.
For att indikera for terminalen att tecknet tagits om hand maste det
kvitteras genom att 0 skrivs till terminalens utport.

; subrutin Terminalln

; Laser ett ASCII-tecken fran terminalens tangentbord

;
;
; Returvarde: Register A, tecken som lasts fran
; tangentbordet

Subrutinen Terminalln "vintar" alltsa pa att en tangent trycks ned,
kvitterar ASCII-tecknet och returnerar sedan koden for den
nedtryckta tangenten.

Uppgift 16.13

For att kontrollera funktionen skapar vi ett enkelt testprogram, Echo,
som kontinuerligt ldser ett tecken fran terminalens tangentbord for att
dérefter skriva samma tecken till terminalens bildskdrm. Fardigstall
foljande programsekvens och implementera den i filen
Echo.sflisp, vi testar den i nidsta uppgift.

Mnemonic/

; Symbolf< direktiv Operand
ORG $20

Echo:

[Echo_1:

fumemm——

Terminalln:

TerminalOut:

; Symbolf< direktiv Operand
ORG 520

HelloWorld: LDSP #3520

[==
LDX #Text
S R

HelloWorld 1:

==

HelloWorld 2:

TerminalOut:

Text: FCS "Hello World"
FCB 0

167

Brytpunkter

En brytpunkt kan sittas pa pa en adress i programmet som innehéller
en operationskod. D& simulatorn ska utfora instruktionen och
uppticker att dess adress Overensstimmer med nagon brytpunkt
stoppas 1 stillet exekveringen. Detta ger dig ett bekvamt sitt att
exekvera programmet tills nagot villkor ar uppfyllt eller helt enkelt
till nagon speciell subrutin, dir du sedan kan undersdka
programexekveringen i detalj.

(" Teminalin)

Consoleln_1
A+ M(FCs5)

M(FB:) — 0
(" RETURQ))

.
Flodesplan for enkel
inmatningsrutin

(Echo)]

p.

SR
< SP—20re /

-

Echo_1
Terminalin

[omwa | |

Flédesplan for test av
inmatningsrutin

168

Arbetsbok for DigiFlisp

Brytpunkter kan sidttas pa nagon adress med anvindning av
brytpunktstabellen. For att bestimma vilken adress brytpunkten ska
placeras pa &r det lampligt att anvidnda den listfil som skapas vid
assembleringen.

Ligg till en brytpunkt genom att hogerklicka pa en rad i

programfonstret.
£ G0 Ko LK kel =]
2E 43 RTS
2F G: ;n T STA SFB
31 o RTS
Set breakpoint HOP
HOP Ra|

Tva alternativ ges nu, antingen en tillfillig brytpunkt, Go to..., eller en
permanent brytpunkt (Set breakpoint). Den tillfilliga brytpunkten
anvinder du da du vill stoppa programmet en gang vid denna punkt.
Permanent brytpunkt anvinds da programmet ska stoppas varje gang
programmet nar denna adress.

En brytpunkt illustreras genom att raden far en réd bakgrund, for en
tillfllig brytpunkt ar texten svart, for en permanent brytpunkt 4r texten
vit.

For att ta bort en permanent brytpunkt hogerklickar du pa den
uppmirkta raden och viljer Remove breakpoint.

Bekanta dig snabbt med brytpunktsfunktionerna innan du utfor nista
uppgift.

Uppgift 16.14

e Assemblera filen Echo.sflisp.

e Ladda programmet till simulatorn.

e Anslut terminalen till portarna.

o Oppna listfilen Echo. 1st och lokalisera subrutinen TerminalOut,
anvind monitorns programsektion och sitt en brytpunkt pa
adressen till subrutinens forsta instruktion.

e Starta programmet, aktivera (klicka i) terminalfonstret och skriv
in tecknet ’b’. Programmet ska nu stanna pa den forsta
instruktionen i TerminalOut. Fortsdtt med att stega instruktionsvis
och kontrollera att tecknet b’ nu ocksa skrivs till terminalens
bildskédrm.

e Ta bort brytpunkten och starta programmet igen, skriv nagra
godtyckliga tecken och kontrollera att de skrivs ut korrekt.

e Prova ocksé med att sitta ut en tillfillig brytpunkt, dvs. Go to....

169

Arbetsbok for DigiFlisp

16.2.10 Tangentbord

KEYPAD ir ett enkelt tangentbord med 16 tangenter och lampar sig for
inmatning av numeriska virden till ett program. Tangentbordet méste
avkodas programvarumissigt, till skillnad fran terminalens
tangentbord som genererar ASCII-tecken.

Interrupts

Kolumner
1 2 3 4

Rader

Tangentbordet kan ocksd konfigureras for att generera avbrott, men
detta aterkommer vi till i nédsta avsnitt.

Tangentbordet &r organiserat i rader och kolumner. Raderna har
anslutits till bit 4 t.o.m bit 7 i utporten pa adress FC,s. Kolumnerna &r
anslutna till bit 0 t.o.m bit 3 hos inporten pa adress FBys.

FBm:inpOI’t

FCig:utport

For att kdnna av en tangentnedtryckning maste nagon rad i utporten
aktiveras. Genom att sitta nagon bit till '1' aktiveras motsvarande rad.

Efter att en rad aktiverats kan kolumnerna ldsas av fran inporten. En
tangents omkopplarfunktion &r sluten da tangenten trycks ned och
Sppen da tangenten sldpps upp. Om nagon rad aktiverats och ndgon
av kolumnerna har logikvirdet '1' betyder detta dirfor att tangenten i
motsvarande kolumn dr nedtryckt (det kan vara fler @n en tangent).
Om ingen tangent dr nedtryckt sa lases endast ettor fran kolumnerna.

Med vetskap om vilken rad som aktiverats och vilken kolumn som
ger indikation ('0') vet vi den nedtryckta tangentens position och kan
dérfor ocksa bestimma dess tangentkod.

Uppgift 16.15
Undersok tangentbordets funktion.
1. Anslut enheten KEYPAD.

170

Arbetsbok for DigiFlisp

2. Still in adressen FB,¢ och virdet 10,45 hos FLISP-simulatorn.

~ Memmory address ~ Memony data —

Ed OB

3. "Tryck ned” (klicka en gang) pé tangentbordets forsta tangent och
observera hur virdet pa inporten éndras. Klicka ytterligare en gang
for att ’slappa upp” tangenten.

.

wit Interrupts

B
out

F FC
[s s
=l= H H H = H

4. Upprepa forfarandet, aktivera andra rader och tryck ned tangenter i
andra kolumner.

For att avgora om en tangent dr nedtryckt avsoks tangentbordet rad
for rad, dvs. en rad aktiveras och kolumnerna lises av. Om en
nedtryckt tangent uppticks, ska den avkodas och dess tangentkod
bestdmmas. Om ingen tangent ar nedtryckt ska en felkod, i detta fall
FF s, ange just detta. Foljande algoritm kan anvindas for en sadan

funktion:
CheckKey
Initiera avsdkning
av tangentbord

Y

| Aktivera en rad ‘

!

| Las kolumnménster ‘

Tangent nedtryckt?

Har alla rader
undersokts?

Avkoda tangent
v < tangentkod

Nasta rad

RETUR (1v)

171

Arbetsbok for DigiFlisp

Uppgift 16.16

Skapa en ny Kkilltext, CheckKey.sflisp och implementera
CheckKey enligt flodesplanen. Testa med ett enkelt program enligt

foljande:
; Symbolfalt g:i:i:ij/ Operand
ORG $20
TestCheckKey: LDSP #$20
TestCheckKey 1: JSR CheckKey
JMP TestCheckKey 1
CheckKey: LDA #$10 ;bitménster rad 1
CheckKey 1: STA SFB ;aktivera (ndsta) rad
LDY SFC ;1las kolumner
;om nedtryckt, avkoda
;nasta rad
;om fler, ndsta rad
;alla genomsdékta
;ingen nedtryckt
CheckKey 2: LSRA ;tangent nedtryckt...
LSRA ;skifta radménster till
LSRA ;14g nybble
LSRA
LSRA ;.. omvandla radmdnster..
CMPA #4 ;.. till radoffset...
BNE CheckKey 3 ;.. 0,1,2,3
SUBA #1
CheckKey_3: ; multiplicera radoffset..
; med 4 och spara
PSHA ; .. pa stacken
; kopiera Y till A
; via stacken
; oversatt kolumnménster
; till kolumnoffset
CheckKey_4: ; bestdam tangentoffset
; som (radoffset*4)+
; kolumnoffset
; balansera stacken
RTS
KeyCode: FCB 1,2,3,%7,4,5,6,$B,7,8,9,8C,sF,0,SE, SD
172

Arbetsbok for DigiFlisp

L/ Getey)

(") Reservera ™
. ‘keycode’ 7

-

Jﬁ‘l’]

(" RETUR(keycode))

Flédesplan for
tangentbordsrutin 'GetKey'

Flodesdiagrammet i marginalen visar funktionen GetKey som
utformats sa att den véntar tills en tangent tryckts ned, dérefter véantar
till tangenten slédpps upp och slutligen returnerar den nedtryckta
tangentens virde.

Lokala variabler

Register A maste hir anvindas bade for att underska nedtryckt och
uppsldppt tangent eftersom registret anvinds for returvirdet fan
CheckKey. Sjilva tangentkoden, som ju ldses samtidigt som
programsekvensen detekterar en nedtryckt tangent maste darfor
sparas pa nagot annat sitt. En mojlighet ér att forst reservera utrymme
pa stacken och sedan anvinda denna plats for tillféllig lagring av den
nedtryckta tangentens kod. D& tangenten sldppts upp igen kan
tangentkoden éterstéllas fran stacken och returneras i register A.

Instruktionen LEASP -1,SP kan anvdndas for att minska
stackpekaren med 1, dvs. reservera 1 byte minnesutrymme. Adressen
till detta minnesutrymme, dvs. 0,SP, kallar vi symboliskt for keycode.

HOGRE ADRESSER 7 0
1,SP fore LEAS -1,SP
0,SP keycode SP
LAGRE ADRESSER
MINNE

Flodesplanen i marginalen beskriver en tangentbordsrutinen GetKey
dér foljande instruktioner dr lampliga for hantering av den lokala
variabeln keycode:

"Reservera keycode”
LEASP -1,SP

"keycode«—A"
STA 0,SP
"RETUR (keycode)”
LDA 0,SP ; aterstall 'keycode’ fran stack till register A
LEASP 1,SP ; aterstdll stackpekare
RTS ; aterga fran subrutin

Vi konstruerar nu subrutinen GetKey.

Uppgift 16.17

Skapa en ny Kkilltext, TestGetKey.sflisp och implementera
GetKey enligt flodesplanen. Testa med ett enkelt program pa samma
sétt som tidigare.:

173

Arbetsbok for DigiFlisp

Uppgift 16.18
I denna uppgift ska du konstruera ett program DisplayKbd som visar

Decimal | Sju- tskod
den sist nedtryckta tangenten som en hexadecimal siffra pa en :i‘;‘f‘:;a Ju-segmentsko
sjusegmentsindikator. Binar Bindr form Hex

kod form
Programmet ska delas upp i 010000 | 01110111 | 3F
. 1| 0001
= huvudprogram DisplayKbd.
= subrutin for tangentbordsinmatning, GetKey enligt féregaende 210010 | 0101 1011 |5B
uppgift. 3] 0011
= subrutin f6r utmatning av hexadecimal siffra (0..F,¢) pa en 4] 0100
sjusegmentsindikator DispSeg7; jamfor med Uppgift 16.9.
. . . 5| 0101
For DispSeg7 giller att rutinen anropas med det hexadecimala virdet
(tangentkoden) i register A. Alla mgjliga tangentkoder ska kunna 60110
visas och det behovs dirfor ingen felkontroll. 710111
e Skapa en ny killtextfil DisplayKbd.sf1lisp. Ateranvind kod 8| 1000
frén tidigare uppgifter. Borja sedan med att komplettera 9| 1001
segmentskodtabellen med giltiga sjusegmentskoder for de 211010
hexadecimala viirdena A till och med F,.
e Utforma huvudprogrammet enligt flodesdiagrammet i marginalen B| 1011
och firdigstill enligt foljande. cl 1100
) D| 1101
; Symbolfalt g:izizis/ Operand B 1 1 10
SEGMENT7 : EQU SFC Fl 1111
ORG $20
" DisplayKbd
DisplayKbd:
DisplayKbd 1:
= < SP—2015 >
isplayKbd 1 -
e DisplayRbd DisplayKbd_1 v
‘ ‘ GetKey ‘ ‘
GetKey: S enligt tidigare... i
DispSeg7
DispSeg7:
Flédesplan for 'DisplayKbd'
RTS
Segmentkod: FCB
FCB
FCB

e Kontrollera att programmet fungerar som avsett.

174

Arbetsbok for DigiFlisp — komplement ht2015

16.2.12 Avbrott
FLISP initieras for avbrott genom att:

e Stackpekare initieras.

e En avbrottsrutin, speciellt konstruerad for den
avbrottsgenererande enheten, konstrueras.

e Avbrottsvektorn, dvs. adress FDyg, initieras med adressen till
denna avbrottsrutinen.

e Processorns avbrottsmask, dvs. I-flaggan i CC-registret, nollstalls
sa att processorn accepterar ett avbrott da detta aktiveras.

Uppgift 16.19

| denna uppgift ska du konstruera en enkel applikation for anvandning
av avbrott.

e En DIPSWITCH ska anslutas till adress FC5 och tva indikatorer
ska anslutas, HEXDISPLAY 1 till adress FBys och HEXDISPLAY 2
till adress FCig.

e Huvudprogrammet ska konstrueras som en “réknare” som hela
tiden réknar upp vérdet hos HEXDISPLAY 2.

e En avbrottsrutin ska lasa data fran omkopplaren och skriva vardet
till HEXDISPLAY_1.

DIPSWITGH HEXDISPLAY HEXDISPLAY

e Skapa en kélltextfil FlispIRQ.sflisp, implementera
applikationen.

Mnemonic/

; Symbolfalt direktiv Operand
DIPSWITCH: EQU $FC
HEXDISPLAY_1: EQU $FB
HEXDISPLAY_2: EQU $FC
ORG $20
FI1ispIRQ:
FlisplRQ _1:
Atlrg:
RTI

175

Arbetsbok for DigiFlisp

For att testa funktionen anvander vi en inbyggd simulatorfunktion for
att generera avbrottsignalen IRQ.

Control/Options =) Avbrottet aktiveras genom att du klickar pa

Clear memary | Interrupt request i monitorfonstret.

Interrupt request

D& FLISP detekterar avbrottet lyser dioden
Request.

Da FLISP startar avbrottshanteringen tands
dioden Acknowledge, samtidigt slacks dioden
Request.

Acknowledge O

Request

Avbrottet deaktiveras da simulatorn utfér
Acknowledge ¢ [instruktionen RTI.

Request

Testa programmet pa foljande satt:

e Stega ett antal instruktioner sa att initieringar i huvudprogrammet
har utforts nagra varden skrivits till HEXDISPLAY 2.

e Generera ett avbrott genom att klicka pa interrupt request.
Observera att dioden interrupt pending &nnu inte paverkas; det sker
forst da nasta instruktion ska utforas (flanktriggad IRQ).

e Stega nésta instruktion, observera hur avbrottshantering inleds
och indikatordioden ténds. Stega igenom avbrottsrutinen och
notera hur indikatordioden slacks da RT 1 utfors.

Globala variabler

Overforing av data mellan avbrottsrutin och huvudprogram maste ske
via ett delat (“globalt”) minnesutrymme. Utrymme for globala
variabler skapas med assemblerdirektivet

RMB <antal> ; Reserve memory bytes
dar <antal> anger hur manga bytes som ska reserveras.

For att exempelvis definiera och reservera utrymme for en global
variabel count som upptar 1 byte, skriver vi:

count: RMB 1

Vi kan sedan anvanda denna for att kommunicera data mellan
avbrottsrutinen och huvudprogrammet.

176

Arbetsbok for DigiFlisp — komplement ht2015

Avbrott fran yttre enhet

Avbrottsignaler fran flera olika avbrottskallor kan kopplas till samma
avbrottsingdng under forutsattning att man, programvarumassigt, kan
skilja dem at.

Modulen ”IRQ FlipFlop” innehaller tre olika D-vippor. Vippa 1 och 3
styrs av enkla omkopplare, medan vippa 2 styrs av en annan (icke
synlig) astabil vippa som genererar en klocksignal med frekvenserna
10 eller 100 Hz. vars utgangar kopplas till ett statusregister i
modulen. (Anm. felritat i RC-2 versionen av simulatorn.

Summasignalen av dessa kopplas vidare till FLISP:s avbrottsingang
via omkopplaren Enable/Disable. Till hdger om omkopplaren finns en
indikatordiod som visar den avbrottsignal som kopplats till FLISP-
datorn. Till vanster om denna finns en omkopplare som anvénds for
att aterstalla alla avbrottsignaler i modulen.

Clear Enable |RQ
o O

Dizable

lb?‘ba‘bs‘b‘t‘balbz‘m‘bn‘
- Vippa 1
Vippa 2 Vippa 3

Vippa 1 och 3 anslutna till omkopplare
Vippa 2 ansluten till astabil vippa

Da nagot avbrott aktiverats med en omkopplare eller fran den astabila
vippan satts ocksa motsvarande bit i statusregistret anslutet till adress
FCys, till 1.

Status _ _
FC b?‘ba bs‘bat ba‘bz‘bi‘bu‘
1= Aktivt ‘ L 1= Aktivt avbrott fran vippa 1
periodiskt 1= Aktivt avbrott fran vippa 3
avbrott

For att aterstalla avbrottsignalen kravs att motsvarande bit i

kontrollregistret (adress FByg) sitts till 1 och darefter aterstalls till 0.
Kontroll

B [br b

bs | ba

ba - bz [by [bﬂ ‘
‘ L 1= Nollstall by i statusregister

—— 1= Nollstall by i statusregister
1= Nollstall by i statusregister

177

Arbetsbok for DigiFlisp

Uppgift 16.20

I denna uppgift anvander du modulen IRQFlipFlop tillsammans med en

Bargraph.

Vi har ett huvudprogram som kontinuerligt skriver ut vérdet av en
global variabel, till en Bargraph. Konstruera en avbrottsrutin, dar en
puls fran vippa 1 okar den globala variabelns varde med 1. En puls
fran vippa 3 nollstaller variabeln.

e Skapa en ny kalltextfil FlipFlopIRQ.sflisp.
e Implementera avbrottsrutinen IRQ_Service enligt anvisningarna.

Mnemonic
; Symbolfalt / Operand
direktiv
BAR EQU $FC
STATUS EQU $FC
CTRL EQU $FB
ORG $20
start:
main: LDA count
STA BAR
BRA main
IRQ_Service: ;1as status
; Vippa 17
; Nej, kontrollera Vippa 3
; Inkrementera global variabel
; aterstall avbrott fran vippa 1
BRA IRQ_EX
IRQ_Service2: ; Vippa 3
; Nej, klar
; nollstall global variabel
; aterstall avbrott fran vippa 2
IRQ_EX: CLR CTRL ; Aterstall ACK-signal
RTI
ORG $FD ; Vektor "Interrupt request”
FCB IRQ_Service
ORG 0
count: RMB 1

Clear Enable |RQ

4

v 0

Diisable

Kontrollera funktionen och ratta eventuella fel.

Innan du startar

programmet kontrollera att: Omkopplare Enable ar tillslagen och att
det inte finns nagon aktiv avbrottshegaran.

178

